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Iteration Lemmata for Normed Semirings

Manfred Kudlek
Fachbereich Informatik, Universitdt Hamburg
email : kudlek@informatik.uni-hamburg.de

Abstract

In this article abstract iteration lemmata for algebraic, linear and rational lan-
guages defined by least fixed point solutions of corresponding systems of equations
are presented. For this a norm on the underlying semiring has to be defined. A
preliminary version was given in [2], an application on process algebras in [3].

Let M = (A,o0,1) be a monoid with binary operation o : A x A — A and unit element
l,ie. loa=aol=o.

M will be written instead of A, and sometimes let the operation o return ( finite )
subsets of M, i.e. 0o : M x M — P(M) where P(M) is the powerset of M. :

Extend o to an associative binary operation o : P(M) x P(M) — P(M), being
distributive with union U ( Ao(BUC) = (AoB)U(AoC') and (AUB)oC = (AoB)U(BoC) ),
with unit element {1} ({1}0oA = Ao{1} = A), and zero element § (Po A= Aol =10).

Then § = (P(M),U,0,0,{1}) is an w-complete semiring, i.e. if A; C A;4q for 0 < i
then B o ;>0 Ai = Uixo(B o Ai) and (U0 4i) © B = U;>o(Ai 0 B).

Define also A% = {1}, A = A, A1 = Ao 4k A° = Uk>o A*.

Let X = {X1,...,X,} be a set of variables such that ¥ N M = 0.

A monomial over S with variables in X is a finite string of the form : Ajo0Ag0...0A4;,
where A; € X or A; C M, |4;| < o0,i = 1,...,k. Without loss of generality, 4; = {a;}
with a; € M suffices. The o;; (or {a;;} ) will be called constants. A polynomial p(X)
over § is a finite union of monomials where X = (Xy,---, X,).

In the following the symbol O will be used to denote finite products with operation

OAi:Alo...oAm
=1

and the symbol |J to denote finite unions :

UA,':A1U---UAn.

=1 .

A system of equations over § is a finite set of equations :



£ :={X; =pi(X)|i=1,...,n}, where p;(X) are polynomials. This will also be
denoted by X = p(X).

The solution of £ is an n-tuple L = (L1,...,L,) € P(M)" of subsets of M, with
L; = pi(Ly,. .., Ly) and the n-tuple is minimal with this property, i.e. if L' = (L},..., L},)
is another n-tuple satisfying £, then L < L' ( where the order is defined componentwise
with respect to inclusion, i.e. A= (A1, -+, An) < (B1,---,Ba)=B & VL, : A, C Bi).

It follows from the theory of semirings that any system of equations over § has a
unique solution, and this is the least fixed point starting with

XO=(xO ... x)=(0,---,0)=0, and X)) = p(x¥)

Then the following fact holds : X® < X(+1) for 0 < ¢.

This is seen by induction and the property of the polynomial with respect to inclusion,
as 0 < X@ and X®) = p(X®) < p(X(+) = x(¢+2),

For the theory of semirings see [1, 4].

A general system of equations is called algebraic. It is called linear if all monomials are
of the form Ao X o B or A, and rationalif they are either of the form X o A or A, or of the
form AoX or A, with A C M and B C M. Corresponding families of languages ( solutions
of such systems of equations ) are denoted by ALG(0), LIN (o), and RAT (o). In the case

o is commutative then all families are identical : ALG(o) = LIN (o) = RAT (o).

Note that the algebraic case corresponds to context-free languages if o is usual cate-
nation. ‘

Grammars

~ Interpreting an equation X; = p;(X) as a set of rewriting productions X; — m,;; with
m;; € M(X;) where M(X;) denotes the set of monomials of p;(X), reqular, linear, and
context-free grammars G; = (X,C, X;, P) using the operation o, can be defined. Here C
stands for the set of all constants in the system of equations, and P for all productions
defined as above. As the productions are contezt-free, ( terminal ) derivation trees can
also be defined. Note that the interior nodes of trees are labelled by variables, and the
leafs by constants from C. :

Normal Forms

In the following lemma forests of terminal trees are constxjucfed,to represent approxi-
mations of the least fixed point, and it is shown that the sets of terminal derivation trees
with respect to o are equivalent with the latter.

Lemma 1 : ( Approzimation of the least fized point )

Terminal trees for the approximation of the least fixed point and terminal derivation

trees are equivalent.
Proof:

X0 =9, xt+) = p(x0)

Thus ot
xp);u@xguumm
J g
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in particular _
xP =0, X = J{ai}
e

Construct forests 7 of terminal trees as follows :
T consists of all trees with roots Xi(l) and children ( only leafs ) {a;;} (1 <4< n).
T(+1) is constructed from trees in 7(1) as the set of trees with roots Xz-(tﬂ) and their

children either X.(t)

i;& being roots of trees from 7(® or {ay;}.

Thus the set of frontiers of leafs of all trees" in 7(® with root Xi(t) is just the approxi-
mation Xi(t) .

On the other hand, any terminal derivation tree for X is contained in 7. For this,
interprete a deepest non-terminal vertex (i.e. with greatest distance from the root ) as

X J(l) for some j, and the root as X}Hl) for some 7. Then all non-terminal vertices get
some step number s with 1 < s < ¢+ 1. ' :
O

Lemma 2 :

Any linear system of equations can be transformed, with additional variables, into
another one where all monomials are of the form X oa,ao X, or o, and the new system
has identical minimal solutions in the old variables. ,

Proof : Consider any monomial oo X o 3. Replace it by aoY, and add a new equation
Y = X o . Then it is obvious that the new system has identical solutions in the old
variables. . ‘

' O

In the following it will be shown that any algebraic system of equations can be trans-
formed, with additional variables, into a system of equations where all monomials have
the form X o Y.or {a}, and the new system has identical minimal solutions for the old
variables. To prove this some lemmata have to be shown first. To this end, the following
is to be assumed about w-complete semirings :

Postulate A :

Let § = (P(M),0,1,U,0) be an w-complete semiring where M is a monoid. S has
property (A),if 1€ AoB& (L€ AA1E B). ' L

This property states some kind of nondivisibility of the unit.

Lemma 3 :

If (A) holds then
k k
].EOAi = .Vl;leAi
=1 =
Proof : < is trivial. ‘ ‘
=:VE, 1€ A implies 1€ 4, AVE,:1 € A; by property (A), and then induction.
O

For each variable X € X in an algebraic system of equations let M (X) denote the set
of monomials of X,ie. X = Umem(x)-



Lemma 4 : ( Separation of variables and constants )

For any algebraic system of equations there exists another one, possibly with additional
variables, having the same ( partial ) solution in the original variables, for which the
following property holds :

r(3) 5(15)
if X; = (O m;; then each monomial is either of the form (O Xijk or {ai;} (aconstant ).
j=1 k=1
s(ig)

Proof : If m;; is not of that form and not a constant then m;; = O Ak with Ak
either a variable or a constant §;;;. Replace each constant Bijk in it Ii)_yl a new variable
Yijk, and add a new equation Yj;; = {Bix}-

Trivially, the new system of equations has the same solution in the original variables.
’ O

Lemma 5 : ( Removal of {1} )

For each algebraic system of equations there exists another one with the same set of
variables, with no monomial being 1 and with solutions L; — {1}, if L; are the solutions
of the old system.

Proof : ‘

Let ) be a set of variables and F () the set of all ( formal ) terms on Y with operation
o. Define inductively S

M ={Xex|1eMX)}, Vipr=ViU{X € X|Ime F(¥) :m € M(X)}

Note that all monomials m consist only of variables.

Trivially V; C Yit1, and therefore there exists k with Yy = Vi =V forall 0 < j
since X is finite.

The following fact holds :

{1}1Cc X & Xe).

«<)If X € Ythen1€ X isseen by induction. Trivially, if X € V; then 1 € M(X) and
therefore 1 € X. Assume 1 € X for all X € Y, for 1 < j. If X € Y;41 then by definition
there exists a monomial m € F(Y;) such that m € M(X). Therefore 1 € X.

=) Let X = X;. 1 € X; implies {1} C Xi(t) for some ¢t > 1. Let ¢t be minimal, i.e.
1¢ X? for s <t. Ift =1 then 1 € M(X;) and therefore X; € V1 C V.

Let t > 1. If 1 € M(X;) then again X; € Jy C V. By assumption for ¢t 1 ¢ M(X;).
Then {1} C Yl(t_l) o---o Y™V = m; € M(X;). Property (A) implies {1} C Yj(t_l)
for 1 < j < r. Put Yj into the set Z if 1 € M(Y}), and repeat the procedure for all
remaining Yj(t—l) with 1 ¢ M(Y;). The procedure must terminate for some Yk(l) for which
1 € M(Yy), yielding a set of variables Z with 1 € M(Y)for Y € Z. Therefore Z C V. By
the construction there exists an m € M(X;) with m € F(Z) C F(Y). Obviously, X; € V.

Now, construct a new system of equations £ in which in all monomials m;;, possibly
some variables Y; € V are deleted, such that the new monomials m{; # {1}.
Then the system £ has the solutions L; — {1}.

Lemma 6 : , .
For each algebraic system of equations there exists another one with additional vari-
ables X! for each old X; such that the monomials in p{(X, X') are either of the form {1}

134
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or don’t contain X} where pi(X, X’) means pi(X,X’). The solutions of the new system
for the new variables X are L! = L;.

Proof :

By Lemma 5 let £’ be a system of equations with L} = L; — {1}.

Construct a new system £” in which for each variable X; a new one X/ is defined. Let
pi(X, X') = pi(X) for X; and define pi(X, X') = {1} +p:i(X) if 1 € L;, and in case 1 & L;
pi(X, X') = pi(X). Then the solutions for the new variables are L. = L;.

O

Lemma 7 : ( Removel of monomials of the form Y)

For each algebraic system of equations there exists another one with the same variables
such that no monomial is of the form Y and with solution identical to the old one.

Proof :

Assume that the system is already in the form stated in lemmata 4, 5, and 6.

Construct inductively sets of variables for X € X :

Yi(X) ={X}

Visrn(X)=Y;(X)u{Y e X |[3Z € Yj(X):Y € M(X)}

Since X is finite there exists a k with Vi (X) = V4 ;(X) = Y(X) for j > 0.

Obviously, the following fact holds : ¥ C X & Y € Y(X).

Now construct the new system by taking all monomials which are constants and con-
sider all monomials m =Y, 0---0Y, € M(X) with k£ > 2. Construct the new monomials
m'=Z;o0---0Z € M(Y) with X € Y(Y) and Z; € Y(Y;).

Then L = L;.

Lemma 8 : ( Normal form )

For each algebraic system there exists another one with additional variables such that
either all monomials are 1 € M(X) ( then no other monomial contains X ), or Y o Z, or
{a} with a # 1 and the solutions for the old variables are identical.

Proof :

Assume that the system of equations has the form stated in the previous lemmata.

Consider an arbitrary monomial m = Y; o---0Yy € M(X) with £ > 2. Replace it by
Y1072y € M(X) and the new equations Z; = Y023, -+, Zk_g =Y;_10Y}.

Then the new system of equations obviously has the same solutions in the old variables.

0O

In the following a notion of norm is introduced to state the abstract iteration lemmata.

Define a norm in M = (A,o0,1) to be a function ||| A — Ny ( where Ny,
denotes the set of all natural numbers including 0 and the symbol of infinity co ) with the
following properties: ||z||,||lyll < llz oyl < |||l + |lyll, ||1]l =0 and for =z # 1 # y let
the first inequality (<) be strict ( < ). '

In the case that o returns a finite subset the following properties should hold :
lell, Iyl < mind||z|| | 2 € 2 oy} < maz{liz]l | 2 € 2oy} < [l2l| + Ilyll, and for = #1#y
let the first inequality (<) be strict ( < ).

Define also a norm of subsets of M as a function u : P(M)— Ny, as follows :
u(A) = sup{||z|| | = € A}. It is easy to check that x enjoys the following properties:

u(®0) = u({1}) = 0, u(AoB) < u(A)+u(B), if AZ0#B then u(A),u(B) < u(AoB),



and u(AU B) = maz{u(A),u(B)}. Moreover, it is obvious that A C B = u(A) < u(B)
and p(A°) = oo. ’

Lemmata 1-8 allow for proving the following Theorems 1-3, known - in classical formal
language theory - as iteration or pumping lemmata. It should, however, be noted that
here they concern arbitrary monoids, not just a free ( with respect to catenation ) monoid
of finite words over an alphabet. Nonetheless, proofs of these theorems with application
of Lemmata 1-8 are analogous to those in the classical case.

Theorem 1 : Let L € RAT (o) with L C M. Then there exists n(L) > 0 such that,

for any w € L with p({w}) > n(L), there exist z,,z3,z3 € M such that:
()  we{m}o{zz}o{zs}
(i) 0 <p({z1}o{es}) < n(L)

(iii) {z1} o {z2}° 0 {23} C L
O

Theorem 2 : Let L € LIN(o) with L C M. Then there exists n(L) > 0 such that,
for any w € L with p({w}) > n(L), there exist z1,z3, 23, 24,25 € M such that :
()  we{ei}o{wz}o{es}o{wa}o{as}
(i) 0 <p({z1} o{zs} o {24} o {zs}) < n(L)
(i) 0 < p({z2}o{zd})
(iv)  Vk20:{z}o{e}* o{zs}o{za}fo{es} C L
. O

Theorem 3 : Let L € ALG(o) with L C M. Then there exists n(L) > 0 such that,
for any w € L with p({w}) > n(L), there exist z1,z,, 23, 24,25 € M such that :

(1) w € {z1}o{zy}o{z3}o{xy}o{zs}.

(i) 0< p({es} o {zs}o{zs}) < n(L).

(ii) 0 < p({zz}o{z4})

(iv) k> 0:{z1}o{z}* o {as} o {za}* o {zs) C L.

In the well known proofs of the iteration lemmata let

m = min{u(a) |a € C} , M = maz{u(a) | o € C}.

In the rational and linear case in normal forms it follows that for an expression A of a
derivation tree of depth d the following fact holds : m -d < p(A) < M -d, such that for
the iteration constant N(L) = M - |X] can be chosen.

In the algebraic case in normal form for an expression A of a derivation tree follows
m-d < p(A) < M -2¥1=1 such that for the iteration constant N(L) = M - 21*I=1 can be
taken. o

- The lemmata themselves then are shown in the same way as for the classical word
languages with catenation where m = M = 1.

For this note that if € L with u(z) = u({z}) > s then there must exist an expression

A of a derivation with £ € A and p(A4) > s.
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