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Solving Sparse Semidefinite Programs by Matrix
Completion (part II)

HERF THERUTZ0R B 1% (Kazuhide Nakata)
RERE TR FEIR JuMt  (Katsuki Fujisawa)

§
FRIERE FHRETENERS FA K% (Mituhiro Fukuda)
RRIERE FHRETLEHRER /B Bt (Masakazu Kojima)
FHERF BORfFTATSERT EMH —IE  (Kazuo Murota)

This article succeds the previous article (Solving Sparse Semidefinite Programs by Matrix Com-
pletion (part I). In this article, we will propose a primal-dual interior-point method based on the
sparse factorization formula which arises from positive definite matrix completion [3]. We call this
method the completion method. Next we will present some numerical results which compare with
the original method, the conversion method and the completion method.

1 Completion Method

One disadvantage of the conversion method in the previous article is an increase in the number
of equality constraints. In this section, we propose a primal-dual interior-point method based on
positive semidefinite matrix completion which we can apply directly to the original SDP without
adding any equality constraints.

1.1 Search Direction

Various search directions (1, 4, 5, 6, 7, 8, 9, 10] have been proposed so far for primal-dual interior-
point methods. Among others, we restrict ourselves to the HRVW /KSH/M search direction [4, 6, 7].

Let (X,Y,2) be a point obtained at the kth iteration of a primal-dual interior-point method
using the HRVW/KSH/M search direction (k > 1) or given initially (k = 0). We assume that
X eS8, (F,?)and Y € ST (E,0).

In order to compute the HRVW/KSH/M search direction, we use the whole matrix values for
both X € S}, (F,?) and Y € S%,(FE,0), so that we need to make a positive definite matrix
completion of X € ST (F,7). Let Xe S, be the maximum-determiniant positive definite matrix
completion of X € S%, (F,?). Then we compute the HRVW /KSH/M search direction (dX, dY’, dz)
by solving the system of linear equations

AyedX =g, (p=12,...,m), X € S"

S Aydz, +dV = H, &Y € S*(E,0), dz € R™, )
p=1

XY + XdY = K, dX = (X +dX)/2,
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where g, =b, — A, X € R (p=1,2,...,m) (the primal residual), H = A, — T Az —Y €
S™(E,0) (the dual residual), K = uI — XY (an n X n constant matrix), and dX denotes an n x n
auxiliary matrix variable. The search direction parameter 4 is usually chosen to be X o ¥ /n for
some f € [0,1]. We can reduce the system of linear equations (1) to

Bdz=s, &¥ = H - A,dz,,
~ A p=1 7 (2)
X = (K - Xdv)Y ™!, dX = (dX +dX )/2,

where o
Bp, = Trace A, XA)Y "~ (p=1,2,...,m, ¢=1,2,...,m),
Sp = gp — Trace A,(K — )A(H)l_"—1 p=12,...,m)

Note that B is a positive definite symmetric matrix.

As we have seen in the previous article, The maximum-determinant positive definite matrix
completion X of X € S (F,?) can be expressed in terms of the sparse factorization formula

X=wTw- | (3)

where W is a lower triangular‘ matrix which enjoys the same sparsity structure as X. Also Y €
S" . (E,0) is factorized as ¥ = NNT without any fill-in’s except for entries in F\E where

N is a lower triangular matrix. We can effectively utilize these factorizations of X and Y for
the computation of the search direction (dX,dY,dz). In particular, the coefficients By, (p

1,2,...,m, ¢g=1,2,...,m) in the system (2) of linear equations is computed by
By = Y (WTW™ex)T A;(N"TN"[Ailx) (1,5 =1,2,--,m),
k=1 : ; .
si = bi+ Z(W—Tw—le YTH(N"TNA]w).
k=1 .
CueINTNT AL (=12-m)

Here [A;].x denote the kth column of the matrix A;. Since we just store the sparse and lower
triangular matrix W and N instead of X and Y, we can not use the current computational
formulas. Instead, we compute B, dX and s based on matrix-vector multiplications. For instance,
to determine the the product h = W™ 'v, we solve the linear system Wh = v, where W is lower
triangular and sparse. :

1.2 Step Size

As we will see below in the computation of the step length and the next iterate, we need the partial
symmetric matrix with entries [dX);; specified in F', but not the whole search direction matrix
dX € S in the primal space (hence the partial symmetric matrix with entries [dX Jij specified in F°
but not the whole matrix dX ). Hence it is possible to carry out all the matrix computation above
using only partial matrices with entries specified in F'. Therefore we can expect to save both CPU
time and memory in our computation of the search direction. To clarify the distinction between
the whole primal search direction matrix dX € S™ and the corresponding partial symmetric matrix
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with entries specified in F' in the discussions below, we use the notation dX for the former whole
matrix in S” and dX for the latter partial symmetric matrix in 8"(F;?). Now, supposing that we
have computed the HRVW /KSH/M search direction (dX,dY,dz) € 8" x S*(E,0) x R™, and we
describe how to compute a step length o > 0 and the next iterate (X', Y’, 2') € S"xS"(F,0)x R™.
Usually we compute the maximum & of o’s satisfying

X +adX €8T and Y +odY € ST, (4)

and let (X', Y',2") = (X,Y,2) + v&(dX,dY,dz) for some y € (0,1). Then X' € 8%, and
Y' € 8%, (E,0). The computation of & is necessary to know how long we can take the step length
. along the search direction (dX,dY’, dz). The computation of & is usually carried out by calculating
the minimum eigenvalues of the matrices

M&M " and Ny N7,

where X = MM T and Y = NNT denote the factorizations of X and Y, respectively.
Instead of (4), we propose to employ

Xcoo +adXce €89 (r=12,...,0) and Y +adY € S*(E,0). (5)

Recall that {C, C Vir=12,... , £} denotes the family of maximal cliques of G(V, F°) and £ < n.
Let & be the maximum of a’s satisfying (5), and let

(XY, ) = (X,Y,2) + ya(dX, dY, dz) € S*(F,?) x §", (E,0) x R™

for some v € (0,1). X' € S™(F,?) has a positive definite matrix completion, so that the point
(X", Y',2") € ST (F,7) x 81 ,(F,0) x R™ can be the next iterate. In this case, the computation
of & is reduced to the computation of the minimum eigenvalues of the matrices

M;ldXCrC,M;T (r=1,2,...,0) and N7'dv N7 7T,

where X ¢.c, = M, M’ denotes a factorization of X¢.c. (r =1,2,...,£). Thus the computation
~ .. . Ao~ o~ =T . ..
-of the minimum eigenvalue of M X M  has been replaced by the computation of the minimum

eigenvalues of £ smaller submatrices M, 'dX ¢ ¢, M T (r=1,2,...,£). On the other hand, when
we compute the minimum eigenvalue of N'dY N7, we can compute it easily by Lanczos methods,
because N and dY are sparse and we can compute the multiplication between N 'd¥ N7 and

vector v using technic we mentioned.

2 Numerical Experiments

All numerical experiments in this section were executed on DEC Alpha Station (CPU Alpha 21164-
600MHz with 1024MB). For the original method, we used the SDPA 5.0[2]. For the conversion
method, we first converted the SDPs into block diagonal SDPs and solved them by the SDPA[2].
For the completion method, we used a new software called SDPA-C which we incorporated the
sparse factorization formula.



2.1 Norm Minimization Problems

Let F; € R (0 <17 <t). The norm minimization problem is defined as:

¢
minimize Fq+ F.z
0 141

i=1

subject to z; € R (1 <i<t).

We can reduce this problem to an SDP:
maximize = —zpq

. : H I 7
subject to Z(g IB )zi+(o ?)ztﬂ—l-(FOo IZ)O

=1

) e ST
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Table 1 shows the performance comparisons amorig the original method (SDPA‘), the conversion
method applied before solving with SDPA, and the completion method. As g becomes larger, the

aggregate sparsity pattern and extended sparsity pattern becomes denser.

Table 1: Numerical results on norm minimization problems

original conversion completion
n m CPU | memory || CPU | memory || CPU | memory
¢|@+n) ¢+ (& | (MB) | (9 | (MB) | (s) | (MB)
1 1000 10 || 3492.0 321 4.7 11.3 || 100.0 5.18
2 1000 10 || 4263.0 321 9.7 16.0 || 157.7 5.98
9 1000 10 || 5387.0 321 28.4 26.9 | 378.5 10.2
10 1000 10 || 6941.4 321 86.4 42.6 | 696.1 17.8
20 1000 10 || 7233.3 321 || '326.6 84.1 || 2484.1 44.9
50 1000 10 || 7844.1 321 || 2195.3 192.0 — —

In the case of norm minimization problems, the conversion method is better than the other

methods.

2.2 Quadratic Programs with Box Constraints

Let Q € 8™ and q € R". The quadratic program with box constraints is defined as:

minimize
subject to

12TQz + q"x
1< <1(i=1,2,-,n).
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We have the following semidefinite programming relaxation of the above problem

1 (0 q~ OT) )
minimize =] q Q@ O |eX
20 0 o
1 of o
subject to (O O O)oX:l,
0 O O
0 of of
(o E; O )oX:l (i=1,2,---,n), X €&+

7/

Here E;; denotes the n X n symmetric matrix with (7, 7)th element 1 and all others 0.

Table 2 shows the performance comparisons of these methods applied to this particular class
of problems. « denotes the sparsity of the objective function matrix. The entry “1001,1000” in
the n column means that the primal matrix variable X has block matrices of sizes 10011001 and
1000x1000.

Table 2: Numerical results on relaxation of the quadratic programs with box constraints
original conversion completion
. CPU | memory | CPU | memory || CPU | memory
o n  m | ) | MB) | © | MB) | ) | (MB)

0.0020 | 1001,1000 1001 || 3782.2 316 || 1153.8 147 | 758.0 18.1
0.0025 | 1001,1000 1001 || 3771.0 316 || 1681.6 183 || 877.2 22.2
0.0030 | 1001,1000 1001 || 3648.4 316 || 2179.4 225 || 1086.7 29.1
0.0035 | 1001,1000 1001 || 3634.6 316 || 2561.7 | 251 || 1417.5 374
0.0040 | 1001,1000 1001 || 3629.3 316 || 3104.8 277 || 2090.7 56.8

In the case of SDP relaxations of quadratic programs with box constraints, the completion
method is better than the other methods.

2.3 Max-cut Problems over Lattice Graphs

Let G = (V, E) be a lattice graph which is of size k1 x k2 with a vertex set V = {1,2,..., n},
and an edge set £ = {(i,5) : 4,7 € V, i < j}. We assign a weight C;; = Cj; to each edge
(7,7) € E. The maximum cut problem is to find a partition (L, R) of V that maximizes the cut
¢(L,R) = Yicr jer Cij. Introducing a variable vector u € R", we can reformulate the problem as
a nonconvex quadratic program:

1
maximize 3 > Cii(1 — uguy) subject to uw? =1 (1 <i<n). }
i<j

Here each feasible solution © € R" of this problem corresponds to a cut (L, R) with L = {i €
Viu;=-1}and R= {i € V : u; = 1}. If we define C to be the n x n symmetric matrix with
elements Cj; = C;; ((4,7) € E) and Cj; = 0 ((4,7) ¢ E), and the n X n symmetric matrix Ay € S”
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by Ay = diag(Ce) —C, where e € R"™ denotes the vector of ones and diag(Ce) the diagonal matrix
of the vector Ce € R", we can obtain the following semidefinite programming relaxation of the
maximum cut problem:

minimize —Aje X
subject to E;e X =1/4(1<i<n), X €S§7.

Table 3 compares the three algorithms for this problem. As k1 becomes larger, the aggregate
sparsity patterns remain sparse, but the extended sparsity pattern becomes denser.

Table 3: Numerical results on relaxation of the maximum cut problems

original conversion completion
CPU | memory | CPU | memory || CPU | memory

ky X ko n m (s) (MB) (s) (MB) (s) (MB)
2 x 500 | 1000 1000 | 2984.2 | = 315 || 133.0 53.0 || 183.7 15.5
4 x 250 | 1000 1000 || 2971.5 315 || 168.5 73.3 || 213.7 16.9
5 x 200 | 1000 1000 || 2815.1 315 || 184.7 83.6 || 233.1 17.8
8 x 125 | 1000 1000 | 2972.6 315 || 221.5 85.7 || 256.6 18.8
10 x 100 | 1000 1000 | 2835.9 315 || 263.2 96.8 || 320.3 19.3
20 x 50 1000 1000 || 3125.2 315 || 730.5 118.0 || 347.8 21.9
25 x 40 | 1000 1000 || 3118.8 315 || 804.9 180.0 || 337.7 21.8

For the semidefinite programming relaxation of maximum cut problems over lattice graphs, the
conversion and the completion methods are better.

2.4 Semidefinite Programming Relaxation of Graph-partition Problem

Let G = (V, E) be a lattice graph which is of size k1 x k2 with a vertex set V = {1,2,..., n}, and
an edge set E = {(4,5) : 4,7 € V, i < j}. We assign a weight C;; = Cj; to each edge (4,5) € E.
We assume that n is an even number. The graph partition problem is to find a uniform partition
(L,R) of V, i.e., a partition (L, R) of V with the same cardinality |L| = |R| = n/2, that minimizes
the cut ¢(L, R) = Yicr jer Cij. This problem is formulated as a nonconvex quadratic program:

1
minimize = Z C”(l - U,,;’U)j)
2 1<j
subject to (X, u)* =0, w2 =1 (1<i<n).

As in the maximum cut problem, we can derive a semidefinite programming relaxation of the graph
partition problem:

minimize  Age X ‘ (6)
subject to E;eX =1/4(1<i<n), EeX =0, X €§].

Here Ay and E; (1 <1< n) are the same matrices as in the previous séction, and F denotes the
n x n matrix with all elements 1. Table 4 compares the three algorithms for this problem. As k1
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Table 4: Numerical results on relaxation of the graph partition problems

original conversion completion

times | memory || times | memory || times | memory
ki x ks n m (s) (MB) (s) (MB) (s) (MB)
2 x 500 [ 1000 1001 || 4065.7 315 || 221.6 53.1 || 439.9 18.0
4 x 250 | 1000 1001 || 4073.1 315 || 212.6 74.8 || 563.0 22.8
5x 200 | 1000 1001 || 4065.3 315 || 511.7 125 | 667.7 26.8
8 x 125 | 1000 1001 || 2843.1 315 || 1341.2 206 | 806.8 254
10 x 100 | 1000 1001 || 4065.7 315 || 740.3 168 || 892.7 27.2
20 x 50 | 1000 1001 | 4064.5 315 || 2481.5 315 || 1323.0 31.6
25 x 40 | 1000 1001 || 3912.3 315 || 3918.0 315 || 1333.2 34.1

becomes larger, the aggregate sparsity patterns remain sparse, but the extended sparsity pattern
becomes denser.

For the semidefinite programming relaxation of graph partition problems over lattice graphs,
the conversion and the completion methods are better.

3 Concluding Remarks

In this article, we explained the mechanisms of the completion method. Next we presented some
numerical results which compared the original method, the conversion method and the completion
method. As a result, we confirmed the effectiveness of the conversion method and the completion
method.
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