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1 Introduction

This paper is a summary of [Us3].

D. B. A. Epstein and R. C. Penner gave in [EP] a method for decomposing
any noncompact complete hyperbolic manifold of finite volume with weight at
each cusp into ideal polyhedra. This decomposition is called the Fuclidean
decomposition, and defined via a convez hull construction in Lorentzian space.
Each vertex of the hull is in the positive light cone and corresponds to a lift
of a cusp, and each face of the hull corresponds to an ideal polyhedron in the

*The author is partially supported by JSPS Research Fellowships for Young Scientists and
Grand-in-Aid for Scientific Research, the Ministry of Education, Science and Culture.
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manifold. Especially if all weights are equal, then the decomposition is called
the canonical decomposition.

For a simplex in Lorentzian space whose vertices are in the positive light
cone, J. R. Weeks defined in [Wel] the tilt relative to each of its faces. It gives
an efficient tool for deciding whether or not the dihedral angle between two
simplices holding a face in common is convex. So it becomes a useful tool to
determine whether or not a given decomposition of the manifold is obtained from
the convex hull. He also provided an efficient formula, called the tilt formula,
to obtain tilts from intrinsic geometry of the simplex when its dimension is two
or three. Using this formula, he made the hyperbolic structures computation
program “SnapPea” (cf. [We2]). Then M. Sakuma and J. R. Weeks generalized
the tilt formula to general dimensions in [SW] .

S. Kojima gave in [Kol, Ko2] a method for decomposing any complete hypel—
bolic manifold of finite volume with non-empty totally geodesic boundary into
partially truncated polyhedra. In many cases each polyhedron is a partially
truncated simplex. Since such a simplex is lifted to a simplex in Lorentzian
space whose vertices may not be in the positive light cone, it is meaningful to
generalize the concept of the tilt and to establish the tilt formula for the gen-
eralized tilt. The main purpose of the paper is to do it (see Theorem 4.4 and
Corollary 4.5).

The author would like to thank Professor Katsuo Kawakubo for his encour-
agement. The author would also like to expresses his sincere gratitude to Profes-
sor Makoto Sakuma and Professor Jeffrey R. Weeks for their helpful comments
and advice.

2 Lorentzian space and hyperbolic geometry

2.1 Basic facts on Lorentzian space model

The n + 1-dimensional Lorentzian space (or simply Lorentzian n+ 1-space) EL'™
is the real vector space R™t! of dimension n 4 1 with the Lorentzian inner
product (x,y) := —xoyo + T1Y1 + -+ + Tp yn, where * = (zo,21,...,Zn)
and ¥y = (yo,¥1,---,Yn). Throughout this paper, we assume n > 2.
The Lorentzian norm of = in EY™ is defined to be the complex number

(x,z). If the Lorentzian norm of x is zero (resp. positive, imaginary),
then x is said to be light-like (resp. space-like, time-like). The coordinate
zo of Eb™ is called the height. Now we define six connected subsets in
E!™ as follows: the set of time-like vectors with positive height is T :=
{z € EM|(z,x) <0 and zo > 0}, the set of time-like vectors with negative
height is T~ := {x € EM | (z,z) < 0 and zo < 0 }, the set of light-like vectors
is L:={x e E"|(z,x) =0}, the set of light-like vectors with positive height
is Lt :={xz e EM" | (z,x) =0 and =g > 0} (C L), the set of light-like vectors
with negative height is L~ = {z € EM"|(z,z) =0 and zo <0} (C L), and



the set of space-like vectors is S := {x € E'™ | (z,z) > 0}. Then E'™ is dis-
jointly divided as follows: B = T+ T~ UL* U {0} UL~ US, where o is the
origin (0,0,...,0) of EL'™ and - LU - means the disjoint union of sets. We call
T+ the future cone, T~ the past cone, L the light cone, Lt the positive light
cone, L™ the negative light cone, and S the side cone. For any z € EL™ with
(z,x) # 0, we denote by n (x) its normalized vector, that is, n (x) := L

Let Hf := {x € E'"™|(z,2) = —1 and z > 0} be the upper sheet of the
(standard) hyperboloid of two sheets. The restriction of the quadratic form
induced by (-,-) on Eb™ to the tangent space of HY is positive definite and
gives a Riemannian metric on H; . The space obtained from H7 equipped with
the metric above is called the hyperboloid model of the n-dimensional hyperbolic
space, and we denote it by H". If « and y are points in'H;f and d denotes the
hyperbolic distance between = and y, then the following relation holds (see [Na,
p- 45], [Ra, (3.2.2)] or [Th, Proposition 2.4.5(a)]): :

(z,y) = — coshd. | (21)

A ray in L* started from the origin o corresponds to a point in the ideal bound-
ary of H™. The set of such rays forms the sphere at infinity, and we denote it by
S%;!. Then each ray in Lt becomes a point at infinity of H". The (standard)
hyperboloid of one sheet Hg is defined to be Hg := {x € EL" I (x,x)=1}.

Let us denote by P the radial projection from E1:" — { x € Ebn l 9 =0 } to
an affine hyperplane P} := {z € E'™ |2y = 1} along the ray from the origin
o. The projection P is a homeomorphism on H” to the n-dimensional open
unit ball B™ in P} centered at the origin 7 := (1,0,0,...,0) of P}, which
gives the projective model of H™. The affine hyperplane P} contains not only
B™ and its set theoretic boundary 6B™ in P7, which is canonically identified
with S71) but also the outside of the compactified projective model B™ :=
B" UOB™ ~ H™ U S 1. In this identification, the points near the intersection
Sn{xzeE"|zy=0} are mapped to an end of P}. So we can naturally
extend P to the mapping from E™ — {0} to the n-dimensional real projective
space P" := PT UPL, where P7 is the set of lines in the affine hyperplane
{z € E"™|zo =0} through o. But we use the notation P for the mapping
obtained as above to save letters since there would be no confusion. We denote
by Ext B™ the exterior of B” in P".

We call an affine hyperplane in E»™ through the origin a linear hyperplane.
A vector subspace of E1'" is said to be time-like if it has a time-like vector, space-
like if every nonzero vector in it is space-like, or light-like otherwise. Suppose
P is a time-like linear hyperplane, and let R be a half-space in E»'"™ bounded
by P. Then we can associate a unique vector w € Hg so that (w,q) < 0 for
any q € R. This establishes a well-known duality between points on' Hg and
half-spaces in E1'™ bounded by time-like linear hyperplanes. Now we give an
generalization of this duality. For an arbitrary vector u in E!'™, we define a
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half-space Ry, and a hyperplane Py, in Eb™ as follows:

-1
Ry = {a:EEl’” (w,u)gﬂl’—’%—)#},
Py = {mEEl’" (a:,u)z————<u’u2>_1}=6Ru.

We denote by I'y, (resp. Ily) the intersection of Ry (resp. Py) and Hf. We
call u a normal vector to Py (or Iy).

By the definition, a hyperplane Py is linear if and only if * € Hg. Then
Iz is a geodesic hyperplane in H™. Let y be a point in H", and we denote by
d the signed distance between Il and y, that is, the hyperbolic distance (in
the usual sense) of IIg and y with signature positive (resp. negative) if y € I'g
(resp. y & T'g), that is, if (z,y) < O (resp. (x,y) > 0). Then there is a
following well-known relationship between (z,y ) and d (see, for example, [Ra,
Theorem 3.2.12]):

(x,y) = —sinhd. (2.2)

For two different geodesic hyperplanes in H", the following theorem is a
well-known one:

Theorem 2.1 (see [Ra, Theorem 3.2.6, 3.2.7 and 3.2.9]) Let x and y be
two points in Hg with & # +y, and we denote by N the vector subspace of EL"
spanned by x and y.

(1) Hx,y)| <1 <= N is space-like
: <= Iz and Ily intersect in H%L.
(2) {z,y)| >1 <= N is time-like : ‘
<= IIg and Iy are disjoint, and N N Hr_,f
18 a unique common orthogonal
geodesic line to . and Ily.

N is light-like
Pz N Py is light-like. So lg and Ily
meet at infinity. a

(3) (@, y) =1

11

For two geodesic hyperplanes IIg and Ily in H" (so z, y € Hy), we call Iz
and Ily are ultraparallel if the condition of Theorem 2.1(2) holds, and parallel if
the condition of Theorem 2.1(3) holds. Next we suppose IIx and Ily intersect,
that is, the condition of Theorem 2.1(1) holds. Then we have the following
relation (see [Th, Proposition 2.4.5(c)] and [SW, Lemma 2.7}):

(x,y) = — cosb, (2.3)
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where § is the dihedral angle between IIx and Hy which is measured in I'gy NT'y. -

We note that this relation holds even if g and Ily are parallel. In this case
we regard 6 as 0.

For an arbitrary point u in Hg, Py N P™ becomes a hypelplane in P,
moreover Py, intersects B™. Since P (u) is a point in Ext B”, the cone consisting
of lines through P (u) and a point in Py N OB™ is tangent to 0B™. We call
Py N P™ the polar hyperplane of P (u) in P™, and P (u) the pole of Py NP™
(see, for example, [Ke, p. 544]). For an arbitrary point v in Ext B", we denote

by Q (v) its polar hyperplane and by ¥. ('v) the hyperplane in B™ with pole v,
ie, ¥(v):=Q(v)NB"

2.2 What is Ty?

In this subsection we classify Ilq, with respect to the position of u. We first
note that, if u is the origin of E}™, then Py, is an empty set, so is Iy,.

Case 1. Suppose u is a time-like vector, ie., u € {x € E'|(z,z) < 0}.
Then, since — (u,u) > 0, we can rewute the definition of Py as follows:

<a: _u >: (u,u) —1 }
\ V= (wu) 2y~ (u,u) |

Now we can easily check that the right side of the definition is less than —1.
So, for Iy, being non-empty, the height of w must be positive. Then, by
equation (2.1), Iy, is the set of points in the hyperbolic space each of which
is |log (— (u,w))|/2 away from n (u) = u/+/— (u,u), which means that
Iy, is the sphere of radius |log (— (u,w))|/2 with center n (u). We here
note that Il = {u} if and only if (u,u) = — 1.

Py = {LU c E!"

Case 2. Suppose u is a space-like vector, i.e., u € S ={x € E'" | (z,z) > 0}.
In this case we can rewrite the definition of Py, as follows:

<a: u >:(u,u)~1}'
"V(u,u) 2/ (u,u)

By equation (2.2), Ily, is the set of points in the hyperbolic space each
of which is |log (u,u )|/ 2 away from the geodesic hyperplane II, (). We
call such a hypersurface Iy, an equidistant hypersurface, and II,,) the
azial hyperplane of Iy (cf. [Fe, p. 39]). We here note that Il is geodesic
if and only if u € Hg = {x e E'" | (z,2z) = 1}.

Pu = {iB € El’n

Case 3. Suppose u is a light-like vector, i.e., u € L = {a: e ElLn l (z,z)=0 }
In this case we can rewrite the definition of Py, as follows:

1
Py = {:c ceEM | ({z,u) = —5} .




90

Since the right side of the definition is negative, for Ily, being non-empty,
the height of w must be positive. Then the set Iy, is called a horosphere
whose center is the ray through w. '

Summarizing previous discussions, we obtain the following proposition:

Proposition 2.2 The correspondences between points in EL™ and geometric
behaviors of Iy are as follows: '

u ('U,,’U.> Ug Hu————PuﬂH;:
T+ <0 0 sphere
(H}) (=-1) ~ (point)
Lt =0 >0 horosphere
S >0 equidistant hypersurface
(Hg) (=1) N (geodesic hyperplane)
otherwise, ie., u € {o} UT~ UL~ 0

2.3 Widths

We next define the width of a point in T7 U Lt S, and observe its relationship
to the Lorentzian norm.

Definition 2.3 Let u be a point in Tt U LT U S. Then the width, say 6y, is
defined as follows: '

(1) If w € T, then dy is the signed radius of Iy, where the sign is defined
to be positive (resp. negative) if [(u,u)| <1 (resp. |(u,u)| > 1).

(2) If u € S, then dq is the signed distance between Iy and Il (¢, where
the sign is defined to be positive (resp. negative) if [(u,u)| < 1 (resp.
[(w,u)] > 1).

(3) Ifu € LT, then &y, := (—log (u,u))/ 2, where (-,-) means the Euclidean
inner product, that is, (u,w) = u2 +uf+ - +u2 if u = (g, uy,...,Un).

The discussion in previous subsection implies the following proposition:

Proposition 2.4 Suppose u € TTULTUS. Then the following relation holds:

1
—§log|(u,u)l if weTtUusS,
5u: ) g
1
—-ilog(u,u) if uwelt.



3 Definition of a tilt

“Iilts” are defined on “faces” of “weighted” n-simplices in the projective model
B™, and a “weighted” n-simplex is a “generalized” n-simplex with weights at
each vertex. So in this section we first define generalized n-simplices in B",
secondly define weighted n-simplices, and finally define tilts.

3.1 Generalized n-simplices

The projective model B" has the advantage that it enable us to describe poly-
hedra in H™ in terms of Euclidean terminology. For example, we can regard an
ideal polyhedron in H" as an Euclidean polyhedron in P7 whose vertices lie in
OB™. Using this advantage, in this subsection we define generalized n-simplices

- in B™. :

Let V' = {vg,v1,...,v,} be a set of independent points in P", and let
Vin :={ve Vlveﬁ} and Vo = {veV|veExt§;ﬁ} =V —Vi,. With-
out loss of generality, we may assume V., = {vo,vi,..., v} and Vi, =
{Vkt1,Viro,...,v,} for some k € {~1,0,1,...,n}, by changing indices if nec-
essary. This notation means that Vo, = @ and Vi, = V when k = — 1, and that
Vex =V and Vi, = 0 when k = n. Now we suppose V satisfies the following two
conditions:

Condition 1. If Vex has more than one point, then for arbitrary different
points v; and v; in Vex hyperplanes ¥ (v;) and ¥ (v;) with poles v; and v
respectively do not intersect in B™.

Condition 2. The set Vi, is wholly contained in one connected component
of BT — U;_o © (vs). -

We note that, when k = — 1, Condition 2 means that V ¢ B".

For each point v; in Ve, there is a unique point v; in Hg such that P (v}) =
v; and Vi, C Rv;,_. Let |v6v’1---v;c'vk+1vk+2~--vn| be the affine simplex in
EL™ with vertex set {v0, v, o, Uy Vi1, Viao, .- ,Un}. Since the points in V
are independent in P™, vectors {vj, v}, ... ) Uks Vk+1, Vk42, - - -, Un} are linearly
independent in E", namely the hyperplane through n + 1-points v}, vi,...,
Vi Uk+41l, Uk42,-.., Uy does not contain the origin o. Thus we can define
P (Jvov) - - i Vk4+1Vk+2 - - Un]), an n-simplex in P™ with vertex set V, and
denote it by |vov;---v,|. We note that, if V,, = 0, |vovy - - - vg,| is just the
n-dimensional affine simplex in P ~ R™ with vertex set V.

Definition 3.1 Under the assumptions stated above, the generalized n-simplex
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Ay in B™ with vertez set V is defined as follows:

B"™ N |vovy - - - Uy if VcBr,

k
Av = B" N |vovy - - v,| N ﬂ Ry, if VN ExtB" #0 (see Figure 1).
i=0 ‘

0 (vo)

Figure 1: An example of a generalized 2-simplex in B?

Each face of Ay is either contained in a face of |[vov; - - v, ] or in ¥ (v;) for
some v; € Vox. We call the former an internal face of Ay, and the later an
external face of Ay (cf. [Kol, Ko2]). For each vertex v; of Ay, we denote by
F; the hyperplane in P™ through n points {vg,v1,...,Vi—1,Vit1,..-,Vn}. If
an internal face of Ay .coincides with F; N Ay for some v; € V, then we call
the face the opposite face of v;, and denote it by ®;. By the definitions of the
notation, we have an injective correspondence from the internal faces of Ay to
the vertex set. We here note that this correspondence may not be surjective
(see Figure 2). We may use the symbol of opposite faces to denote internal
faces without referring to vertices. Let ®; and ®; be internal faces, and F; and
F; their corresponding geodesic hyperplanes in the previous sense. Then we
say that ®; and ®; (with ¢ # j) are parallel (resp. ultraparallel, intersecting) if
P~1(F)NHF and P~ (F;)NH are parallel (resp. ultraparallel, intersecting)
(cf. Theorem 2.1). The dihedral angle between ®; and ®; is defined to be
the dihedral angle between P~ 1! (F;) N Hf and P~ (F;) N Hf measured in
P~!(Ay) N Hf. By Condition 1, we can see that each connected component
of external faces is totally geodesic. We also note that a vertex of Ay as a
polyhedron in hyperbolic space is not a “vertex” of the generalized n-simplex Ay
if it is made from the intersection of an external face and an edge of |vgvy - - - Uy
(see Definition 3.1). ‘



(22)

Figure 2: A generalized 2-simplex with one degenerate internal face

3.2 Weighted n-simplices

We recall that Ay is a generalized n-simplex with vertex set V. At each ver-
tex, we give a real number called weight. Let W be the set of weights of all
vertices. Then we call a triplet (Ay,V, W) a weighted n-simplez in B™. Now
Definition 2.3 imply the following proposition:

Proposition 3.2 (lift proposition) For a weighted n-simplez (Av,V, W) in
the projective model B™, there exists a unique affine n-simplez Ay in E"—{0}
with vertex set V satisfying the following four conditions:

(1) VcTtuLtus;

(2) P (V) =v;

(3) For any w e VN S, we have Ay C Ry NBY

(4) For any u € V, the width 6y, is equal to the weight of P (u). O
We call /_/X.; the lift of the weighted n-simplex (Ay,V, W) in B", V the lift of

the vertex set V, and u the lift of the vertex P (u) € V. We here note that
condition (2) means V is a set of linearly independent vectors in E}". We also

note that P (Z;) does not always coincide with Ay, though P (‘7) =V.
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3.3 Definition of tilts and the tilt proposition

R. C. Penner gave in [Pe, Proposition 2.6(b)] a criterion of convexity of the
lifts of adjacing two (2-dimensional) ideal triangles along a face. J. R. Weeks
independently gave in [Wel, Proposition 3.1] a criterion of convexity when sim-
plices are 2 and 3-dimensional ideal simplices. This criterion is expressed by
using “tilts,” and allow him to make the hyperbolic structures computation
program “SnapPea” (cf. [We2]). He also provided an efficient formula, called
the tilt formula, to obtain tilts from intrinsic geometry of the simplex when its
dimension is two (see [Wel, Theorem 3.2]) and three (see [Wel, Theorem 5.1}).
M. Sakuma and J. R. Weeks generalized the tilt formula to general dimen-
sions in [SW]. The idea of R. C. Penner is translated by M. Néaiténen in [N3,
Lemma 3.3] into the case where simplices are triangles, and by the author in
[Us2, Proposition 3.5(2)] into the case where simplices are truncated triangles
(i.e., orthogonal hexagons). In this subsection, using Weeks’ method, we ob-
tain a criterion of convexity when two weighted n-simplices in B™ are adjacent
along internal faces. Now we start with the definition of the tilt of a weighted
n-simplex in B™ relative to an internal face.

Fix a weighted n-simplex (Ay,V, W) in B", and take an internal face ®; of
Avy. Then there is a unique point m; in Hg such that ®; C Ppy, N B™ and
Ay C Rm, NB™. We define the normal vector p to the lift Z; of (Ay,V,W)

by the condition that (p,z) = —1forall x € Z;

Definition 3.3 Under the assumptions stated above, the tilt t; of (Ay,V,W)
relative to ®; is defined as follows:

t;:=(m;,p) .

Let (Avy,, Vo, Wo) and (Av,, Vi, W) be two weighted n-simplices in B", and
let ®g (resp. ®;) be an internal face of (Ay,, Vo, Wo) (resp. (Av,, Vi, Wi)). Then
we say the that (AV(,,VO,WO) and (Avl,Vl,Wl) are adjacent along ®o and <I>1 if
AVO N AV1 = <I>0 = <I>1, where (I>0 (resp. 3, 1) is the lift of @y (resp. ®;1) in AVO
(resp. 5;1 ). Now we call &y and ®; joint faces. For convenience we additionally
assume that Vo = {vo,v1,...,0,}, Vi = {v1,02,...,0p,Vny1}, and that the
joint faces are opposite faces of vg and v,41. We denote by tog (resp. t;) the
tilt of (Av,, Vo, Wo) (resp. (Av,, Vi, Wh)) relative to ®g (resp. ®1). Then the
following proposition correspondent with [Wel, Proposition 3.1] holds.

Proposition 3.4 (tilt prop051t10n) Under the assumptions stated above, the

dihedral angle formed by AVO and AVI is conver (flat, concave respectively) in
EL™ if and only if to+t1 <0 (=0, > 0 respectively). ad



4 Tilt formulas

As we saw in the previous section, tilts are defined on internal faces of generalized
n-simplices. But when n = 2, internal faces may be degenerate, that is, some of
opposite faces may not exist in B? (see Figure 2). Then we cannot defined the
tilt on the degenerated internal face. But once the dimension is greater than
two, the following proposition guarantees the existance of all internal faces.

Proposition 4.1 Suppose n is greater than or equal to three. Then, for any
weighted n-simplex (Avy,V,W) in B™, the opposite face ®; of an arbitrary
vertex v; € V exists in B".

Proof of Proposition 4.1. All we have to show is that the opposite face ®,
intersects B™ when vg,v1,...,vn—1 € ExtB" and each line l(viv;) in P
through v; and v;, where 0 < i < j < n — 1, touches 6B™. Let w; (resp.
wy) be the tangent point of OB™ and ! (vovy) (resp. I (vov2)). Then w; does
not coincide with ws when n > 3. Since n-dimensional ball B™ is convex, the
line [ (wjws) intersects B®. Thus [ (wiwsy) N B™ is a (non-empty) segment
contained in the opposite face ®,,. This completes the proof. O

4.1 Generalized distances

Previous tilt formulas, for exmaple [SW, Theorem 2.1], suggest that we have
to measure hyperbolic distances between geometric objects defined by weighted
vertices and their opposite faces. But as the vertex vy and its opposite face in
Figure 1, they may intersect. So, to denote our tilt formula, we have to define

a sort of unification of distances and angles, which we call generalized distances
defined below.

Definition 4.2 Let = be a point in Hg, and y an arbitrary point in T U
(Reg N L*) U (RxNS). Then the generalized distance d between = and y is
defined as follows:

Case 1. If y € R NL*, then d is defined to be the signed distance between Iz,
and Ily. : : "

Case 2. If y € T* or y € S with (z,y) < —/(y,y) (that is, Iz and I,
are parallel or ultraparallel), then d := d, — dy, where d,, is the signed
distance between IIx and Il,(,), and Jy is the width of y.

Case 3. If y € S with (02)(=z,y) > —/(y,y), that is, if IIg and II,,(,,
intersect, then d := +/—16 — 4y, where 0 is the dihedral angle between
Uz and I, () measured in I'g N Tpy).
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By the definition of the generalized distance together with Proposition 2.4,
we can obtain the following proposition:

Proposition 4.3 Let © be a point in Hg. For an arbitrary pdz’nt yeTtU
(Re NLT)U (Rg NS), the following equality holds:

(z.y) = ed +ve @
9 y - 2 ]
where v := (y,y), and d is the generalized distance between x and y. O

4.2 The case where the dimension is greater than two

In this subsection we suppose the dimension n is greater than or equal to three.
Fix a weighted n-simplex (Ay,V,W) in B". Then Proposition 4.1 guarantees
that all internal faces of Ay exist in B™, namely we can always define the tilt
t; for each internal face ®;. We denote by V= {uo,u1,...,un} the lift of V,
and we define v; := (u;,u;). Let d; be the generalized distance between m;
and u;, where we recall that m; is the point in Hg such that ®; C Pm, N B"
and Ay C Rm, N B™. Now we define @Q; as follows:

2
Qi = edi +y e~ i
We denote by 0;; the dihedral angle between ®; and ®;, that is, the dihedral
angle between Iy, and llym,; measured in 'y, N I'm;. We note that 6;; = 0
if ®; and ®; are parallel. Then we have the following theorem:

Theorem 4.4 (tilt formula for n > 3) Under the notation defined above, the
tilt of a weighted n-simplex relative to each of its (codimension one) internal
faces may be computed as follows:

to 1 — COoSs 901 — cosbgs -+ — cosbyn Qo
t1 — cosfi¢ 1 — cosbfyy -+ —cosby, . Q1
to _ — cosfyg — cosfyq 1 ce+ —cosbtyy, Q3
tn —cosfp,g —cosf,7 — cosf,y --- 1 Qn

We may say the (n+1) x (n+ 1) matrix on the right side of the formula denoted
above the Gram matriz of the generalized n-simplex Ay (cf. [Vi, p. 39]). The
proof of this theorem is a word-by-word interpretation of that of Theorem 2.1
in [SW].



4.3 The case where the dimension is two

As we saw in Figure 2, some internal faces of a weighted 2-simplex (Ay,V, W)
in B2 may be degenerate. So Theorem 4.4 does not always hold when the
dimension n is two. But under the assumption that all internal faces exist,
an analogue of Theorem 4.4 holds. We here note that Iy, and Iy, may
be ultraparallel for some m;,m; € Hg with ¢ # j (see Figure 1 again). So
we should replace each element —cos6;; of the Gram matrix in the previous
theorem by — coshd; ;, where J;; is the generalized distance between m,; and
m;. '

From now on, we consider the case where some internal faces are de-
generate. For example we assume that only the opposite face of the ver-
tex vy, € V is degenerate (see Figure 2 again). In this case, we put

mo = /U1uUg + /Vouy. Then my is a non-zero vector in L. Now we
can show that two sets {uo,u1,us} and {— Qo mo,— Q1 my,— Q2my} form
two bases of E12 and are dual to each other, where Q, := — (Mg, us )-1 =

— ((uwo,ua) /71 + (ur,us) \/z/_o)—l (# 0). Now using equations (mg, my) =
—Qo ! Vi and (my,mg) = —Q1~ 1 \/Vo, we can easily obtain the following
corollary:
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Corollary 4.5 (tilt formula for n = 2 with one degenerate internal face)

Under the assumptions stated above, the following relation holds:

to _ 1 — cosh (501 - Qo— 1 \/ﬁ 80 0
t1 )~ \ — coshdyg 1 -1 Q: '
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