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A Cutting Plane Algorithm for Semi-Definite Programming Problems
with Applications to Failure Discrimination and Cancer Diagnosis

今野浩 (Hiroshi Konno) 後藤順哉 (Jun-ya Gotoh) 宇野解明 (Takeaki $\mathrm{U}\mathrm{n}\mathrm{o}$ )
Department of Industrial Engineering and Management, Tokyo Institute of Technology

Abstract We will propose a new cutting plane algorithm for solving a class of semi-
definite programming problems with a small number of variables and a large number of
constraints. This type of problems appear when we try to classify a large number of multi-
dimensional data into two groups by a hyper-ellipsoidal surface. Among such examples
are cancer diagnosis and failure discrimination of enterprises.
We will show that this algorithm is much more efficient than the standard interior point
algorithm for solving semi-definite programming problems.
Keywords : semi-definite programming, ellipsoidal separation, cutting plane method,
failure discriminant analysis, cancer diagnosis

1 Introduction

Semi-definite programming problems (SDP) have been under intensive study in recent
years. A number of efficient algorithms have been developed $[6, 8]$ and used for solving
various classes of combinatorial optimization problems and control problems $[14, 15]$ .

Recently, one of the authors applied semi-definite programming approach to failure
discrimination of enterprises, where multi-dimensional financial data are classified into
two groups, namely failure group and going group by a hyper-ellipsoid. This research
was inspired by a remarkable success reported in Mangasarian et al. [12], where three
dimensional physical data of suspected breast cancer patients were classified into benign
group and malignant group by a hyperplane.

We applied the same idea to failure discrimination of enterprises, a very important and
well studied subject in financial engineering. Unfortunately, however this method did not
work well for financial data. This led us to extend hyperplane separation to quadratic
separation. However, general quadratic separation often generates disconnected regions of
discrimination, which is awkward from the nature of financial data. To obtain legitimate
results, we need to impose a condition that the discriminant surface is an ellipsoid or
paraboloid. Thus we have to solve a semi-definite programming problem.

Separation of multi-dimensional data by an ellipsoid was proposed by Rosen [13] in
1963. However, no one applied this method to real world problems since no efficient
computational tools were available until recently. It is reported in [11] that ellipsoid
separation performs much better than its counterpart, hyperplane separation. In fact,
preliminary computation exhibits that the chance of wrong discrimination of ellipsoid
separation is much less than hyperplane separation. In addition, ellipsoid separation may
be used as a basis for rating enterprises. Those companies located very far (into a desirable
direction) from the separating ellipsoid can be considered as an enterprise with smaller
probability of bankruptcy. Thus the distance from the boundary may be used as the score
of each enterprise. We compared the rating score announced by a leading rating company
and the score calculated by ellipsoidal separation and found that they are reasonably well
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correlated [11].
One disadvantage of ellipsoidal separation is that the computation time for solving the

resulting SDP is much larger than solving a hyperplane separation problem. When the
number $k$ of enterprises is 455 and the dimension $n$ of the data is 6, hyperplane separation
problem can be solved in less than one second, while ellipsoid separation requires around
1000 seconds by SDPA, a well designed code for SDP’s. Therefore, we need to have a
more efficient algorithm when the number of enterprises is over a few thousand.

The purpose of this paper is to propose a more efficient algorithm for solving an SDP
with the structure stated above. We will first formulate an SDP as a linear programming
problem with an infinite number of linear constraints. We then propose a new algorithm
where we solve a series of tighter relaxation problems. The constraint to be added is the
mostly violated constraint among the infinite number of linear constraints. Problem to
be solved at each step is a linear programming problem whose optimal solution can be
recovered from an optimal basic solution of the previous step by applying a number of
dual simplex iterations.

In section 2, we will briefly introduce alternative formulations of failure discrimination
problem, $i.\mathrm{e}.$ , a hyperplane separation, quadratic separation and hyper ellipsoidal sep-
aration. Section 3 will be devoted to the description of a cutting plane algorithm for
SDP.

In Section 4, we will present the result of numerical simulation using the financial data
collected in Tokyo capital market. It will be shown that we can solve SDP much faster
than SDPA software. Further, we will report the performance of our method to cancer
diagnosis problem discussed in Mangasarian et $\mathrm{a}1.[12,4]$ . It will be shown that better
solution can be obtained by ellipsoidal separation with slightly more computation time.

Section 5 will be devoted to a more detailed analysis of the cutting plane method. Due
to the limitation of data availability, we solved problems up to $k=569$ and $n=6$ .
Computational results indicate that problems with $k$ over a few thousand can be solved
in a practical amount of time as long as $n$ is less than ten.

2 Separation of Multi-dimensional Data by Mathe-
matical Programming

2.1 Separation by a Hyperplane

Let $A_{i},$ $i=1,$ $\ldots,$
$m$ be going enterprises and $B_{l},$ $l=1,$ $\ldots,$

$h$ be enterprises which have
undergone failure. Also, let $a_{i}\in l\mathrm{R}^{n},$ $b_{l}\in l\mathrm{R}^{n}$ be, respectively the vectors of financial data
of $A_{i},$ $B_{l}$ .

If there exists a vector $(c, c_{0})\in \mathrm{B}^{n+1}$ such that
$c^{T}a_{i}>c_{0}$ , $i=1,$ $\ldots,$

$m$ , (1)
$c^{T}b_{l}<c_{0}$ , $l=1,$ $\ldots,$

$h$ , (2)

we will call
$H(c, c_{0})=\{x\in 1\mathrm{R}^{n}|c^{T}x=C_{0}\}$ ,

a discriminant hyperplane. (Figure $1-(\mathrm{a})$ )
Discriminant hyperplane does not exist in general. (Figure $1-(\mathrm{b})$ )
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Figure $1-(\mathrm{a})$ : Discriminant Hyperplane Figure $1-(\mathrm{b})$ : No Discriminant Hyperplane

Upon normalization, condition (1) and (2) are equivalent to

$c^{T}a_{i}\geq c0+1$ , $i=1,$ $\ldots,$
$m$ , (3)

$c^{T}b_{l}\leq c_{0}-1$ , $l=1,$ $\ldots,$
$h$ . (4)

Let us define subspaces :

$H_{+}(c, c0)=\{x\in 1\mathrm{R}^{n}|c^{T}x\geq C0\}$ , (5)
$H_{-}(c, c_{0})=\{x\in 1\mathrm{R}^{n}|c^{T}x\leq C0\}$ . (6)

An enterprise $A_{i}$ such that $a_{i}\not\in H_{+}(c, c0)$ will be called a misclassified enterprise of the
first kind. Also, $B_{l}$ such that $b_{l}\not\in H_{-}(c, c\mathrm{o})$ will be called a misclassified enterprise of the
second kind.

Let $y_{i},$ $z_{l}$ be, respectively the distance of $a_{i}\not\in H_{+}(c, c0)$ and $b_{l}\not\in H_{-}(c, c\mathrm{o})$ from the
hyperplane $H(c, c_{0})$ and let us try to minimize the weighted sum of $y_{i}’ \mathrm{s}$ and $z_{l}’ \mathrm{s}$ . This
problem can be formulated as the following linear programming problem:

minimize $(1- \lambda)\frac{1}{m}\sum_{=i1}^{m}yi+\lambda\frac{1}{h}\sum_{1l=}^{h}zl$

subject to $c^{T}a_{i}+y_{i}\geq c_{0}+1$ , $i=1,$ $\ldots,$
$m$ , (7)

$c^{T}b_{l}-z_{l}\leq c_{0}-1$ , $l=1,$ $\ldots,$
$h$ ,

$y_{i}\geq 0$ , $i=1,$ $\ldots,$
$m$ ,

$z_{l}\geq 0$ , $l=1,$ $\ldots,$
$h$ ,

where $\lambda\in[0,1]$ is a constant representing the relative importance of the cost associated
with misclassiflcation of the first and the second kind.

Let us note that the problem (7) is feasible. Also, the objective function is bounded
below. Therefore, it has an optimal solution $(c^{*}, c_{0}^{*}, y_{1}..ym’ 1Z_{h}Z..)*.**.*[4]$ . Mangasarian et
$\mathrm{a}1.[12]$ applied this method to breast cancer diagnosis to classify 569 patients into benign
and malignant groups by using 30 dimensional physical data. According to their report,
97.5% of the 569 patients are classifled correctly by $\mathrm{u}\mathrm{s}\mathrm{i},\mathrm{n}\mathrm{g}$ only three. data carefully chosen
from 30 available data.

2.2 Separation by a Quadratic Surface

Discrimination of financial data is more difficult than physical data such as breast cancer
data. For one thing, flnancial data are much less reliable than physical data since they are
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calculated from less precise numbers. Even worse, they are sometimes subject to window-
dressing procedure. Also, financial data are highly correlated to each other, so that linear
(hyperplane) separation is doomed to be of limited power for failure discrimination.
Hyperplane separation method was applied to failure discrimination by Konno-Kobayashi

[11], where they chose six dimensional flnancial data compiled from balance sheets of 170
companies. However, only 92% of the companies were correctly classifled, which is not at
all satisfactory from the practical point of view.

To improve precision of discrimination, Konno and Kobayashi [11] proposed a quadratic
separation. Let $D=(d_{ij})\in \mathrm{R}^{n\cross n}$ be a symmetric matrix and deflne a quadratic surface :

$Q(D, C, c_{0})=\{x\in 1\mathrm{R}^{n}|x^{T}Dx+c^{T}x=c_{0}\}$ , (8)

and consider the following minimization problem:

minimize $(1- \lambda)\frac{1}{m}\sum yi=1mi+\lambda\frac{1}{h}\sum_{\iota=1}^{h}z\iota$

subject to $a_{i}^{T}Da_{i}+a_{i}^{T}c+y_{i}\geq c_{0}+1$ , $i=1,$ $\ldots,$
$m$ , (9)

$b_{l}^{T}Db_{l}+b_{l}^{T_{C}}-Zl\leq c_{0}-1$ , $l=1,$ $\ldots,$
$h$ ,

$y_{i}\geq 0$ , $i=1,$ $\ldots,$
$m$ ,

$z_{l}\geq 0$ , $l=1,$ $\ldots,$
$h$ ,

where $D\in 1\mathrm{R}^{n\cross n},$ $c\in \mathrm{I}\mathrm{R}^{n},$ $c_{0}\in l\mathrm{R}^{1},$ $y_{i}\in l\mathrm{R}^{1},$ $i=1,$ $\ldots,$
$m;z_{l}\in 1\mathrm{R}^{1},$ $l=1,$ $\ldots,$

$h$ are
variables to be determined. Variables $y_{i}$ and $z_{l}$ represent, respectively the distance of the
misclassifled enterprises from the quadratic surface $Q(D, C, C_{0})$ .

The problem (9) is a linear programming problem. It is easy to see that this problem
has an optimal solution $(D^{*}, c^{*}, C_{0}^{*})$ . Since this problem contains $n(n+1)/2$ additional
variables compared with (7), the value of objective function should be much better than
that of hyperplane separation. On the other hand, the conflguration of separating surface
$Q(D, c, C_{0})$ can be very complicated since we do not impose any condition on the matrix
$D$ . In particular, if the surface is hyperbolic, then either one or both of the discriminant
regions:

$Q_{+}(D^{*}, c^{*}, C_{0}^{*})=\{x\in 1\mathrm{R}^{n}|x^{T}D^{*}x+(c^{*})^{T}x\geq c_{0}^{*}\}$, (10)
$Q_{-}(D^{*})C^{*},$ $C_{0}^{*})=\{x\in \mathrm{I}\mathrm{R}^{n}|x^{T}D^{*}x+(c^{*})^{T}x\leq c_{0}^{*}\}$ , (11)

can be disconnected. This is awkward since flnancial data are monotonic in the sense that
a larger (or smaller) value is associated with better performance of enterprises.

It is reported in [11] that we usually obtain 100% correct separation. However, the
discriminant region is disconnected, and the company score exhibits almost no correlation
to rating data. This means that quadratic separation leads to overfltting of the model to
data, as is usually observed in neural network approach.

2.3 Separation by an Ellipsoid

To avoid the difficulty associated with disconnected discriminant region, Konno and
Kobayashi [11] requires $D\in \mathrm{R}^{n\cross n}$ to be a symmetric positive semi-deflnite matrix. This
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means that the surface $Q(D, C, C_{0})$ becomes a hyper-ellipsoid or hyperparoboloid. This
leads us to solve the following minimization problem:

minimize $(1- \lambda)\frac{1}{m}\sum_{=i1}^{m}yi+\lambda\frac{1}{h}\sum_{l=1}^{k}z_{l}$

subject to $a_{i}^{T}Da_{i}+a_{\mathrm{i}}^{T}c+y_{i}\geq c_{0}+1$ , $i=1,$ $\ldots,$
$m$ ,

$\text{\’{o}}_{\iota^{Db}\iota}^{T}+b_{l}^{T}c-z_{l}\leq c_{0}-1$ , $l=1,$ $\ldots,$
$h$ , (12)

$y_{i}\geq 0$ , $i=1,$ $\ldots,$
$m$ ,

$z_{l}\geq 0$ , $l=1,$ $\ldots,$
$h$ ,

$x^{T}Dx\geq 0$ , $\forall x\in B_{n}$ ,

where $B_{n}=\{x\in l\mathrm{R}^{n}|||x||=1\}$ .
This is a ”semi-deflnite programming problem”. Many practical algorithms $[6, 14]$ have

been proposed when $n$ is not too large. By requiring $D$ to be positive semi-deflnite,
we can obtain more persuasive results at the expense of more computation time and
misclassiflcation cost compared with general quadratic separation.

Ellipsoidal separation can be used for the rating of enterprises. As reported in [11] scores
of individual enterprises calculated by using their distance from the separating ellipsoid
exhibits a good correlation with the result of rating reported by aleading rating company.
Therefore, these scores may be used as a basis for rating a large number of enterprises in
an automatic way.

Unfortunately, however the computation time for solving an SDP (12) is over 1000 times
more than that for solving the associated linear program (9) when $n=6$ and $m+h=455$ .
The problem to be solved in practice is much larger, i.e., $m+h$ is over a few thousand
while $n$ remains small. Therefore, we need to develop a more efficient algorithm for solving
(12) using its special structure.

3 A Cutting Plane Algorithm for SDP
Let us flrst deflne $y=$ $(y_{1}, \ldots , y_{m})^{T},$ $z=(z_{1}, \ldots, z_{h})T,$ $e_{m}=(1/m, \ldots , 1/m)^{T}\in l\mathrm{R}^{m}$ ,

$e_{h}=(1/h, \ldots 1)/h)^{T}\in l\mathrm{R}^{h}$ and let

$\mathcal{F}_{0}=\{(D, c, c_{0}, y, z)$

$a_{i}^{T}Da_{i}+a_{i}^{T}c+y_{i}\geq c_{0}+1$ , $i=1,$ $\ldots,$
$m$ ,

$b^{T}Db\iota\iota+b_{l}^{\tau_{c-}}Z_{l}\leq c_{0}-1$ , $l=1,$ $\ldots,$
$h$ ,

$y_{i}\geq 0$ , $i=1,$ $\ldots,$
$m$ , $z_{l}\geq 0$ , $l=1,$ $\ldots,$

$h,$

$\}$ (13)

$d_{jj}\geq 0$ , $j=1,$ $\ldots,$
$n$ .

and denote (12) in a compact form as follows :

(P) $|^{\min_{\mathrm{S}\mathrm{u}\mathrm{b}}\mathrm{i}}\mathrm{j}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{C}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{Z}\mathrm{e}x^{T}D_{X}(D, c, c_{0},y,z(1-\lambda)eym_{0})\in\geq,\forall X\in z\tau\tau_{0}+\lambda e_{\mathcal{F}}hB_{n}$

.
(14)

An important observation is that this belongs to a class of inflnite programming problem,
a linear programming problem with an inflnite number of constraints.

The flrst step of our algorithm is to solve a linear programming problem:

$(\mathrm{Q}_{0})|_{\mathrm{S}}^{\min_{\mathrm{u}}\mathrm{i}\mathrm{m}}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{i}\mathrm{z}\mathrm{e}$ $(D^{-}, c(1,\lambda)e^{\tau_{yz}}+c_{0},y, Z)\in \mathcal{F}_{0}m\lambda e_{h}^{\tau}$ (15)
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by relaxing the last constraint of (14). Let us note that this program is feasible and the ob-
jective function is bounded below. Therefore, it has an optimal solution, $(D^{o}, C^{o}, c_{0}^{O}, y, z^{o})O$

[5].
If $D^{o}$ is positive semi-deflnite, then $(D^{ooO}, C, c_{0}, y^{Oo}, z)$ is obviously an optimal solution of

(12). If $D^{o}$ is not positive semi-deflnite, then there exists $x\in B_{n}$ such that $x^{T}D^{o}X<0$ .
Let us consider the quadratic program:

$(\pi_{0})|^{\min_{\mathrm{S}\mathrm{u}}\mathrm{i}\mathrm{m}\mathrm{i}}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{Z}\mathrm{e}$ $x\in B_{n}x^{\tau}Dox$

. (16)

LEMMA 3.1 Let $\lambda_{0}$ and $x^{0}$ be, respectively the smallest eigenvalue and associated eigen-
vector of $D^{0}$ . Then the minimal value of the problem (16) is attained at $x^{O}$ and $(x^{o})\tau D^{o}xO=$

$\lambda_{0}$ .

Proof See Gantmacher [7]. I
Let us deflne a new set

$\mathcal{F}_{1}=\mathcal{F}_{0}\cap\{D|(x^{O})^{T}Dx^{o}\geq 0\}$ (17)

and deflne a tighter linear program

$(\mathrm{Q}_{1})|^{\min_{\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{j}\mathrm{t}\mathrm{o}}}\mathrm{i}\mathrm{e}\mathrm{C}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{Z}\mathrm{e}$ $(D, C, c_{0},y, z(1-\lambda)e^{\tau}y+m\lambda e^{\tau}z)\in \mathcal{F}_{1}h$ (18)

In the $k(\geq 1)$ th step, let us consider the linear program

$(\mathrm{Q}_{k})|^{\min_{\mathrm{S}\mathrm{u}}\mathrm{i}\mathrm{m}\mathrm{i}}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{Z}\mathrm{e}$ $(D, C, c_{0,y}, Z)\in(1-\lambda)e^{T}ym\lambda+e^{\tau}zF_{k}h$ (19)

where

$\mathcal{F}_{k}^{\cdot}=\mathcal{F}_{k1}-\mathrm{n}\{D|(x^{k-1})^{T}DX^{k-1}\geq 0\}$ (20)

Let $(D^{kkk}, c, c_{0}, y^{kk}, Z)$ be an optimal solution and solve

$(\pi_{k})|^{\min_{\mathrm{S}\mathrm{u}}\mathrm{i}}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{Z}\mathrm{e}$ $x\in B_{n}x^{T}D^{k_{X}}$

. (21)

Let $x^{k}$ be its solution, for which the objective value of $(\pi_{k})$ is the minimal eigenvalue by
lemma 1. If $D^{k}$ is positive semi-deflnite, then we are done. Otherwise, repeat the k-th
step replacing $k$ with $k+1$ .

Cutting Plane $(\mathrm{C}\mathrm{P})$ Algorithm
Initialization Let $\in>0$ be a tolerance and set $\mathcal{F}_{0}$ such as (13) and $k=0$ .

General Step $k$ Solve a linear program $(\mathrm{Q}_{k})$ and let $(D^{k}, c^{kk}, cy^{kk}\mathrm{o}")Z$ be its optimal
solution. Let $\alpha_{k},\tilde{D}^{k},\tilde{c}^{k}$ and $\tilde{c}_{0}^{k}$ be, respectively, a constant, a matrix, a vector, a
scalar satisfying that $||\tilde{D}^{k}||^{2}+||\tilde{c}^{k}||^{2}+||\tilde{c}_{0}|k|2=1,$ $\alpha_{k}>0,$ $\alpha^{k}\tilde{D}^{k}=D^{k},$ $\alpha_{k}\tilde{c}^{k}=c^{k}$ and
$\alpha_{k}\tilde{c}^{k}0=c_{0}^{k.1}$

1Note that $\alpha_{k},\tilde{D}^{k},\tilde{c}^{k},\tilde{c}_{0}^{k}$ are uniquely defined for a set of $(D^{k},c^{kk},c)0$ .
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Case 1 $(x^{k})^{\tau}DkXk\geq-\in$ . Then $(D^{kkk}, C, Cy^{kk}\mathrm{o}")Z$ is an optimal solution of (P)
Case 2 $\tilde{D}^{k}$ and $\tilde{c}^{k}$ satisfy

$a_{i}^{T}\tilde{D}^{k}a_{i}+a_{i}^{T}\tilde{c}^{k}-\tilde{c}^{k}0\geq 0$ , $i=1,$ $\ldots,$
$m$ ,

$b_{i}^{T}\tilde{D}^{k}b_{l}+b_{l}^{T_{\tilde{C}^{k}}}-\tilde{c}_{0}^{k}\leq 0$ , $l=1,$ $\ldots,$
$h$ .

Then $Q(\tilde{D}^{k},\tilde{c}^{kk},\tilde{c}_{0})$ is a separating ellipsoidal surface.
Case 3 Otherwise, set $karrow k+1$ and

$\mathcal{F}_{k+1}=\mathcal{F}_{k^{\cap}}\{D|(x^{k})^{T}DX^{k}\geq 0\}$

and repeat General Step $k$ .
Note that any $(\mathrm{Q}_{k})$ has an optimal solution since $(\mathrm{Q}_{k})$ has a feasible solution and the
objective function can not be negative for feasible solutions. Now let $v^{*}$ be the optimal
value of (P).

Theorem 1 $(D^{kkk}, c, c_{0}, y^{kk}, Z)$ converges to $an\in$ -optimal solution of $(P)$ , or $Q(\tilde{D}^{k},\tilde{c}^{kk},\tilde{c}_{0})$

converges to a separating ellipsoidal surface.

Proof To prove the theorem, we show that ”if $(D^{kkk}, C, Cy^{kk}\mathrm{o}")Z$ does not converge
to any optimal solution of (P), then $Q(\tilde{D}^{k},\tilde{c}^{kk},\tilde{c}_{0})$ converges to a separating ellipsoidal
surface”

Suppose that $(D^{kkk}, c, cy^{kk}0")\mathcal{Z}$ does not converge to any optimal solution of (P). Then,
the algorithm generates an inflnite sequence $\{(D^{111}, c, c_{0}, y^{11}, Z), (D^{222}, C, Cy^{22}\mathrm{o}")Z, \ldots\}$ sat-
isfying that $(x^{k})^{\tau}DkXk<-\delta$ for a positive constant $\delta$ .

The vector composed of the elements of $\tilde{D}^{k},\tilde{c}^{k}$ and $\tilde{c}_{0}^{k}$ is on the surface of the unit
sphere of $1\mathrm{R}^{(n+1}$ ) $(n+2)/2$ . Since the sphere is a compact set, there is an inflnite su.bsequence
$\{j_{1}, j_{2}, \ldots\}\subseteq\{1,2, \ldots\}$ such that

$(\tilde{D}^{j_{k}},\tilde{C}^{?k}, d\sim)0^{k}arrow(\tilde{D}^{\infty},\tilde{C}^{\infty},\tilde{C}_{0}^{\infty})$

as $karrow\infty$ . Therefore, for any $\in>0$ , there exists a constant $K$ such that
$|(x^{jk})^{T}\tilde{D}jk+1Xj_{k}-(x^{j_{k}})^{\tau}\tilde{D}jkxj_{k}|<\in$ , $\forall_{k}>K$ .

However, since $(x^{jk})^{\tau}\tilde{D}^{j}k+1X^{j_{k}}\geq 0$ , we have
$(x^{j_{k}})^{\tau_{\tilde{D}}j}kx^{jk}>(x^{j_{k}})T\tilde{D}jk+1xj_{k}-\in\geq-\in$, $\forall_{k}>K$ .

Therefore, $\tilde{D}^{\infty}$ is a semi-deflnite matrix. Since we assumed that $\alpha_{k}((x)^{\tau}k\tilde{D}kX)k=$

$(x^{k})^{\tau}DkXk<-\delta,$
$\alpha_{j_{k}}$ diverges to $\infty$ as $karrow\infty$ .

Since the optimal value of $(Q_{k})$ is not greater than $v^{*}$ , there exists a constant $\overline{y}$ such
that for any $i,$ $y_{i}^{k}\leq\overline{y}$. Then,

$\alpha_{j_{k}}(a_{i}^{T}\tilde{D}^{jk}a_{i}+a_{i}^{T}d^{k}\sim-\sim_{k}d0)\geq 1-y_{i}^{k}\geq 1-\overline{y}$

for any $?_{\text{ノ}},$ $1\leq i\leq m$ . Since $\alpha_{j_{k}}arrow\infty$ , for any $\in>0$ , there exists a constant $K$ such that
$a_{i}^{T}\tilde{D}^{j_{k}}a_{i}+a_{i}^{T}\tilde{c}^{jk}-d_{0^{k}}^{\sim}\geq-\in$ for any $k>K$ . Therefore, for any $i,$ $1\leq i\leq m$ ,

$a_{i}^{\tau_{\tilde{D}^{\infty}a_{i}}T\infty}+a\tilde{c}-\dot{x}\tilde{c}^{\infty}0\geq 0$ .

Similarly, for any $l,$ $1\leq l\leq h$ , we have
$b_{\iota\iota l0}^{\tau_{\tilde{D}^{\infty}b+}\tau\infty}b\tilde{C}^{\infty}-\tilde{c}\leq 0$ .

Here we obtain that $Q(\tilde{D}^{\infty},\tilde{c}^{\infty\infty},\tilde{c})0$ is a separating ellipsoidal surface. 1
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4 Quality of Separation

We compared three alternative separation schemes i.e., (i) hyperplane separation, (ii)
quadratic separation and (iii) ellipsoidal separation using (a) flnancial data of enterprises
used in [11] and (b) WDBC data used for breast cancer diagnosis [12]. All the exper-
iments were conducted on PentiumllI Processor $(500\mathrm{M}\mathrm{H}\mathrm{z})$ using $\mathrm{C}/\mathrm{C}++$ . Also linear
programming subproblems were solved by CPLEX6.5.

(a) Failure Discriminant Analysis

Failure discrimination has a long history since the pioneering work of Altman $[1, 2]$

and is one of the most actively studied fleld in flnancial optimization $[9, 10]$ . In [11],
455 companies were classifled into two groups. $i.e.$ , ongoing group and failure group using
following six dimensional data

1. $I_{1}=\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{w}$ ( $\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}_{0}\mathrm{n}$ yen)
2. $I_{2}=(\mathrm{d}\mathrm{e}\mathrm{b}\mathrm{t}/\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{w})\cross 100$

3. $I_{3}=\mathrm{c}\mathrm{a}\mathrm{p}\mathrm{i}\mathrm{t}\mathrm{a}1$ adequacy ratio (%)
$=$ (amount of net $\mathrm{c}\mathrm{a}\mathrm{p}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{l}/\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}$ of total capital) $\mathrm{x}100$

4. $I_{4}=\mathrm{R}\mathrm{O}\mathrm{E}$ ( $\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$ of return on equity)
$=$ ( $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{t}+\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{i}_{\mathrm{V}}\mathrm{e}\mathrm{d}$ interest/dividend)/(total capital) $\cross 100$

5. $I_{5}=\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ coverage
$=$ ( $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{t}+\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{d}$interest/dividend)/(paid $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{t}+\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}\mathrm{o}\mathrm{u}}\mathrm{n}\mathrm{t}$

charge)
6. $I_{6}=\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ proflt rate

$=$ (operating $\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{e}+\mathrm{n}\mathrm{o}\mathrm{n}$-operating income)/(operating $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{e}+$

non-operating $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{e}$ ) $\cross 100$

These indexes are those which are used for rating enterprises by R&I, Co, the largest
rating company of Japan.

Table 1 shows the results of each method.

Table 1 : Misclassification of Failure Discrimination

The column named ”
$(\mathrm{b})$ Indefinite” shows the result by (9). )’

$(\mathrm{d})$ Reverse” shows the result
of (12) so that the ongoing enterprises would be enclosed within the ellipsoid, while ”

$(\mathrm{c})$

$\mathrm{E}\mathrm{l}\mathrm{l}\mathrm{i}_{\mathrm{P}^{\mathrm{S}}}\mathrm{o}\mathrm{i}\mathrm{d}’)$ tried to enclose the failed enterprises within the ellipsoid.

Here misclassiflcation of the 1st and 2nd kind refer to the case that an ongoing enterprise
is classifled into the failure group and vice versa. Also ”reverse” means that the group of
ongoing enterprises are enclosed within the ellipsoid, contrary to the standard case where
failure group is enclosed. We found that there exists a separating ellipsoid when we used
the standard method. However, a large number of ongoing companies are misclassified
into failure group (misclassification of the 1st kind) when we employed reverse separation.
This means that the decision as to which group should be enclosed is very important.
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These results contradict the earlier result reported in [11], where 2 out of 7 failed com-
panies are misclassifled into the going group in standard ellipsoidal separation. This is
due to the fact that computation in [11] was terminated before convergence.

Table 2 shows the computation time of each method. We see that the cutting plane
$(\mathrm{C}\mathrm{P})$ method is slower than hyperplane or quadratic separation. However, it is much
faster than SDPA. (See Section 5.)

Table 2 : Computation Time

(b) Cancer Diagnosis : Ex-Ante Performance
Table 3 shows the results of separation of breast cancer data reported in [12], where

three dimensional data were classifled into benign and malignant groups. The result is
surprisingly good. In fact, it is comparable to the results of professional physician.

We see that the quality of ellipsoidal separation is slightly better than hyperplane sep-
aration.

Table 3 : Misclassification of Cancer Diagnosis

(c) Cancer Diagnosis : Ex-post Performance

Let us compare the quality of hyperplane separation and ellipsoidal separation in more
detail. Following Mangasarian et $\mathrm{a}1.[12]$ , we partitioned all sample data into 10 disjoint
groups. We calculate separating hyperplane/(indefinite) quadratic $\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}/\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{p}\mathrm{s}\mathrm{o}\mathrm{i}\mathrm{d}_{\mathrm{S}}$using
9 data groups by removing one group, say p-th group and check the quality of prediction
using the p-th data group. We repeated this process ten times for all $p(p=1, \ldots, 10)$ .

Table 4 shows the total number of misprediction, average and standard deviation of
misclassiflcation (within 9 data groups) and the average and standard deviation of mis-
prediction.
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Table 4 : Ex-post Analysis

The values in brackets in the left part of the table shows the percentage of misclassification $\mathrm{o}\mathrm{f}^{-}$

$10$ trials, while those in the center and the right parts show the values of standard deviation
of misclassification and misprediction of 10 trials, respectively.

We observe that there is no signiflcant difference among two methods. Let us note that
the quality of prediction of standard ellipsoidal separation is a little bit worse than hyper
plane separation to our disappointment. The quality of prediction of reverse ellipsoidal
separation is better than standard ellipsoidal separation, which implies the need for more
detailed analysis.

5 Efficiency of Cutting Plane Algorithm

We compared the performance of the cutting plane algorithm and the standard interior
point algorithm for SDP’s using the software SDPA5.0 [6] as a benchmark.

We employed two alternative parameter setting method, $i.e.,$ $(\mathrm{i})\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}_{-}\mathrm{b}\mathrm{u}\mathrm{t}-\mathrm{S}1_{0}\mathrm{w}(\mathrm{S}\mathrm{S})$

and (ii) $\mathrm{u}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}_{-}\mathrm{b}\mathrm{u}\mathrm{t}- \mathrm{f}\mathrm{a}\mathrm{s}\mathrm{t}(\mathrm{U}\mathrm{F})$
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We see from Table 5 that the normalized data leads to faster convergence. Also, SS
shows better performance than $\mathrm{U}\mathrm{F}$ , contrary to our expectation. We observe that SDPA
terminates at $\mathrm{p}\mathrm{d}\mathrm{F}\mathrm{E}\mathrm{A}\mathrm{S}$ instead of $\mathrm{p}\mathrm{d}\mathrm{o}\mathrm{P}\mathrm{T}$ , which means that this optimality is not yet
achieved although the solution is expected to be close to optimal. In any case, cutting
plane algorithm is much more efficient than SDPA. The primary reason for this difference
is that SDPA has to handle a semi-deflnite matrix of the size $(m+h+1)\cross 2+n$ , while
our method works on a semi-deflnite matrix of size $n$ . Note that $n$ is very small (less than
6) and $n+m+h$ is one hundred times larger.

In addition, an optimal solution of the subproblems of CP algorithm can be obtained
very fast by a few dual simplex iterations due to the special structure of the problem.
However, the efficiency of CP algorithm is expected to deteriorate as $n$ increases as is
usually observed for various classes of cutting plane or outer approximation algorithm.
Also, as discussed later, convergence is slower when we can completely separate data in
two sets. In such case, however we usually obtain perfect separation by a hyperplane, so
that ellipsoidal separation is not required.

Next, we will discuss the performance of cutting plane algorithm for more general class
of problems. The results of separation should be the same regardless of the scaling $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

the choice of origin. However, the speed of convergence is affected by this transformation.
Table 7 shows the results for the failure discrimination for original data and normalized
data. We see that the normalization results an larger computation time.

Table 8 shows the result of cancer diagnosis, where ellipsoidal separation cannot com-
pletely separate benign and malignant groups.

We see from this that convergence is very fast although the size of the problem is a bit
larger. Also, CPU time (as well as the number of iteration) is not sensitive to the level of
tolerance.
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Finally, Table 9 shows the result of computation for randomly generated problems. These
data are hardly separable by hyperplane or ellipsoidal, so that convergence is expected to
be faster than real world problems.

We generated 500 quasi-random data in a hyperrectangle $[0,10]^{5}$ and $[0,10]10$ , and try to
separate them to 2 sets of 250 data each. We see that we can obtain an optimal solution
very fast even when $n$ as large as 10.

6 Concluding Remarks

We discussed a new cutting plane algorithm for solving SDP’s for separating a large
number of low dimensional data into two groups by an ellipsoidal surface.

Standard algorithms based upon primal-dual interior point approach are efficient and
stable for general class of SDP’s. However, it is not efficient enough for solving a class of
problems stated above, because we have to convert them into standard form of SDPA’s.

Our algorithm, on the other hand, exploits the special structure of the problem. It is
based upon a classical $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{x}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{c}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ plane approach successfully applied to a problem
with large number of structured linear constraints. One of the advantages of our approach
is that we can employ an efficient dual simplex procedure to solve a tighter relaxation
problem with one more linear constraint.

We showed in this paper that the new algorithm can solve failure discrimination problem
and cancer diagnosis problem reported in earlier papers [11] very fast. The efficiency of
the algorithm depends upon the degree of separation. In fact, we can solve randomly
generated problem very fast, where two sets of data are located randomly. On the other
hand, those problems where two sets of data can be completely separated into two groups
are harder to solve.

We believe that our algorithm can be applied to other class of problems such as option
pricing [3] where there are relatively small number of semideflnite constraints.
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