
Title Regular Frequency Computations (Algebraic Systems, Formal
Languages and Computations)

Author(s) Austinat, Holger; Diekert, Volker; Hertrampf, Ulrich; Petersen,
Holger

Citation 数理解析研究所講究録 (2000), 1166: 35-42

Issue Date 2000-08

URL http://hdl.handle.net/2433/64358

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39197743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regular Frequency Computations

Holger Austinat, Volker Diekert, Ulrich Hertrampf, Holger Petersen

Universit\"at Stuttgart
Institut f\"ur Informatik
Breitwiesenstr. 20-22

Abstract. An (m, n) -computation of a function f is given by a
deterministic Turing machine which on n pairwise different inputs
produces n output values where at least m of the n values are in
accordance with f . In such a case we say that the Turing machine
computes f with frequency $\geq m/n$. The most prominent result
for frequency computations is due to Trakhtenbrot: The class of
(m, n) -computable functions equals the class of computable func-
tions if and only if $2m>n$.
The notion of frequency computation can be extended to finite
automata, and the analogue of Trakhtenbrot’s result holds for for-
mal languages: The class of languages (m, n) -recognizable by de-
terministic finite automata equals the class of regular languages if
and only if $2m>n$. For $2m\leq n$, the class of languages $(m, n)-$

recognizable by deterministic finite automata is uncountable for a
two-letter alphabet. When restricted to a one-letter alphabet, then
every (m, n)-recognizable language is regular. We give new proofs
for these results.

1 Introduction

The notion of frequency computations was introduced in 1960 by Rose [7]:
An (m, n) -computation of a function f : $\Sigma^{*}arrow \mathbb{N}^{*}$ is given by a determin-
istic Turing machine M which on n pairwise different inputs produces n

output values where at least m of the n values are in accordance with f .
In such a case we say that the Turing machine $\mathrm{c}\mathrm{o}_{\overline{\mathrm{i}}}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{s}f$ with $\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}^{--}.\backslash t$

$\geq m/n$.
Quite naturally, Myhill wondered whether f was recursive if m was close

to n [6 , p. 393]. This question was answered positively by Trakhtenbrot,
who showed that (1) an (m, n) -computable function f is recursive if $2m>$

n , and (2) for every $2m\leq n$ there are uncountably many functions being

数理解析研究所講究録
1166巻 2000年 35-42 35

(m, n) -computable, in particular, there are non-recursive functions of this
type [8].

Later Degtev, Kummer and Stephan showed that for $2m\leq n$ and
$2m’\leq n’$, the classes of $(m, n)-$ and $(m’, n’)$ -computable functions differ
whenever $m\neq m’$ or $n\neq n’[2,5]$. The exact inclusions, however, are still
unknown (except for a few special cases).

This notion has also been extended to time bounded frequency com-
putations. For example, one $\grave{\mathrm{m}}$ay require that the Rring machine which
performs the frequency computations works in polynomial time. In this
case, the inclusion problem for frequency classes bears a one-to-one cor-
respondence to so-called (m, n) -admissible sets, which can be handled by
finite combinatorics [1, Theorem 7.3]. Hinrichs and Wechsung showed that
$(m+1, n+1)\mathrm{P}$ is a proper subset of $(m, n)\mathrm{P}$ whenever $m<2^{n-m}[3]$,
where $(m, n)\mathrm{P}$ denotes the class of all sets whose characteristic functions
are (m, n)-computable in polynomial time.

The notion of frequency computation has been extended by Kinber [4]
to deterministic finite automata, which leads to regular frequency compu-
tations. Formal languages are viewed as characteristic functions. In this
framework, hakhtenbrot’s result for functions carries over to regular fre-
quency computations: The class of (m, n) -recognizable languages equals
the class of regular languages if and only if $2m>n$. If $2m\leq n$, then there
are uncountably many subsets of Σ^{*} as soon as $|\Sigma|\geq 2$. However, when
restricted to a one-letter alphabet, then all (m, n) -recognizable languages
are regular for $1\leq m\leq n$.

The results above are not new, but were first established in [4]. Here,
however, we present new proofs for them. In fact, we were not aware of Kin-
$\mathrm{b}\mathrm{e}\mathrm{r}’ \mathrm{s}$ result until the very end of the preparation of the present manuscript.

2 The Classes $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$

The characteristic function of a formal language $L\subseteq\Sigma^{*}$ is denoted by
χ_{L} : $\Sigma^{*}arrow \mathrm{B}$, where Σ is a finite alphabet and $\mathrm{B}=\{0,1\}$ is the set
of Boolean values; it is defined as $\chi_{L}(w)=1$ if $w\in L$ and $\chi_{L}(w)=0$

otherwise. We extend $\perp\dot{\mathrm{u}}$he notion of a $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\min_{\overline{\mathrm{i}}\mathrm{S}}\mathrm{t}\mathrm{i}\mathrm{c}$ finite automaton in the
following way. Let $A=$ $(Q, \Sigma, \, \delta, q_{0}, \tau, n)$, where Q is a finite set of states
with initial state q_{0} , the set Σ is a finite alphabet and $ is a new symbol,
$not\in\Sigma$, the mapping δ : $Q\cross$ $(\Sigma\cup\{})\mathrm{n}arrow Q$ is the transition function,
the mapping τ : $Qarrow \mathrm{B}^{n}$ is the type of a state, and n is the number of
components. The type of a state is used for the output.

36

We describe the behavior of such an automaton formatly. For an input
vector $u=$ $(u_{1}, \ldots , u_{n})\in(\Sigma^{*})^{n}$, define $|u|= \max\{|u_{i}||1\leq i\leq n\}$, and
$q\cdot u=\delta(q, (u_{1}\^{\ell_{1}}, \ldots , u_{n}\^{p_{n}}))$, where δ : $Q\cross((\Sigma\cup\{})^{n})^{*}arrow Q$ is the
natural extension of δ on n-tuples of words and $\ell_{i}=|u|-|u_{i}|$ for $1\leq i\leq n$.
The output of the automaton is then defined to be the type $\tau(q_{0}\cdot u)$. Such
an automaton is called an n-DFA.

A language $L\subseteq\Sigma^{*}$ is (m, n) -recognized by an n-DFA A if and only if
for each n-tuple $u=$ $(u_{1}, \ldots , u_{n})\in(\Sigma^{*})^{n}$ of pairwise distinct words, the
n-tuples $\tau(q_{0}\cdot u)$ and $(\chi_{L}(u_{1}), \ldots , \chi_{L}(u_{n}))$ coincide on at least m compo-
nents. A language L is called (m, n) -recognizable if and only if there exists
an n-DFA A that (m, n) -recognizes L . The class of all (m, n) -recognizable
languages is denoted by $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$. An example of a 2-DFA is shown in
Fig. 2 at the end of this section (the boxed pairs are the types).

For the proof of our first main result, we need the following lemma.

Lemma 1. Let $2m>n$ and $L\subset\Sigma^{*}$ Let A be an n-DFA that $(m, n)-$

recognizes L and $x_{1},$ \ldots , $x_{n-1}\in\Sigma^{*}-$ be fixed. Then L is regular, or the
following holds:

1. There are words $y_{1},$ \ldots , $y_{n}\in\Sigma^{*}$ such that the automaton A , given
as input $(x_{1}, \ldots , x_{n-1}, y_{i})(1\leq i\leq n)$, gives the same $n-1$ answers
for $(x_{1}, \ldots , x_{n-1})$ and the wrong answer on each y_{i} . Moreover, we can
assume $|y_{i}|>|x_{j}|$ for all $1\leq i\leq n,$ $1\leq j\leq n-1$.

2. Let $y_{1},$ \ldots , $y_{n}\in\Sigma^{*}$ be any n words. For each input $(x_{1}, \ldots , x_{n-1}, y_{i})$,
$1\leq i\leq n$, let b_{i} be the n-th component of the output $vector_{f}$ and let
$(b_{1}’, \ldots , b_{n}’)$ be the output vector for (y_{1}, \ldots , y_{n}) . If (b_{1}, \ldots , b_{n}) and
$(b_{1}’, \ldots , b_{n}’)$ differ on at least m bits, there is at least one i such that
$b_{i}\neq\chi_{L}(y_{i})$.

Proof. For the first claim, let $|x|= \max\{|x_{i}||1\leq i\leq n-1\}$. Now consider
an enumeration $y_{1}’,$ $y_{2}’,$

\ldots of $\{y\in\Sigma^{*}||y|>|u|\}$, and look at the output of
A on $(x_{1}, \ldots , x_{n-1}, y_{i}’)$. If only finitely many answers to the $y_{i}’$ were wrong,
then L would be regular: We could use the n-th component of the output
to define a regular language which would be a finite variation of L . Thus,
we can assume that there are $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}1_{\mathrm{v}^{r}}^{-}$. many wrong answers cior the last
component. Since there are at most 2^{n-1} many answers on $(x_{1}, \ldots , x_{n-1})$,
at least one of these answers appears infinitely often.

For the second claim, consider two vectors (b_{1}, \ldots , b_{n}) and $(b_{1}’, \ldots , b_{n}’)$

as defined in the lemma which differ on at least m components. Assume
all n of the b_{i} are correct, then at least m correct answers in $(b_{1}’, \ldots , b_{n}’)$

37

$arrow$ $arrow$

$arrow b_{n-1,b_{n}’}’b_{2}’b_{1}’..\cdot$

Fig. 1. Illustration of Lemma 1, Part 2. Input vectors are displayed in parenthe-
ses, state types are boxed; $*\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{s}$ arbitrary output values.

coincide with the corresponding components in (b_{1}, \ldots , b_{n}) . (Cf. Fig. 1 for
an illustration.) This implies that the number of differences is less than m .

\square

Proposition 1. Let $2m>n$ and $L\in(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$. Then L is regular.

Proof. We show that the inclusion $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}\subseteq(m, n-1)\mathrm{R}\mathrm{E}\mathrm{G}$ holds for
$n>m>n/2$. Then, by induction we obtain $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}\subseteq(m, m)\mathrm{R}\mathrm{E}\mathrm{G}$.
The result follows since $(m, m)\mathrm{R}\mathrm{E}\mathrm{G}$ is obviously the class of regular lan-
guages for $m>0$.

Let $L\in(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$ via some n-DFA A . If L is regular we are done.
Otherwise, by making use of Lemma 1, we reduce the number of input
strings by one while preserving the number of correct answers. In the first
step of the construction however, we increase the number of inputs to
$2n-1$. This intermediate automaton $A’$ receives inputs $x_{1},$ \ldots , x_{n-1} and
$y_{1},$ \ldots , y_{n} . In parallel it simulates A on the n-tuples $(x_{1}, \ldots , x_{n-1}, y_{i})$ for
$1\leq i\leq n$, and on (y_{1}, \ldots , y_{n}) . It enters a distinguished state, if and only
if the following two conditions are satisfied.

1. The output values A generates on the initial $n-1$ components of each
n-tuple $(x_{1}, \ldots , x_{n-1}, y_{i})$ are the same for $1\leq i\leq n$, i.e., if (b_{1}, \ldots , b_{n})

38

is the output on $(x_{1}, \ldots , x_{n-1}, y_{i})$ and $(b_{1}’, \ldots , b_{n}’)$ is the output on
$(x_{1}, \ldots , x_{n-1}, y_{k})$, then $b_{j}=b_{j}’$ for all j with $1\leq j\leq n-1$, but
possibly $b_{n}\neq b_{n}’$ for $i\neq k$.

2. As in Part 2 of Lemma 1, let b_{i} be the n-th component of the out-
put on $(x_{1}, \ldots , x_{n-1}, y_{i})$, and let $(b_{1}’, \ldots , b_{n}’)$ be the output vector for
(y_{1}, \ldots , y_{n}) . Then (b_{1}, \ldots , b_{n}) and $(b_{1}’, \ldots , b_{n}’)$ differ on at least m

bits.

If $A’$ enters a distinguished state, then we define its output. Its output on
$x_{1},$ \ldots , x_{n-1} is the same as that of A when receiving any $(x_{1}, \ldots , x_{n-1}, y_{i})$,
$1\leq i\leq n$, and it is arbitrary on $y_{1},$ \ldots , y_{n} .

Suppose that $A’$ enters a distinguished state. Then Part 2 of Lemma 1
applies, and the answer A gives for the last component of at least one tuple
$(x_{1}, \ldots , x_{n-1}, y_{i})$ is wrong. But then A and hence $A’$ generate at least m

correct output values for the first $n-1$ components and the restriction to
these components will be an $(m, n-1)$ -recognition.

In the next step of the construction we eliminate the inputs $y_{1},$ \ldots , y_{n}

by enumerating all possible input symbols and keeping track of all subsets
of states reachable in $A’$, resulting in an automaton $A”$.

By Part 1 of Lemma 1 for every $x_{1},$ $.\backslash$. . , x_{n-1} there are inputs $y_{1},$ \ldots , y_{n}

that lead to a distinguished state. Therefore, based on the current state s

of $A”$, one of the possible extensions of the partially read $y_{1},$ \ldots , y_{n} leading
to a distinguished state of $A’$ is chosen and the first $n-1$ components of
its output are assigned to s . \square

The following proposition follows implicitly from the work of rbakhten-
brot [8].

Proposition 2. Let $2m\leq n$. Then there are uncountably many languages
in the class $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$. In particular, there is a language $L\in(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$

which is not regular (in fact, not recursively enumerable).

Proof. The construction is surprisingly simple. We have to consider $m=1$

and $n=2$ only, since it is easy to see that $(1, 2)\mathrm{R}\mathrm{E}\mathrm{G}\subseteq(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$

whenever $2m\leq n$. Let $\Sigma=\{0,1\},$ $x\in \mathbb{R}$ be an arbitrary real number from
the half open interval $[0,1)$, and bin (x) be the infinite binary expansion of
x (padded with zeros if necessary). Then we define $L_{x}:=\{w\in\Sigma^{*}|\mathrm{O}.w<$

$bin(x)\}$.
For each such x the $(1, 2)$ -automaton recognizing L_{x} just has to deter-

mine the smaller of the two inputs, say x_{1} , which is assigned output 1,
whereas the greater number x_{2} is assigned 0 . (If both inputs represent the

39

Fig. 2. An $(1, 2)$-automaton for L_{x} . Transitions are shown in parentheses, state
types are boxed; $ is the padding symbol; $(*, *)$ stands for an arbitrary tuple
$\in\Gamma^{2}\backslash \{}^{2}$.

same number but differ in trailing zeros, it is safe to output $(0,1)$, as well
as it would be to output $(1, 0)$ $.)$ $\mathrm{T}\mathrm{h},\mathrm{e}$ automaton is shown in Fig. 2.

The result follows since there are uncountably many $x\in[0,1)$ (and
thus languages L_{x}).

Remark 1. The construction in the proof above was communicated to us
by Arfst Nickelsen and Till Tantau. Kinber [4] gave a slightly different
construction for the result above which is at least as nice: For every infinite
word, the language of finite prefixes is $(1, 2)$ -recognizable.

\square

Corollary 1. We have $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}=\mathrm{R}\mathrm{E}\mathrm{G}$ if and only if $2m>n$.

3 The Unary Case

The proof above applies to all alphabets with at least two different letters.
We will see here that it is in fact a necessary condition. The class of regular
languages, which are defined over a one-letter alphabet, is called UREG.
Analogously, we define $(m, n)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}$ as the class of languages in $(m, n)\mathrm{R}\mathrm{E}\mathrm{G}$

which are defined over a one-letter alphabet.

40

Proposition 3. For all $m,$ $n\in \mathrm{N}$ such that $1\leq m\leq n$, we have

$(m, n)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}=\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}$.

Proof. We prove for all n the inclusion $(1, n)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}\subseteq \mathrm{R}\mathrm{E}\mathrm{G}$ by induction
on n . The general claim follows, because $(m, n)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}\subseteq(1, n)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}$ for
all $m>0$.

The induction base is trivial, because $(1, 1)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}=$ UREG. So let
$n>1$, and let $(1, n-1)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}\subseteq \mathrm{R}\mathrm{E}\mathrm{G}$.

For every language $L\in(1, n)\mathrm{U}\mathrm{R}\mathrm{E}\mathrm{G}$, there is some n-DFA A witnessing
this fact. Let Q be its finite set of states, $q_{0}\in Q$ be its initial state, and let
$\{a\}$ be the alphabet. Every word v to be considered has the form $a^{|v|}$, but
as defined at the beginning of Section 2, the inputs seen by A will be tuples
where the components are of the form $a^{|v|}\^{r}$ for some $r\geq 0$. Define t and s

such that for all $q\in Q$ we have q . $(a^{t}, \ldots , a^{t}, \^{t})=q\cdot(a^{t+s}, \ldots , a^{t+s}, \^{t+s})$;
for example we may choose $t=|Q|$ and $s=|Q|!$.

Next we define the following function $g:\mathbb{N}arrow Q\cross\{0, \ldots , s-1\}$:

$g(x)=$ ($q_{0}\cdot$ ($a^{x+s},$
\ldots , $a^{x+s},$ $a^{x}\^{s}$), x mod s).

Now we distinguish two cases. The first case is:

$\forall x,$ $y\in \mathbb{N}$: $g(x)=g(y)\Rightarrow(a^{x}\in L\Leftrightarrow a^{y}\in L)$.

In this case, every language $L_{d}:=$ {$w\in L||w|$ mod $s=d$} $(0\leq d\leq s-1)$

is regular, because we can on input a^{x} simulate A on input $(a^{x}, \ldots , a^{x}, a^{x})$

and let all states be accepting or rejecting, depending on $g(x)$. But $L=$

$\bigcup_{d=0}^{s-1}L_{d}$, and so $L\in \mathrm{R}\mathrm{E}\mathrm{G}$.
In the other case there are $x<y$ such that $g(x)=g(y)$, but $\chi_{L}(a^{x})\neq$

$\chi_{L}(a^{y})$.
Consider the language $L’$ defined as

$L’=\{v\in L||v|\geq y+t\}$.

It is enough to define a $(1, n-1)$-automaton $A’$ for $L’$. Then by induction
hypothesis $L’$ is regular and hence, L is regular, because it is a finite
variation of $L’$. Consider any input sequence $(a^{z_{1}}, \ldots , a^{z_{n-1}})$. As long as
some $z_{i}<y+t$, the output of $A’$ is defined to be $(0, \ldots , 0)$, and thus it
gives at least one correct answer.

If $z_{i}\geq y+t$ for all i , then $A’$ simulates A on input $(a^{z_{1}}, \ldots , a^{z_{n-1}}, a^{x})$,
and if A outputs (b_{1}, \ldots , b_{n}) , then the output of $A’$ is defined as the first

41

$(n-1)$ components $(b_{1}, \ldots , b_{n-1})$. We have to show that at least one of
these answers is correct.

After reading $(a^{y+t}, \ldots , a^{y+t}, a^{y}\^{t})$ the automaton A is in the same
state q_{x} as reading $(a^{x+t}, \ldots , a^{x+t}, a^{x}\^{t})$, because $g(x)=g(y)$. Then after
reading $(a^{y+t}, \ldots , a^{y+t}, a^{x}\^{t+(y-x)})$, the automaton is again in state q_{x} ,
because $x<y$ and $y-x$ is a multiple of s . Since $z_{i}\geq y+t$ for all i , we
obtain that q_{0} . $(a^{z_{1}}, \ldots , a^{z_{n-1}}, a^{y})=q_{0}\cdot(a^{z_{1}}, \ldots , a^{z_{n-1}}, a^{x})$, hence the
same output is produced. But $a^{x}\in L$ and $a^{y}\not\in L$ (or vice versa), thus, for
exactly one of the two inputs given to A the last output bit is wrong, and
consequently one of the first $(n-1)$ output bits has to be correct. \square

References

1. Richard Beigel, Martin Kummer, and Frank Stephan. Quantifying the amount
of verboseness. Information and Computation, 118:73-90, 1995.

2. A. N. Degtev. On (m,$n)$ -computable sets. In Algebraic Systems, pages 88-99.
Ivanova Gos. University, 1981. (In Russian).

3. Maren Hinrichs and Gerd Wechsung. Time bounded frequency computations.
In Proceedings of the Twelflh Annual IEEE Conference on Computational
Complexity, pages 185-192, Ulm, Germany, June 24-271997.

4. Efim B. Kinber. Frequency computations in finite automata. Kibernetika,
2:7-15, March-April 1976. (In Russian; English translation in Cybernetics,
12:179-187, 1976).

5. Martin Kummer and Frank Stephan. The power of frequency computation.
In Proceedings of the Tenth International Congress on Fundamentals of Com-
putation Theory-FCT 1995, LNCS 969, pages 323-332, 1995.

6. Robert McNaughton. The theory of automata, a survey. Advances in Com-
puters, 2:379-421, 1961.

7. Gene F. Rose. An extended notion of computability. In Proceedings of the
International Congress for Logic, Methodology, and Philosophy of Science,
Stanford, California, 1960.

8. Boris A. Trakhtenbrot. On the frequency computation of functions. Algebra
i Logika, 2:25-32, 1963. (In Russian).

42

