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1 Introduction
In recent year, Semidefinite Programs (SDPs) have been employed in several fields such as
in system and control theory, finance theory, architecture, etc., as well as they have been
utilized as relaxations of other difficult problems such as combinatorial problems, quadratic
programs, etc.. Frequently, the SDP formulation of these problems becomes large-scaled
and sparse. The dual interior-point method [1] is preferred to solve some particular class
of above problems, since it does not consider the full dense primal positive definite matrix
variable. However, this method lacks in accuracy and reliability of the optimal solution if
compared to the primal-dual counterpart. The main topic of this article is to resolve this
disadvantage of the primal-dual interior-point method for large-scaled and sparse SDPs by
applying the matrix completion theory [8] on the primal positive definite matrix variable.

In the following lines, we describe a basic idea which leads to our new algorithms. More
details of the present article can be found in [4].

Let $S^{n}$ denote the space of $n\cross n$ symmetric matrices with the Frobenius inner product
$X \bullet \mathrm{Y}=\sum_{i=1}^{n}\sum^{n}j=1XijY_{i}j$ for $X,$ $\mathrm{Y}\in S^{n}$ . We will use the notation $X\in S_{+}^{n}$ to designate
that $X\in S^{n}$ is positive semidefinite. Given $A_{p}\in S^{n}(p=0,1, \ldots, m)$ and $b\in R^{m}$ , the
standard equality form SDP is formulated as

minimize $A_{0}\bullet$ $X$

subject to $A_{p}$ $\bullet$

$X=b_{p}(p=1,2, \ldots, m),$
$X\in S_{+}^{n},$

$\}$ (1)

and its dual as

maximize
$\sum_{p=1,m}^{m}$

bzpp

subject to
$\sum_{p=1}A\mathcal{Z}pp+\mathrm{Y}=A_{0)}\mathrm{Y}\in S_{+}^{n}$

.

$\}$ (2)

We introduce the aggregate sparsity pattern $E$ of the data matrices by

$E=$ { $(i,$ $j)\in V\cross V$ : $[A_{p}]_{ij}\neq 0$ for some $p\in\{0,1,2,$ $\ldots$ , $m\}$ }. (3)
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Here $V$ denotes the set $\{1, 2, \ldots, n\}$ of $\mathrm{r}\mathrm{o}\mathrm{w}/\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}$ indices of the data matrices $A_{0},$ $A_{1,\ldots,}$ A,
and $[A_{p}]_{ij}$ denotes the $(i, j)\mathrm{t}\mathrm{h}$ entry of $A_{p}\in S^{n}$ . It is convenient in the forthcoming dis-
cussion to identify the aggregate sparsity pattern $E$ with the aggregate sparsity pattern
matrzx $A$ having unspecified nonzero numerical values in $E$ .

Assume that a collection of nonempty subsets $C_{1},$ $C_{2},$
$\ldots,$

$c_{\ell}$ of $V$ satisfies the following
two conditions:

(i) $E \subseteq F\equiv\bigcup_{r=1}^{\ell}cr\mathrm{x}C_{r}$ .

(ii) Any partial symmetric matrix $X$ with entries $X_{ij}=\overline{X}_{ij}\in R((i, j)\in F)$ has a
positive semidefinite matrzx completion ( $i.e.$ , given any $\overline{X}_{ij}\in R((i, j)\in F)$ , there
exists a positive semidefinite $X\in S^{n}$ such that $X_{ij}=\overline{X}_{ij}\in R((i, j)\in F))$ if and
only if the submatrices $\overline{\mathrm{x}}_{c_{r}cr}(r=1,2, \ldots, \ell)$ are all positive semidefinite.

From condition (i), we observe that values of the objective and constraint linear func-
tions $A_{p}$ $\bullet$ $X(p=0,1, \ldots, m)$ involved in the SDP (1) are completely determined by
values of entries $X_{ij}((i, j)\in F)$ and independent of values of entries $X_{ij}((i, j)\not\in F)$ . The
remaining entries $X_{ij}((i, j)\not\in F)$ only affect whether $X$ is positive semidefinite. Now we
know by condition (ii) whether we can assign some appropriate values to those remaining
entries $X_{ij}((i, j)\not\in F)$ so that the resulting whole matrix $X$ becomes positive semidefinite.
Therefore the SDP (1) becomes equivalent to

minimize
$\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{Z}$

$(i,j(i,j) \in F\sum_{j\sum ij})\in F[[A_{p}]iXA_{0}]ijxij=b_{p}(p=1,2, \ldots, m),$ $\}$ (4)

$X_{C_{r}}c_{r}\in S_{+}^{C_{r}}(r=1,2,$
$\ldots,$

$p_{)}$ .

Here $S_{+}^{C_{r}}$ denotes the set of $\# C_{r}\cross\# C_{r}$ positive semidefinite symmetric matrices with entries
specified in $C_{r}\cross C_{r}$ , and $\# C_{r}$ the number of elements of $C_{r}$ .

In this article, we will give general theoretical results to obtain the sets $C_{1},$ $C_{2},$
$\ldots$ , $C_{\ell}\subseteq$

$V$ which satisfies (i) and (ii). In fact, a necessary and a sufficient condition to guarantee
(i) and (ii) for a given SDP. These results are closely related to chordal graphs, Cholesky
factorizations, and minimal fill-in [4] (section 2.2). Once we have determined these sets,
we will give explicit formulae to obtain a semidefinite completion $X\in S^{n}$ of a symmetric
matrix which has only the entries $X_{\dot{x}j}\in R$ $((i, j)\in F)$ specified (section 2.3). These
results allow us to propose two kinds of new algorithms based on primal-dual interior-point
method which we call the conversion method and the completion method. In section 3, we
describe a general procedure to obtain the sets $C_{1},$ $C_{2}$ , . . . , $C_{\ell}$ , and to meet the conditions
given in the theorems of section 2 in practice. The conversion method will be exposed
in section 4, however, we leave the description of the completion method, as well as the
comparative analysis between these two methods and the numerical experiments for the
part II of this article.
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2Chordal graph and positive semidefinite matrix com-
pletion

2.1 Notation
$\bullet$ $S^{n}(F$, ? $)$ : the set of $n\cross n$ partial symmetric matrices with entries specified in $F$ ;

$\bullet$ $S^{n}(F, \mathrm{o})$ : the set of $n\cross n$ symmetric matrices with vanishing entries outside $F;i.e.$ ,
$S^{n}(F, 0)=$ { $X\in S^{n}$ : $X_{ij}=0$ if $(i,$ $j)\not\in F$ };

$\bullet$ $V=\{1,2, \ldots , n\}$ and for $E,$ $F\subseteq V\mathrm{x}V$ in general, we define $F^{\mathrm{O}}=F$ I { $(i, i)$ : $i=$

$1.2,$ $\ldots$ , $n$} and $E^{\cdot}=E\cup\{(i, i) : i=1,2, \ldots, n\}$ ;

$\bullet$ $S^{C}.S_{+++}^{C}.s^{c}:$ the sets of $\# C\cross\# c$ symmetric matrices, positive semidefinite symmetric
nlatrices. positive definite symmetric matrices, respectively, with rows and columns
indexed by $C\subseteq V$ , where $\# C$ means the number of elements of $C$ .

2.2 Chordal graph

We denote by $G(V, E)$ an undirected graph with the vertex set $V$ and the edge set $E\subseteq$

$V\cross V$ . It is assumed throughout this paper that a graph has no self-loops.
Notice that it is natural to consider graphs when we are concerned with the structure of

sparse matrices, $i.e.$ , we can make an $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence between a graph $G(V, E)$

and a partial symmetric matrix $\overline{X}\in S^{n}(E^{\cdot}, ?)$ .
A graph $G(V, E)$ is said to be chordal if every cycle of length $\geq 4$ has a chord (an

edge joining two nonconsecutive vertices of the cycle). Chordal graphs have been studied
extensively in many different contexts [2, 5, 7].

Suppose now that $\overline{X}\in S^{n}(E^{\cdot}, 0)$ . An ordering of the $\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{s}/\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}\mathrm{s}$ of $\overline{X}$ (and there-
fore, of the vertices $V$ of the graph associated with $\overline{X}$ ) is called a perfect elimination
ordering if it does not cause any fill-in when we perform a symbolic Cholesky factorization
in $\overline{X}$ according to this ordering.

Now, we give another characterization of chordal graphs.

Theorem 2.1 [5] A graph is chordal if and only if it has a perfect elimination ordering.

Let us denote the family of maximal cliques of a graph $G(V, E)$ by { $C_{r}\subseteq V$ : $r=$

$1,2,$
$\ldots,$

$\ell\}$ . It is known that if the graph is chordal, then the number of maximal cliques
$p$ is bounded by $n$ . Also, in this case, these maximal cliques can be indexed in such a way
that for each $r=1,2,$ $\ldots$ , $\ell-1$ it holds that

$\exists s\geq r+1$ : $C_{r}\cap(C_{r+1}\cup C_{r+2}\cup\cdots\cup C_{\ell})\subseteq C_{s}$ . (5)

The property (5) is called the running intersection property.
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2.3 Positive (semi)definite matrix completion

Suppose we are given a partial symmetric matrix $\overline{X}\in S^{n}(F$, ? $)$ , and let $G(V, E)$ be the
associated graph, where $E=F^{\mathrm{O}}$ . Denote by $\{C_{r}\underline{\subseteq}V : r=1,2, \ldots, p\}$ the family of
all maximal cliques of $G(V_{:}E)$ . An obvious necessary condition for $\overline{X}$ to have a positive
semidefinite matrix completion is that each $\overline{X}_{C_{r}}c_{r}$ is positive semidefinite, $i.e.$ ,

$\overline{X}_{C_{T}C}r\in S_{+}^{C_{r}}$ $(r=1,2, \ldots, \ell)$ , (6)

where it is noted that all the entries of the submatrix $\overline{X}_{C_{r}}c_{r}$ are specified. Similarly, an
obvious necessary condition for $\overline{X}$ to have a positive definite matrix completion is that
each $\overline{X}_{C_{r}}c_{r}$ is positive definite, $i.e.$ ,

$\overline{X}_{C_{r}}c_{r}\in S_{++}^{C_{r}}$ $(r=1,2, \ldots, p)$ . (7)

We refer to (6) and (7) as the clique-PSD condition and the clique-PD condition, respec-
tively.

The following two theorems are most fundamental concerning the positive (semi)definite
matrix completion problem.

Theorem 2.2 [7] Let $G(V, E)$ be a graph.
(i) Any partial symmetric matrzx $\overline{X}\in S^{n}(E^{\cdot}, ?)$ satisfying the clique-PSD condition

(6) can be completed to a positive semidefinite symmetric matrix $X$ if and only if $G(V, E)$

is chordal.
(ii) Any partial symmetric matru $\overline{X}\in S^{n}(E$ , ? $)$ satisfying the clique-PD condition

(7) can be completed to a positive definite symmetric matrix $X$ if and only if $G(V, E)$ is
chordal.

Theorem 2.3 [7] Suppose that a partial symmetric matrix $\overline{X}\in S^{n}(F$, ? $)$ has a positive
definite matrix completion. Then there exists a unique positive definite matrix completion
$X=\hat{X}$ that maximizes the determinant, $i.e.$ , such that

$\det(\hat{X})=\max$ { $\det(X)$ : $X$ is a positive definite matrix completion of $\overline{X}$ }.

Moreover, such $\hat{X}$ is charactenzed by the condition:

$[\hat{X}^{-1}]_{ij}=0$ $((i, j)\not\in F)$ , $i.e.$ , $\hat{X}^{-1}\in S^{n}(F, 0)$ .

We refer to the completion $\hat{X}$ in Theorem 2.3 as the maximum-determinant positive
definite matrzx completion of $\overline{X}$ .

Finally, the following result plays an important role in the completion method which
will be discussed in detail in the part II of this article.

Lemma 2.4 [4] Let $G(V, E)$ be a chordal graph, and $\overline{X}\in S^{n}(E^{\cdot}, ?)$ be a partial symmet$r\eta c$

$matr[] x$ satisfying the clique-PD condition (7). Let $P$ be a permutation matrzx represent-
ing a perfect elimination ordering of $G(V, E)$ which is also consistent with the running
intersection property in such a way that $(1, 2, \ldots, n)$ is a perfect elimination ordering for
$P\overline{X}P^{T}$ . Then the maximum-determinant positive definite matrzx completion $\hat{X}$ of $\overline{X}$ can
be expressed in terms of the sparse clique-factonzation formula
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$P\hat{X}P^{T}=L_{1}^{T}L_{2}\tau\ldots L\tau DL_{p}-1\ldots L2L_{1}\ell_{-}1$
’ (8)

where $L_{r}$ $(r=1,2, \ldots, \ell-1)$ are tnangular matrices and $D$ is a positive definite block-
diagonal matrzx consisting of $\ell$ diagonal blocks defined as follows:

$S_{r}$ $=$ $C_{r}\backslash (C_{r+1}\cup C_{r+2}\cup\cdots\cup C_{l})$ $(r=1,2, \ldots, p)$ ,
$U_{r}$ $=$ $C_{r}\cap(C_{r+1}\cup C_{r+2}\cup\cdots\cup C_{\ell})$ $(r=1,2, \ldots, p)$ ,

$[L_{r}]_{ij}=\{$

1 $(i=j)$
$[\overline{X}_{U_{r}Ur}^{-1}\overline{X}_{U_{r}}sr]_{ij}$ $(i\in U_{r}, j\in S_{r})$

$0$ (otherwise)
(9)

for $r=1,2,$ $\ldots,$
$\ell-1$ , and

$D=$ (10)

with
$D_{s_{r}s_{r}}=\{$ $\overline{X}_{SS}\overline{\mathrm{x}}_{s_{r}s_{r}}\ell\ell-\overline{\mathrm{x}}_{SrUr}\overline{X}-1\overline{X}U_{r}U_{\Gamma}UrS_{r}$ $(r=1,2, \ldots, p-1)$

,
$(r=\ell)$ .

(11)

Due to the above lemma, the inverse of the maximum-determinant positive definite
matrix completion $\hat{X}$ can be expressed in the following form:

$P\hat{X}^{-1}P^{T}=WW^{T}$ (12)

where $W\in S^{n}(E, 0)$ is a sparse lower triangular matrix.

3 Chordal extension of aggregate sparsity pattern
It is not true in general that given sparse SDPs (1) and (2), the graph $G(V, E^{\mathrm{O}})$ defined
through the aggregate sparsity pattern $E$ is chordal. Therefore, we can not straightforward
utilize the results presented in the previous section to obtain a maximum-determinant
positive definite matrix completion of the primal matrix variable $X\in S^{n}(E$ , ? $)$ .

In this section, we discuss briefly how to obtain a chordal extension of a given graph
$G(V, E^{\mathrm{O}}),$ $i.e.$ , a chordal graph $G(V, F^{\mathrm{O}})$ such that $F\supseteq E$ . In the succeeding discussion,
we often call the set $F$ as the chordal extension or simply the extended sparsity pattern of
the aggregate sparsity pattern $E$ .

As we have seen in the previous section, the chordal extension is closely related to
the Cholesky factorization. Specifically, the chordal extension that minimizes the total
number of edges in $G(V, F^{\mathrm{O}})$ is obtained via the Cholesky factorization of the aggregate
sparsity pattern matrix $A$ with the minimum fill-in. Therefore it seems reasonable (or
at least attractive) in practice to employ various existing heuristic methods, such as the
minimum degree ordering for less fill-in, the (nested) dissection ordering for less fill-in or
the reverse $\mathrm{C}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{l}1_{-}\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{e}$ ordering for reducing bandwidth developed for the Cholesky
factorization [6] for this purpose.
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Given SDPs (1) and (2), we can construct the desired chordal extension in the following
way. Determine the aggregate sparsity pattern matrix $A$ of the SDP, and utilize one of
the heuristic algorithms cited above to obtain a $\mathrm{r}\mathrm{o}\mathrm{w}/\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}$ ordering which may cause
fill-in as less as possible. Then, performing a symbolic Cholesky factorization according
to the new ordering to $A$ , we obtain a chordal extension $G(V, F^{\mathrm{O}})$ by Theorem 2.1, where
$F$ is the extended sparsity pattern corresponding to the nonzero entries of the symbolic
Cholesky factorization.

Observe that the ordering of the vertices $(v_{1}, v_{2}, \ldots, vn)$ we obtained by the heuristic
algorithm is a perfect elimination ordering for $G(V, F)$ . Let us denote the set of the vertices
adjacent to $v\in V$ by $Adj(v)=\{u\in V:(v, u)\in F^{\mathrm{O}}\}$ .

Now, it can be shown using induction hypothesis that the following algorithm deter-
mines all the maximal cliques of $G(V, F^{\mathrm{O}})$ .

Algorithm 3.1
$C:=\{v_{n}\}$ ; $//initiali_{Z}ati_{\mathit{0}}n$

$\int\Lambda_{n}:=\{C\}$ ;
for $i:=n-1$ to 1 do

$A_{i}:=Adj(v_{i})\cap\{v_{i+1}, \ldots, v_{n}\})$

find $C’\in \mathcal{M}_{i+1}$ such that $C’\supseteq A_{i}$ ;
if $C’=A_{i}$

then $C’:=C’\cup\{v_{i}\};(a)$

else $C:=A_{i}\cup\{v_{i}\};(b)$

parent$(c)\equiv C’$ ; $\sqrt/nodes$ of the tree increases by one
$\mathcal{M}_{i}:=\mathcal{M}_{i+1}\cup\{c\}$ ;

endif;
endfor,$\cdot$

Once we run this algorithm, we obtain a rooted tree whose nodes are the maximal
cliques of $G(V, F)$ . This tree is called clique tree, and has some nice properties concerning
with its structure [2]. After that, the running intersection property can be determined
indexing first a leaf of this tree and then removing it from the tree, and so on successively.
An ordering of the maximal cliques satisfying the running intersection property (5) induces
a perfect elimination ordering of the vertices. Note first that $S_{1}=C_{1}\backslash (C_{2}\cup C_{3}\cup\cdots\cup C_{\ell})$

is nonempty. Then we can start a perfect elimination ordering by numbering the vertices
in $S_{1}$ with 1, 2, $\cdots$ , $|S_{1}|$ . For each $r=1,2,$ $\ldots,$

$\ell$ in general we number the vertices in
$S_{r}=c_{r}\backslash (c_{r+}1\cup\cdots\cup C_{\ell})$ with $\sum_{S}^{r-1}=1|S_{S}|+1,$ $\sum_{S}^{r-1}=1|S_{S}|+2,$ $\cdots$ , $\sum_{\mathit{8}1}^{r-1}-rightarrow|S_{S}|+|S_{r}|$ . We can
thus obtain a perfect elimination ordering of the vertices, in which the vertices in $S_{r}$ are
given consecutive numbers for each $r$ .

4 The conversion method
In the Introduction, we have shown that the SDP (1) is equivalent to the problem (4).
This problem involves less variables and smaller size positive semidefinite constraints than
the original SDP (1). This feature certainly makes the conversion attractive in practice
because such a problem is expected to be solved easier. It should be noted, however, that
two distinct positive semidefinite constraints $X_{C_{r}}c_{r}\in S_{+}^{C_{r}}$ and $x_{c_{S}C_{S}}\in S_{+}^{C_{s}}$ in (4) share
variables $X_{ij}((i, j)\in(C_{r}\cap C_{s})\cross(C_{r}\cap C_{s}))$ whenever $C_{r}\cap C_{s}\neq\emptyset$ . Hence the problem is
not a standard SDP. In this section, we show how to convert the problem to a standard
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SDP to which we can apply interior-point methods, and discuss some advantages and
disadvantages of the resulting SDP.

For every $r=1,2,$ $\ldots,$
$p$ , let

$E_{r}$ $=$ { $(i,$ $j)\in C_{r}\mathrm{x}C_{r}$ : $(i,$ $j)\in C_{s}\cross C_{s}$ for some $s<r$ }.

By definition, $E_{1}=\emptyset$ , and if $(i, j)\in E_{r}$ then the positive semidefinite constraint $x_{c_{r}cr}\in$

$S_{+}^{C_{r}}$ shares variables $X_{ij}((i, j)\in E_{r})$ with the positive semidefinite constraint $x_{c_{S}C_{S}}\in S_{+}^{C_{S}}$

for some $s<r$ . To make such a pair of dependent positive semidefinite constraints
independent, we introduce auxiliary variables $U_{ij}^{r}$ $((i_{\partial}.j)\in E_{r}, r=2,3, , , , , \ell)$ , and we
rewrite the constraint (4) as

$\sum_{(i,j)\in F}[A]_{i}pjijb_{p}X=(p=1,2, \ldots, m)$
,

$U_{ij}^{T}=X_{i}j((i, j)\in E_{r},$ $i\geq j,$ $r=2,3,$ $\ldots,$
$p),$

$\}$ (13)

$X^{r}\in s_{+}C_{r}(r=1,2, \ldots, \ell)$ ,

where

$[X^{r}]_{ij}=\{$
$U_{ij}^{r}$ if $(i, j)\in E_{r}$ ,
$X_{ij}$ otherwise.

Then we may regard the minimization of the objective function $\sum_{(i,j}$ ) $\in F[A_{0}]ijxij$ over
the constraint (13) as a standard SDP. In fact, if we further introduce a block-diagonal
symmetric matrix variable of the form

$X’=$ ,

and if we appropriately rearrange all the coefficients of the linear equality constraints in
(13) and the objective function $\sum_{(i,j}$ ) $\in F[A_{0}]ijxij$ to reconstruct data matrices with the
same block-diagonal structure as $X’$ , we obtain an standard equality form SDP.

There are two major advantages of this conversion. First, when the sizes of all positive
semidefinite matrix variables in (13) are small, their Cholesky factorizations, computation
of their minimum eigenvalues, and matrix multiplications require less CPU time than
those of the original positive semidefinite matrix variable $X$ in (1). Second, once we
have converted the SDP (1) into the SDP with the block-diagonal positive semidefinite
matrix variable $X’$ , we can apply effectively any interior-point method incorporating a
block-diagonal matrix data structure ([3, etc.]) for SDPs.

We should note, however, that the conversion above from the SDP (1) to the SDP with
the block-diagonal symmetric matrix variable $X’(13)$ increases the number of equality
constraints from $m$ to the number

$m’=m+ \sum\#\{r=2\ell(i, j)\in E_{r} : i\geq j\}$ .
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When we apply interior-point methods to a standard form SDP having $m$ equality con-
straints, we solve a system of linear equations with a fully dense $m\cross m$ coefficient matrix
$B$ to generate a search direction at each iteration. This requires $\mathcal{O}(m^{3})$ arithmetic opera-
tions. So the increase in the number of equality constraints in the converted problem may
worsen the total computational efficiency. Therefore the reduction in the sizes of positive
semidefinite matrix variables should be properly balanced with the increase in the number
of equality constraints in (13) when we choose a chordal extension $G(V, F^{\mathrm{O}})$ of $G(V, E^{\mathrm{O}})$ .

5 Concluding remarks

In this article, we described a novel technique to explore the sparsity of SDPs utilizing the
ideas of positive definite matrix completion. In particular, the key results are closed related
with chordal graphs with were studied in ’60 when solving large-scale sparse linear system
of equations. We proposed two method to solve sparse SDPs, the conversion method and
the completion method. We leave for the part II of this article the complete description
of the completion method as well as the comparative analysis between these two methods
and their numerical experiments.
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