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On the Shapes of Vertex Subsets of Hypercubes That
Minimize Their Boundary

Faculty of Engineering, Shuji Jimbo*(神保秀司)
Okayama University Kosaburo Hashiguchi (橋口攻三郎)

Ryobi Systems, Inc Osamu Yamamoto (山本治)

21 March 2000

Abstract

A problem of partitioning the vertex-set of a hypercube into two parts is consid-
ered. The sizes of the two parts are given and the size of the boundary between
the two parts has to be minimized. The boundary of the two parts is the set of the
endvertices of edges that join a vertex in one part and one in the other part. The
minimum size of the boundary is already known. It is also known that, for every
integer $k$ , the size of the boundary is minimized by partitioning the vertex-set of a
hypercube into the set of the first $k$ vertices in squashed order and the rest. In this
paper, the shape of such a partition is investigated. First, it is shown that such a
partition of a hypercube is implemented by cutting the hypercube with a particular
kind of hyperplane. Second, for every integer $l$ that is a sum of consecutive binomial
coefficients $++\cdots+$ , where $n$ is the dimension of the hypercube, if the
size of one of the two parts obtained by. the $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}:\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ is exactly $l$ , then the shape of
the part is uniquely determined.

Keywords: graph theory, hypercube, parallel computation, network, BANDWIDTH,
extremal set theory.

1 Introduction
When we divide a computer network into two subnetworks, some loss of performance re-
sults. The number of nodes of each subnetwork is given, and the loss has to be minimized.
We can measure the loss in two different types of measurement: (a) the number of com-
puters that have a neighbor in the other subnetwork, and (b) the number of links that join
a computer in one subnetwork and one in the other. Hypercubes have been investigated
intensively as network topologies with which concurrent computation is implemented. If
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the network topology is a hypercube, then measuring the loss in measurement (a) corre-
sponds to Problem A below, while measuring the loss in measurement (b) corresponds to
Problem B.

Problem $\mathrm{A}$ : partition the vertex-set of a hypercube into two parts, one of which consists
of $p$ vertices and the other of $q$ vertices, under the constraint that the size of the boundary
between the two parts, which we call the vertex-cost of the partition, is minimized. The
boundary of the two parts is the set of the endvertices of edges that join a vertex in one
part and one in the other part.

Problem $\mathrm{B}$ : partition the vertex-set of a hypercube into two parts, one of which consists
of $p$ vertices and the other of $q$ vertices, under the constraint that the number of edges
that join a vertex in one part and one in the other, which we call the edge-cost of the
partition, is minimized.

We present answers to those problems below. Let $Q_{n}$ denote the hypercube of di-
mension $n$ . For a vertex $x=(x_{1}, x_{2}, \ldots, X_{n})$ of $Q_{n}$ , we write $w(x)=\Sigma_{i=1}^{n}X_{i}$ and
$r_{n}(x)=\Sigma_{i}n2^{i}-1x_{i}=1$ .

Answer $\mathrm{A}$ : Let $A_{n}(p)$ be the first $p$ vertices in the linear ordering in which $x$ precedes
$y$ if either $w(x)<w(y)$ or both $w(x)=w(y)$ and $r_{n}(x)>r_{n}(y)$ . This order is called
squashed order. By partitioning the vertex-set of $Q_{n}$ into $A_{n}(p)$ and the rest, the vertex-
cost is minimized.

Essentially the same problem as Problem $\mathrm{B}$ was investigated and solved by Nakano,
et $\mathrm{a}1[\mathrm{N}\mathrm{M}\mathrm{T}90]$ .

Answer $\mathrm{B}$ (by Nakano, et al.): Let $B_{n}(p)$ is the first $p$ vertices in the linear ordering
in which $x$ precedes $y$ if $r_{n}(x)<r_{n}(y)$ . By partitioning the vertex-set of $Q_{n}$ into $B_{n}(p)$

and the rest, the edge-cost is minimized.
Although the answers above have been shown, it is not known what shapes the frag-

ments of partitions form in answers to the problems above. In this paper, the shapes of
such partitions are investigated. First, it is shown that such a partition of a hypercube
is implemented by cutting the hypercube with a particular kind of hyperplanes. Second,

’

the partition is exactly $l$ , then the shape of the part is uniquely determined.
The definition of vertex-cost originated from our previous research on a binary code.

Let $n$ be a positive integer. Assume that we want to construct a binary block code con-
sisting of all $n$-bit words, where each codeword represents an integer ffom 1 to $2^{n}$ , that is,
the code can be considered as a permutation of the vertex-set of the $n$-dimensional hyper-
cube. If we have to minimize the maximum error of a decoded value arising from exactly
one error bit in the corresponding codeword, then what code do we need to construct?
An answer to this question corresponds to a solution to an instance of BANDWIDTH,
an $\mathrm{N}\mathrm{P}$-complete p...roblem, when the $n$-dimensional hypercube is given to the instance as
a $\mathrm{p}.\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\dot{\mathrm{e}}\mathrm{m}$ parameter. One of the answers is the code corresponding to the permutation
induced by squashed order.

110



2 Definitions
The size of a finite set $S$ , namely, the number of elements of $S$ , is denoted by $|S|$ . If $G$

is a simple undirected graph, then $V(G)$ and $E(G)$ denote the vertex-set and edge-set of
$G$ , respectively.

Let $n$ be a positive integer. The hypercube of dimension $n$ , or $n$-cube, is an undirected
graph, denoted by $Q_{n}$ . The vertex-set of $Q_{n}$ is $\{0,1\}^{n}$ , and the edge-set $\{((x_{1}, x2, \ldots, xn),$ $(y_{1},$ $y2,$ $\ldots,$

$y_{?}$

$y_{i}|=1\}$ . Let $x=(x_{1,2\cdot\cdot n}X,., x)$ be a vertex of $Q_{n}$ . The number of l’s in the compo-
nents of $x$ , namely, $\sum_{i=1}^{n}X_{i}$ , is said to be the weight of $x$ , denoted by $w(x)$ . The value
$\sum_{i=1}^{n}2i-1x_{i}$ is said to be the lexicographical rank of $x$ , denoted by $r_{n}(x)$ .

Let $G$ be an undirected graph, and $S$ a subset of $V(G)$ . A vertex in $S$ that is adjacent
to no vertices except ones in $S$ is said to be an interior vertex of $S$ . The set of all interior
vertices of $S$ is said to be the interior of $S$ , denoted by $\mathcal{I}_{G}(S)$ , namely, $\mathcal{I}_{G}(S)=\{v\in$

$S|$ (Vu $\in V(G)\backslash S$) $(uv\not\in E(G))\}$ . We may omit the subscript $G$ when there will be no
confusion.

The vertex-cost and edge-cost of a partition of the vertex-set of $G$ into two disjoint
sets, $S$ and $V(G)\backslash S$ , are defined to be

$C_{n}^{V}(S)=|\{u\in S|(\exists v\in V(G)\backslash S)(uv\in E(G))\}|+|\{v\in V(G)\backslash S|(\exists u\in S)(uv\in E(G))\}|$

and
$C_{n}^{E}(S)=|\{e\in E(G)|(\exists u\in S)(\exists v\in V(G)\backslash S)(e=uv)\}|$ ,

respectively. The vertex-cost of a partition is the number of vertices whose degree the
partition lessens, while the edge-cost of a partition is the number of edges that the parti-
tion removes. Each of those costs might indicates the magnitude of the loss arising $\mathrm{h}\mathrm{o}\mathrm{m}$

a partition. We, therefore, prefer those costs as small as possible. By definition, $C_{n}^{V}(S)$

can be expressed as $|V(G)|-|\mathcal{I}(S)|-|\mathcal{I}(V(c)\backslash S)|$ .

3 Fundamental Theorem
Let $e_{n}(k)$ denote the maximum size of the interior of a $k$-element subset of $V(Q_{n})$ . Se-
quence $f_{0},$ $f_{1},$ $f2,$ $\ldots$ , $f_{n},$

$\ldots$ of non-negative integer valued functions is defined $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{i}_{\mathrm{V}\mathrm{e}1\mathrm{y}}\wedge$

as $f_{n}(0)=0,$ $f_{n}(2^{n})=2^{n}$ , and, for an integer $k$ with $1\leq k\leq 2^{n}-1$ ,

$f_{n}(k)= \max\{0,k-2^{n}\}\leq i\leq k/2\max_{-1}(\min\{f_{n}-1(i), k-i\}+\min\{fn-1(k-i),i\})$ .

The domain of $f_{n}$ is $\{0,1,2, \ldots, 2n\}$ for every non-negative integer $n$ .

Proposition 1 $([\mathrm{K}\mathrm{r}\mathrm{u}63][\mathrm{K}\mathrm{a}\mathrm{t}66][\mathrm{R}\mathrm{a}\mathfrak{g}5])$ Let $m$ be a positive integer. Then, any posi-
tive integer $k$ is uniquely expressed as

$k=++\cdots+$ , (1)

where $t,$ $a_{m},$ $a_{m-1},$ $\ldots$ , and $a_{t}$ are integers with $a_{m}>a_{m-1}>\cdots>a_{t}\geq t\geq 1$ .
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Expression (1) is said to be the $m$-binomial coefficient expression of $k$ , and $a_{m}$ in the
expression the first parameter of the expression. It follows readily that $\leq k<$ .

Let $k$ and $m$ be positive integers, and $k=++\cdots+$ the m-binomial
coefficient expression of $k$ . The Kruskal-Katona function with base $m$ is defined to be the
function whose value at $k$ is

$K_{m}(k)=++\cdots+$ .

We also define $K_{m}(k)$ for $k=0$ or $m=0$ as $K_{m}(0)=K_{0}(k)=0$ .
Linear order relation $\leq \mathrm{s}$ on $V(Q_{n})$ is defined as follows: $u\leq_{\mathrm{S}}v$ if and only if either

$w(u)<w(v)$ or both $w(u)=w(v)$ and $r_{n}(u)\geq r_{n}(v)$ . We call the linear order relation
$\leq \mathrm{s}$ squashed order relation. Let $v$ be the k-th smallest vertex of $Q_{n}$ in squashed order.
We call $k$ the rank of $v$ in squashed order, and express $k$ as $\delta_{n}(v)$ . The k-th smallest
vertex of $Q_{n}$ in squashed order, therefore, can be expressed as $\delta_{n}^{-1}(k)$ , while the k-th
smallest vertex of $Q_{n}$ in increasing order of lexicographical rank can be expressed as
$r_{n}^{-1}(k)$ . Furthermore, $A_{n}(k)$ denotes the set of the $k$ smallest vertices of $Q_{n}$ in squashed
order, namely, $A_{n}(k)=\{\delta_{n}^{-1}(1), \delta^{-1}(n2), \ldots , \delta_{n}^{-1}(k)\}$.

For positive integers $n$ and $k$ with $k\leq 2^{n},$ $\mu_{n}(k)$ and $\xi_{n}(k)$ are defined to be the
integers such that $k=(\Sigma_{j=0}^{\mu(k}n$

) $)-\xi_{n}(k)$ and $0\leq\xi_{n}(k)<(_{\mu_{n}(k)}^{n})$ . Value $I_{n}(k)$ is

defined to be $k-(_{\mu_{n}(k)}^{n})+\xi_{n}(k)-K_{\mu n(}k)(\xi n(k))$ . Furthermore, $I_{n}(0)$ is defined to be $0$

for all positive integers $n$ , and $I_{0}(k)=k$ for $k=0$ and $k=1$ . By definition, we have
$I_{n}(2^{n})=2^{n}$ for all non-negative integers $n$ . The following proposition follows $\mathrm{h}\mathrm{o}\mathrm{m}$ a part
of Kruskal-Katona $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}[\mathrm{Y}\mathrm{J}\mathrm{H}98]$ .

Proposition 2 Let $n$ be a positive integer and $k$ a non-negative integer with $k\leq 2^{n}$ .
Then, $|\mathcal{I}(A_{n}(k))|=I_{n}(k)$ and

$\mathcal{I}(A_{n}(k))=\{\delta_{n}^{-1}(1), \delta_{n}-1(2), \ldots, \delta-1(nIn(k))\}$

hold.

Proposition 3 $([\mathrm{Y}\mathrm{J}\mathrm{H}98])$ For any positive integer $n$ and any non-negative integer $k$

with $k\leq 2^{n}$ , expression

$|\mathcal{I}(A_{n}(k))|=I_{n}(k)\leq e_{n}(k)\leq f_{n}(k)$

holds.

Proof. It follows easily from the definition of $e_{n}(k)$ that $|\mathcal{I}(A_{n}(k))|=I_{n}(k)\leq e_{n}(k)$

holds. In what follows, we shall prove that $e_{n}(k)\leq f_{n}(k)$ holds. We will prove it by
induction on $n$ . It is clear that the expression holds for $n=1$ and all integers $k$ with
$0\leq k\leq 2^{n}=2$ . Let $N$ be an integer greater than 1, and assume that the inequality
holds for all integers $n<N$ and all integers $k$ with $0\leq k\leq 2^{n}$ . Since if $k=0$ or
$k=2^{N}$ then $e_{N}(k)=f_{N}(k)$ holds, we may assume that $0<k<2^{N}$ . Let $S$ be a subset
of $V(Q_{N})$ such that $|S|=k$ and $|\mathcal{I}(S)|=e_{N}(|S|)$ . We divide $V(Q_{N})$ into two disjoint
subsets $V_{0}$ and $V_{1}$ , where the first component of each vertex in $V_{0}$ is $0$ , and that of each
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vertex in $V_{1}$ is 1. We also divide $S$ into $S_{0}=S\cap V_{0}$ and $S_{1}=S\cap V_{1}$ . Let $i$ denote $|S_{0}|$ ,
hence we have $|S_{1}|=k-i$ . Since $|V_{0}|=|V_{1}|=|V(Q_{N})|/2=2^{N-1}$ , we have $i\leq 2^{N-1}$

and $k-i\leq 2^{N-1}$ , hence $\max\{0, k-2N-1\}\leq i\leq k/2$ . Let $S_{0}’$ denote the sets of the
vertices $(X_{1}, X_{2}, \ldots, XN)\in S_{0}$ such that $(1-X_{1}, X2, x3, \ldots, x_{N})\in S$ . Furthermore, let $S_{0}’’$

denote the set of the vertices $(x_{1}, x_{2}, \ldots , x_{N})\in S_{0}$ such that, for each $j\in\{2,3, \ldots, N\}$ ,
$(x_{1}, x_{2}, \ldots , x_{j-1},1-xj, X_{j+1}, \ldots , x_{N})\in S$ . Then, we have $\mathcal{I}(S)\cap S_{0}\subseteq S_{0}’\cap S_{0}’’$ , hence
$| \mathcal{I}(S)\cap S_{0}|\leq\min\{|s_{0}’|, |s_{0’}’|\}$ . Furthermore, we have

$|S_{0}’|=|\{(1, x2, X3, \ldots, xN)\in s_{1}|(\mathrm{o}, x_{2}, X_{3,\ldots,N}x)\in S_{0}\}|$ ,

$\{(1, X_{2}, X_{3}, \ldots , x_{N})\in S_{1}|(0, x_{2,3}X, \ldots , x_{N})\in S_{0}\}\subseteq S_{1}$ , and

$\{(x_{2}, X_{3\cdot\cdot N},., X)\in V(QN-1)|(0, X_{2}, x3, \ldots, x_{N})\in S_{0’}/\}$

$\subseteq \mathcal{I}(\{(x_{2}, X3, \ldots, XN)\in V(QN-1)|(0, X_{2}, X_{3}, \ldots, xN)\in S_{0}\}$ .

By induction hypothesis, we therefore have

$| \mathcal{I}(S)\cap S_{0}|\leq\min\{e_{N-1}(i), k-i\}\leq\min\{f_{N-1}(i), k-i\}$.

Furthermore, by defining $S_{1}’$ and $S_{1}’’$ like $s_{0}’$ and $S_{0}’’$ , we can also have

$| \mathcal{I}(S)\cap S_{1}|\leq\min\{e_{N-1}(k-i), i\}\leq\min\{f_{N-1}(k-i), i\}$.

Thus, by the definition of functions $f\mathrm{o},$ $f_{1},$ $f2,$
$\ldots$ , we conclude that

$e_{N}(k)=|\mathcal{I}(s)|=|\mathcal{I}(S)\cap S_{0}|+|\mathcal{I}(s)\cap s_{1}|$

$\leq$ $\min\{f_{N-1}(i), k-i\}+\min\{f_{N-1}(k-i), i\}\leq f_{N}(k)$,

completing the proof. $\square$

In fact, the three values, $I_{n}(k),$ $e_{n}(k),$ $f_{n}(k)$ , in Proposition 3 are the same, namely,
$I_{n}(k)=e_{n}(k)=fn(k)$ . This fact follows easily from the following theOr,$\mathrm{e}\mathrm{m}$ , which we have
already $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{d}[\mathrm{J}\mathrm{H}99]$.

Theorem 4 For any positive integers $n$ and $k$ with $1\leq k\leq 2^{n}-1$ , inequality

$I_{n}(k) \geq\max\{2^{n-}1\}\max_{0,k-\leq i\leq k/2}(\min\{I_{n-1}(i), k-i\}+\min\{I_{n-1}(k-i), i\})$

holds.

4 Shapes of the Partitions That Minimize the Vertex-
cost

For positive integer $n$ and $k$ with $k<2^{n},$ $B_{n}(k)$ denotes the $k$-element subset of $V(Q_{n})$

defined as $B_{n}(k)=\{x=(x_{1,2,\ldots,n}Xx)\in\{0,1\}^{n}|r_{n}(x)=\Sigma_{i=1}^{n}2i-1x_{i}\leq k-1\}$ . On one
hand, it is known that the edge-cost of partitioning $V(Q_{n})$ into $B_{n}(k)$ and the rest is the
smallest among all the edge-costs of partitioning $V(Q_{n})$ into a $k$-element subset and the
$\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}[\mathrm{N}\mathrm{M}\mathrm{T}90]$ . On the other hand, the vertex-cost of partitioning $V(Q_{n})$ into $A_{n}(k)$ and
the rest is the smallest among all the vertex-costs of partitioning $V(Q_{n})$ as above. The
following theorem asserts the latter.
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Theorem 5 Let $n$ and $k$ be positive integers with $k<n$ . The minimum vertex-cost of a
partition of $V(Q_{n})$ into a $k$ -element subset and the rest is $C_{n}^{V}(A_{n}(k))$ .

Proof. By the definition of cost $C_{n}^{V}$ , Proposition 3, and Theorem 4, we have $C_{n}^{V}(A_{n}(k))=$

$|V(Q_{n})|-|\mathcal{I}(A_{n}(k))|-|\mathcal{I}(V(Qn)\backslash A_{n}(k))|=2^{n}-e_{n}(k)-|\mathcal{I}(V(Qn)\backslash A_{n}(k))|$ . Since the
mapping $x=(x_{1,2,\ldots,n}Xx)\in V_{n}\vdasharrow(1-x_{1},1-X_{2}, \ldots, 1-x_{n})$ is an automorphism of $Q_{n}$

and takes $V(Q_{n})\backslash A_{n}(k)$ to $A_{n}(2^{n}-k)$ , we conclude that $|\mathcal{I}(V(Qn)\backslash A_{n}(k))|=e(2^{n}-k)$ .
This completes the proof. $\square$

We has shown that the $k$-element sets $B_{n}(k)$ and $A_{n}(k)$ can be both obtained as a
fragment by cutting $Q_{n}$ with a hyperplane. A hyperplane that does not pass the origin is
determined by the foot $f=(f_{1}, f_{2}, \ldots, f_{n})\neq 0$ of the perpendicular to it from the origin.
We write the hyperplane determined by $f\neq 0$ as $H(f)$ . Furthermore, the two half-spaces
obtained by cutting the whole space with $H(f)$ are denoted by $H_{-}(f)$ and $H_{+}(f)$ , where
both $H_{-}(f)$ and $H_{+}(f)$ include $H(f)$ , and $H_{-}(f)$ includes the origin while $H_{+}(f)$ does not.
For vectors $x=(x_{1,2,\ldots,n}Xx)$ and $y=(y_{1}, y2, \ldots, yn)$ in $n$ dimensional Euclidean space
$1\mathrm{R}^{n},$ $\langle x, y\rangle$ denotes the inner product of $x$ and $y$ , namely, $\langle x, y\rangle=\Sigma_{i=1}^{n}X_{iy_{i}}$ . Expression
$\sqrt{\langle x,x\rangle}$, therefore, expresses the norm of $x$ , denoted by $||x||$ . By definition, we have
$H(f)–\{x\in 1\mathrm{R}^{n}|\langle x, f\rangle=||f||^{2}\}$ and $H_{-}(f)=\{x\in \mathrm{R}^{n}|\langle x, f\rangle\leq||f||^{2}\}$ .

Theorem 6 Let $n$ be a positive integer and $k$ an integer with $0\leq k\leq 2^{n}$ . Let $a$ and
$\beta$ denote the vectors in $\mathrm{I}\mathrm{R}^{n}$ whose i-th components are $\alpha_{i}=1-(1/2)^{n+1-i}$ and $\beta_{i}=$

$(1/2)^{n+1-i}$ , respectively, for each $i\in\{1,2, \ldots , n\}$ . Furthermore, let $f_{\alpha}$ and $f_{\beta}$ denote

$\frac{\langle\delta_{n}^{-1}(k),\alpha\rangle}{||\alpha||^{2}}\alpha$ and $\frac{\langle r_{n}^{-1}(k),\beta\rangle}{||\beta||^{2}}\beta$ ,

respectively. Then, it holds that $A_{n}(k)=V(Q_{n})\cap H_{-}(f_{\alpha}(k))$ and $B_{n}(k)=V(Q_{n})\cap$

$H_{-}(f_{\beta}(k))$ .

Proof. We easily see that $\delta_{n}^{-1}(k)$ and $r_{n}^{-1}(k)$ are on $H(f_{\alpha})$ and $H(f_{\beta})$ , respectively.
Therefore, the rest of the proof is to show that, for any positive integer $l$ with $l<k$ , both

$\langle\delta_{n}^{-1}(\iota), \alpha\rangle\leq\langle\delta_{n}^{-1}(k), \alpha\rangle$ (2)

and
$\langle r_{n}^{-1}(l), \beta\rangle\leq\langle r_{n}^{-1}(k), \beta\rangle$ (3)

hold. For each $j\in\{1,2, \ldots, n\}$ , let $x_{j}^{l}$ and $x_{j}^{k}$ be the j-th components of $\delta_{n}^{-1}(l)$ and
$\delta_{n}^{-1}(k)$ , respectively.

First, we shall prove inequality (3). There is a $j\in\{1,2, \ldots , n\}$ such that $x_{j}^{l}=0$ ,
$x_{j}^{k}=1$ , and, $x_{j+1}^{l}=x^{k}x^{\mathrm{t}}j+1’ j+2=x_{j+2}^{k},$

$\ldots,$
$x_{n}^{l}=x_{n}^{k}$ . We therefore have

$\langle r_{n}^{-1}(l), \beta\rangle$ $\leq$ $h1 \sum_{=}^{j-1}(1/2)^{n}+1-h\sum_{h+}^{n}+=j1xhk(1/2)^{n+1}-h$

$<$ $(1/2)^{n}+1-j+h=j \sum^{n}+1X_{h}^{k}(1/2)^{n+1}-h$

$\leq$ $\sum_{h=1}^{n}X_{h}(k1/2)n+1-h=\langle r^{-}n1(k), \beta\rangle$ .
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Second, we shall prove inequality (2). To that end, we consider the following two cases:
(a) $w(\delta_{n}^{-1}(\iota))<w(\delta^{-1}(k))=m$ , and (b) $w(\delta_{n}^{-1}(\iota))=w(\delta_{n}^{-1}(k))=m$ and $r_{n}(\delta_{n}^{-1}(\iota))>$

$r_{n}(\delta_{n}^{-1}(k))$ . If $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}n(\mathrm{a})$ holds, then we have

$\langle\delta_{n}^{-1}(\iota), \alpha\rangle$ $\leq$ $m-1- \sum_{j=1}^{m-}1(1/2)^{n}+1-j<m-1$

$<$ $m- \sum_{mj=n+1-}^{n}(1/2)n+1-j\leq\langle\delta_{n}^{-1}(k), \alpha\rangle$ .

We therefore have inequality (2). If condition (b) holds, then there is a $j\in\{1,2, \ldots,n\}$

such that $x_{j}^{l}=1,$ $x_{j}^{k}=0$ , and, $x_{j+1}^{l}=x_{j+1}^{k},$ $x_{j+2}^{l}=x_{j+2}^{k},$
$\ldots$ , $x_{n}^{l}=x_{n}^{k}$ . Then, it follows

that

$\langle\delta_{n}^{-1}(\iota), \alpha\rangle$ $\leq$ $\langle\delta_{n}^{-1}(k), \alpha\rangle-(1/2)^{n}+1-j\sum_{1}^{j1}+(1h=-/2)n+1-h$

$<$ $\langle\delta_{n}^{-1}(k), a\rangle$ .

Thus, we also have inequality (2). $\square$

When we want to partition a hypercube at as low a cost as possible, cutting the
hypercube with a hyperplane is intuitively a cogent method. So far, we have defined two
kinds of cost of partitioning a hypercube into two parts, the vertex-cost and edge-cost.
These costs have turned out to be minimized by cutting a hypercube with a hyperplane,
as we expect. Furthermore, for the same dimension and cost, all of the hyperplanes used
above are of the same direction. However, there is another kind of partition that minimizes
the vertex-cost for specific pairs of the sizes of the two parts. In fact, the vertex-cost is
minimized by cutting a hypercube with two hyperplanes, so that one of the two subgraphs
of $Q_{n}$ induced by such a cutting of $V(Q_{n})$ is disconnected.

Example: Let $A$ denote $\{(0,0,0), (0,0,1), (0,1,0)\}$ , and $B$

$\{(0,0,1), (0,1,0), (1,0, \mathrm{o})\}$ . Then, we have

$C_{3}^{V}(A)=c_{3}^{V}(B)=7$.

The subgraph of $Q_{3}$ induced by $A$ and the one induced by $V(Q_{3})\backslash A$ are both
connected, while the subgraph of $Q_{3}$ induced by $V(Q_{3})\backslash B$ is disconnected.

In spite of the example above, we can show that if a specific value is designated as the
size of a fragment of a partition, then the shapes of the partitions that minimize the
vertex-cost are congruent one another.

Theorem 7 Let $n$ be a positive integer and $m$ an integer with $0\leq m<n$ . Let $k$ denote
$\sum_{i=0}^{m}$ . Let $S$ be a subset of $V(Q_{n})$ such that $|S|=k$ and $C_{n}^{V}(S)=C_{n}^{V}(A_{n}(k))$ . Then,
there is a vector $x=(x_{1,2\cdot\cdot n}X,., x)\in\{0,1\}^{n}$ such that $A_{n}(k)=\{(x_{1}\oplus v_{1,2}x\oplus v_{2},$

$\ldots,$
$Xn\oplus$

$v_{n})|(v_{1}, v_{2}, \ldots, v_{n})\in S\}$, where $a\oplus b$ denotes $(a+b)$ mod 2.

115



Each component $x_{i}$ of $x$ in Theorem 7 can be determined as follows: if the sum of the
i-th components of the vectors in $S$ is greater than $k/2$ , then set $x_{i}$ to be 1, otherwise set
it to be $0$ . The details of the proof of Theorem 7 are omitted. We give a rough sketch of
the proof below.

In our previous $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}[\mathrm{J}\mathrm{H}99]$ , we presented several lemmas to prove Theorem 4 above.
We shall strengthen one of those lemmas.

Lemma 8 Let $n,$ $m,$ $x$ , and $y$ be positive integers with $m\leq n$ and $x+y=$ . Then,

$K_{m}(x)+K_{m}(y)>$

holds.

Let $n$ and $m$ be positive integers with $m\leq n$ . Let $k$ denote $\Sigma_{i=0}^{m}$ . By this lemma, we
can determine the integer $k_{1}$ in $\{\max\{0, k-2^{n}-1\}, \max\{\mathrm{o}, k-2^{n-1}\}+1, \ldots , k/2\}$ such
that

$\min\{I_{n-1}(k1), k-k_{1}\}+\min\{I_{n-1}(k-k1), k1\}$

$= \max\{n-1\}\max_{0,k-2\leq i\leq k/2}$
$( \min\{I_{n}-1(i), k-i\}+\min\{I_{n-1}(k-i), i\})$ .

Integer $k_{1}$ turns out to be $\sum_{i=0}^{m-1}=I_{n-1}(k-k1)$ . It follows, therefore, that $k-k_{1}=$

$\sum_{i=0}^{m}$ . Let $k_{0}$ denote $k-k_{1}$ . We shall prove Theorem 7 by induction on $n$ . Of
course, the assertion of Theorem 7 holds for every $n=1,2$ , and 3. Let $S$ be a k-element
subset of $V(Q_{n}).\mathrm{w}$ith $|\mathcal{I}(S)|=I_{n}(k)$ . Defining $V_{0},$ $V_{1},$ $S_{0},$ $S_{1},$ $S_{0}’$ , and S\’i as in the proof
of Proposition 3, that is,

$V_{0}=\{(x_{1}, x2, \ldots, xn)\in V(Q_{n})|x_{1}=0\}$, $V_{1}=\{(x_{1}, x2, \ldots, xn)\in V(Q_{n})|x_{1}=1\}$,

$s_{0=}s\cap V0$ , $s_{1}=s_{\cap}V1$ ,

$S_{0}’=$ { $(x_{1},$ $x2,$ $\ldots,$
$xn)\in V(Q_{n})|(x_{12\cdot\cdot n},$$X,.,$ $x)\in \mathcal{I}(s_{0})$ and $(1-x_{1},$ $x_{2},$

$\ldots,$
$x_{n})\in S$},

and

$S_{1}’=$ { $(x_{1},$ $x2,$ $\ldots,$
$xn)\in V(Q_{n})|(x_{1},$ $x_{2},$ $\ldots,$

$X_{n})\in \mathcal{I}(S_{1})$ and $(1-x_{1},$ $X2,$ $\ldots,$
$x_{n})\in S$},

by definition, we have either $|S_{0}|=k_{0}$ and $|\mathcal{I}(S_{0})|=k_{1}=|S_{1}|$ or $|S_{1}|=k_{0}$ and $|\mathcal{I}(S_{1})|=$

$k_{1}=|S_{0}|$ . First, we assume that the former holds. By induction hypothesis, we have the
fact that $\mathrm{c}\mathrm{d}\mathrm{r}(s\mathrm{o})$ , the set of $(n-1)$-dimensional vectors obtained by removing the first
components from all of the vectors in $S_{0}$ , is congruent with $A_{n-1}(k_{0})$ , that is, there is a
vector $a=(a_{2}, a_{3}, \ldots, a_{n})\in\{0,1\}^{n-1}$ such that $A_{n-1}(k_{0})=\mathrm{c}\mathrm{d}\mathrm{r}(s\mathrm{o})\oplus a=\{(x_{2}\oplus a_{2},$ $x_{3}\oplus$

$a_{3},$ $\ldots,$
$x_{n}\oplus a_{n})|(x_{23\cdot\cdot n}, X,., x)\in \mathrm{c}\mathrm{d}\mathrm{r}(s\mathrm{o})\}$. Let $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}(\mathrm{o}, a)$ denote $(0, a_{2}, a_{3}, \ldots, a_{n})$ .

Since $A_{n-1}(k_{0})$ consists of all the $(n-1)$-dimensional 0/1-vectors that have at most $m$

l’s, and $\mathcal{I}(A_{n-1}(k_{0)})$ consists of all the $(n-1)$-dimensional 0/1-vectors that have at most
$m-1$ l’s, it follows that $S\oplus \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}(\mathrm{o}, a)$ consists all of the $n$-dimensional 0/1-vectors that
have at most $m$ l’s, hence $S\oplus \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}(\mathrm{o}, a)$ is $A_{n}(k)$ .

If both $|S_{1}|=k_{0}$ and $|\mathcal{I}(S_{1})|=k_{1}=|S_{0}|$ hold, then we can show similarly that the
congruent transformation $xrightarrow x\oplus \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}(1, a)$ converts $S$ to $A_{n}(k)$ .
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5 Remarks
We conjecture that, if a partition of $V(Q_{n})$ into two parts minimizes the vertex-cost and
the sizes of the two parts are both greater than $n$ , then one of the two parts is congruent to
a unique subset of $V(Q_{n})$ that consists of consecutive vertices from the origin $(0,0, \ldots , 0)$

in squashed order. Hence, the partition can be obtained by cutting $Q_{n}$ with exact one
hyperplane.

In the case where a hypercube is cut with a hyperplane, if the direction of the hyper-
plane is far away from the ones in Theorem 6, then both of the vertex-cost and edge-cost
are hardly minimized. However, there might be another type of cost different from both
vertex-cost and edge-cost that is minimized by cutting a hypercube with such a hyper-
plane.

There is a recent piece of research dealing with a cut of a hypercube with a hyperplane,
which includes estimation of volume of a fragment obtained by such a cut, though it does
not relate directly to the results of this $\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}[\mathrm{s}\mathrm{S}97]$ .
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Correction of an Error in RIMS Kokyuroku 1166
I would appreciate it if you could correct the error at lines 6–7 in Page 111 as follows:

. . . The vertex-set of $Q_{n}$ is {0, $1\}^{n}$ , and the edge-set

$\{((X_{1}, X_{2}, \ldots, xn), (y1, y_{2\cdot.y},.,n))|\sum_{i=1}^{n}|xi-y_{i}|=1\}$ .

Let $x=(x_{1,2,\ldots,n}Xx)$ be a vertex of $Q_{n}$ . $\ldots$
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