

Title	Discrepancy of Some Special Sequences (Analytic Number Theory and Related Topics)
Author(s)	Goto, Kazuo; Ohkubo, Yukio
Citation	数理解析研究所講究録 (2000), 1160: 94-101
Issue Date	2000-06
URL	http://hdl.handle.net/2433/64241
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Discrepancy of Some Special Sequences

鳥取大学教育地域科学部 後藤 和雄 (Kazuo Goto) 鹿児島経済大学経済学部 大久保 幸夫 (Yukio Ohkubo)

Abstract

We obtained some results concerned with the discrepancy of the sequence $(\alpha n + \beta \log n)_{n=1}^{\infty}$, $\alpha \notin \mathbb{Q}$, $\beta \neq 0$.

First we give some definitions.

Definition 1. Let (x_n) , $n = 1, 2, \ldots$, be a sequence of \mathbb{R} . Then the discrepancy of (x_n) is defined by

$$D_N(x_n) = \sup_{0 \le a < b \le 1} \left| \frac{1}{N} \sum_{n=1}^N \chi_{[a, b)}(x_n) - (b - a) \right|,$$

where $\chi_{[a, b)}(x)$ is the characteristic function mod 1 of [a, b), that is, $\chi_{[a, b)}(x) = 1$ for $\{x\} = x - [x] \in [a, b)$ and $\chi_{[a, b)}(x) = 0$ otherwise.

Definition 2. An irrational number α is said to be of constant type if there exists a constant c > 0 such that $\|\alpha h\| \ge c/h$ holds for all integers h > 0, where $\|x\| = \min\{\{x\}, 1 - \{x\}\}\}$ for $x \in \mathbb{R}$.

Definition 3. An irrational number α is said to be of type η if η is the infimum of all real numbers τ for which there exists a positive constant $c = c(\tau, \alpha)$ such that $h^{\tau} ||\alpha h|| \geq c$ holds for all positive integers h.

For an integer $s \geq 1$, let $U^s = \{(t_1, \ldots, t_s) \in \mathbb{R}^s : 0 \leq t_i \leq 1 \text{ for } 1 \leq i \leq s\}$ be the s-dimensional unit cube. We set

$$\chi(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if} & \{x_i\} < y_i & (i = 1, \dots, s) \\ 0 & \text{otherwise} \end{cases},$$

for $\mathbf{x} = (x_1, \ldots, x_s) \in \mathbb{R}^s$ and $\mathbf{y} = (y_1, \ldots, y_s) \in U^s$.

Definition 4. For $N \in \mathbb{N}$, the discrepancy of the sequence (\mathbf{x}_n) , $n = 1, 2, \ldots$, in \mathbb{R}^s is defined by

$$D_N(\mathbf{x}_n) = \sup_{\substack{\mathbf{y} \in U^s \\ \mathbf{y} = (y_1, \dots, y_s)}} \left| \frac{1}{N} \sum_{n=1}^N \chi(\mathbf{x}_n, \mathbf{y}) - y_1 \cdots y_s \right|.$$

where $\mathbf{y} = (y_1, \ldots, y_s) \in U^s$.

Let $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$. Suppose that $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Z} .

Definition 5. For a real number η , the vector α is said to be of type η if η is the infimum of all real numbers τ for which there exists a positive constant $c = c(\tau, \alpha)$

such that

$$r(\mathbf{h})^{\tau} \|\mathbf{h} \cdot \boldsymbol{\alpha}\| \geq c$$

holds for all lattice points $\mathbf{h} \neq \mathbf{0}$ in \mathbb{R}^s , where $r(\mathbf{h}) = \prod_{i=1}^s \max\{1, |h_i|\}$, $\mathbf{h} = (h_1, \ldots, h_s)$.

From Minkowski's linear form theorem, we have $\eta \geq 1$.

Definition 6. The vector α is said to be of constant type if there exists a positive constant c such that

$$r(\mathbf{h})\|\mathbf{h}\cdot\boldsymbol{\alpha}\| \geq c$$

holds for all lattice points $h \neq 0$ in $\mathbb{R}^s.$

1 Theorems and Examples

Tichy and Turnwald[4] proved the following:

Theorem 1. For any $\epsilon > 0$

$$D_N(\omega) \ll_{\alpha,\beta} N^{-\frac{1}{\eta+1}+\epsilon},$$

provided α is an irrational number of finite type $\eta \geq 1$.

In 1999, Ohkubo[3] improved Theorem 1 as follows:

Theorem 2. If α is an irrational number of finite type $\eta \geq 1$, then for any $\epsilon > 0$

$$D_N(\omega) \ll_{\beta} N^{-\frac{1}{\eta+1/2}+\epsilon},$$

and also if α is an irrational number of constant type, then

$$D_N(\omega) \ll_{\beta} N^{-\frac{2}{3}} \log N.$$

We found out an another proof of Theorem 2 and an extension to the multidimensional case as follows (see [1]):

Theorem 3. Let ϵ be an arbitrary positive number, $\boldsymbol{\alpha}=(\alpha_1,\ \ldots,\alpha_s)\in\mathbb{R}^s$ and $\boldsymbol{\beta}=(\beta_1,\ \ldots,\beta_s)\in\mathbb{R}^s$ with $\boldsymbol{\beta}\neq \boldsymbol{0}$. If $1,\ \alpha_1,\ \ldots,\alpha_s$ are linearly independent over \mathbb{Z} and $\boldsymbol{\alpha}$ is of finite type η , then we have

$$D_N(n\boldsymbol{\alpha} + (\log n)\boldsymbol{\beta}) \ll_{\boldsymbol{\beta}} N^{-\frac{1}{s(\eta-1)+3/2}+\epsilon}$$

Theorem 4. Let $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ and $\beta = (\beta_1, \ldots, \beta_s) \in \mathbb{R}^s$ with $\beta \neq 0$.

If $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Z} and α is of constant type, then we have

$$D_N(n\boldsymbol{\alpha} + (\log n)\boldsymbol{\beta}) \ll_{\boldsymbol{\beta}} N^{-\frac{2}{3}} (\log N)^s.$$

Recently, we also generalized Theorem 2.

Theorem 5. Let f(x) be twice differentiable for $x \geq 1$. Suppose also that there exists an irrational number α of finite type η such that either

$$f'(x) > \alpha$$
, $f''(x) < 0$ or $f'(x) < \alpha$, $f''(x) > 0$ for $x \ge 1$

and $f'(x) = \alpha + O(|f''(x)|^{1/2})$. Then for any $\epsilon > 0$

$$D_N(f(n)) \ll N^{-\frac{1}{\eta+1/2}+\epsilon}.$$

Proof. Let h be a positive integer. Applying [5, p.74, Lemma 4.7], we get

$$\left| \sum_{n=1}^{N} e^{2\pi i h f(n)} \right| \ll \sum_{A-1/2 < \nu < B+1/2} \left| \int_{1}^{N} e^{2\pi i \{h f(x) - \nu x\}} dx \right| + \log(B - A + 2),$$

where A = hf'(N) and B = hf'(1). We set $g(x) = h\{f(x) - \alpha x\}$. Using integration by parts, we have

$$\begin{split} \int_{1}^{N} e^{2\pi i \{hf(x) - \nu x\}} dx &= \int_{1}^{N} e^{2\pi i \{(h\alpha - \nu)x + g(x)\}} dx = \int_{1}^{N} e^{2\pi i (h\alpha - \nu)x} e^{2\pi i g(x)} dx \\ &= \left[\frac{e^{2\pi i (h\alpha - \nu)x}}{2\pi i (h\alpha - \nu)} e^{2\pi i g(x)} \right]_{1}^{N} - \frac{1}{h\alpha - \nu} \int_{1}^{N} g'(x) e^{2\pi i \{(h\alpha - \nu) + g(x)\}} dx. \end{split}$$

Hence,

$$\int_{1}^{N} e^{2\pi i \{hf(x) - \nu x\}} dx \ll \frac{1}{|h\alpha - \nu|} + \frac{1}{|h\alpha - \nu|} \left| \int_{1}^{N} g'(x) e^{2\pi i \{(h\alpha - \nu)x + g(x)\}} dx \right|.$$

We suppose that

$$f'(x) > \alpha$$
 and $f''(x) < 0$ for $x \ge 1$.

From [6, p.226, Lemma 10.5] and the hypothesis, it follows that

$$\left| \int_1^N g'(x) e^{2\pi i \{(h\alpha - \nu)x + g(x)\}} dx \right| \ll h^{1/2} \max_{1 \le x \le N} \left\{ \frac{f'(x) - \alpha}{|f''(x)|^{1/2}} \right\} + 1 \ll h^{1/2}.$$

Hence we have

$$\left| \sum_{n=1}^{N} e^{2\pi i h f(n)} \right| \ll h^{1/2} \sum_{A-1/2 < \nu < B+1/2} \frac{1}{|h\alpha - \nu|} + \log(B - A + 2)$$

$$\ll h^{1/2} \left\{ \frac{1}{\|h\alpha\|} + \int_{\|h\alpha\|}^{h\{f'(1)-\alpha\}+1/2} \frac{1}{x} dx \right\}$$

$$+ \log[h\{f'(1) - f'(N)\} + 2]$$

$$\ll h^{1/2} \left\{ \frac{1}{\|h\alpha\|} + \log[h\{f'(1) - \alpha\} + 2] \right\}.$$

Applying Erdös-Turán inequality and $\sum_{h=1}^{m} \frac{1}{h^{1/2}||h\alpha||} \ll m^{\eta-1/2+\delta}$ (see [2, p.123, Lemma 3.3]), for any positive integer m, we obtain

$$D_N(f(n)) \ll \frac{1}{m} + \frac{1}{N} \left\{ \sum_{h=1}^m \frac{1}{h^{1/2} ||h\alpha||} + \sum_{h=1}^m \frac{\log[h\{f'(1) - \alpha\} + 2]}{h^{1/2}} \right\}$$
$$\ll \frac{1}{m} + \frac{1}{N} \left(m^{\eta - 1/2 + \delta} + m^{1/2} \log m \right)$$
$$\ll \frac{1}{m} + \frac{1}{N} m^{\eta - 1/2 + \delta},$$

for any $\delta > 0$.

Choosing $m = \left[N^{\frac{1}{\eta+1/2}}\right]$, we have

$$D_N(f(n)) \ll N^{-\frac{1}{\eta+1/2}} + N^{-\frac{1}{\eta+1/2} + \frac{\delta}{\eta+1/2}} \ll N^{-\frac{1}{\eta+1/2} + \epsilon}$$

In the case $f'(x) < \alpha$, f''(x) > 0 for $x \ge 1$, the proof runs along the same lines as above.

Remark 1. The following was shown by van der Corput: If f(x), $x \ge 1$, is differentiable for sufficiently large x and $\lim_{x\to\infty} f'(x) = \alpha(irrational)$, then the sequence (f(n)) is uniformly distributed mod 1 (see [2, p.28, Theorem 3.3 and p.31, Exercises 3.5]). If the function f(x) in Theorem 5 also satisfies the condition $\lim_{x\to\infty} f''(x) = 0$, then $\lim_{x\to\infty} f'(x) = \alpha$. Therefore, Theorem 5 gives a quantitative aspect of van der Corput's result.

Examples. $f(x) = \alpha x + \beta \log \log x$, or $f(x) = \alpha x + \beta \log x$.

Acknowledgement

The authors are deeply indebted to Professor S.Akiyama for his many helpful comments.

References

- [1] K. Goto and Y. Ohkubo, The discrepancy of the sequence $(n\alpha + (\log n)\beta)$, Acta Math. Hungarica, 86(1-2), (2000), 39-47.
- [2] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley and Sons, New York, 1974.
- [3] Y.Ohkubo, Notes on Erdös-Turán inequality, J. Austral. Math. Soc. (Series A),67, (1999), 51-57.
- [4] R.F.Tichy and G.Turnwald, Logarithmic uniform distribution of $(\alpha n + \beta \log n)$, Tsukuba J. Math., **10**, (1986), 351-366.

- [5] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed. (revised by D. R. Heath-Brown), Clarendon Press, Oxford, 1986.
- [6] A. Zygmund, Trigonometric Series Vol.I, Cambridge University Press, 1979.

Kazuo Goto: Faculty of Education and Regional Sciences Tottori University Tottori-shi, 680-0945 Japan e-mail: goto@fed.tottori-u.ac.jp

Yukio Ohkubo: Faculty of Economics Kagoshima Keizai University Shimofukumoto-cho Kagoshima-shi 891-0191 Japan e-mail: ohkubo@eco.kkis.ac.jp