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On the Ground State Energy of the Spin-Boson Model
without Infrared Cutoff |
and the Superradiant Ground State of the
Wigner-Weisskopf Model.

I E 5 (Masao Hirokawa)

Department of Mathematics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

e-mail: hirokawa@math.okayama-u.ac.jp

1 Introduction and Preliminaries

We give new upper bounds for the ground state energy of the spin-boson (SB) model
without infrared cutoff. Using it we argue how an effect by the spin appears in the
ground state energy without infrared cutoff. We first investigate spectral properties of
the Wigner-Weisskopf (WW) model, and apply them to SB model to achieve our purpose.
Then, as extra results of the spectral analysis for WW model, we show two kinds of phase
transition: (i) there exists a phase transition in the expectation of the number of (massive)
photons at the ground state, which occurs from the reverse between the expectations of
the number of photons at the ground and first excited states; and (ii) there exists another
phase transition such that a non-perturbative ground state appears, and its ground state
energy is so low that we cannot conjecture it by using the regular perturbation theory.

We take a Hilbert space of bosons to be

o0

Fo=F (L*(RY)) = P [erL? (RY)] (1.1)

(d € N) the symmetric Fock space over L?(R?) (®7K denotes the n-fold symmetric tensor

product of a Hilbert space K, ®°K = C). In this paper, we set both of & (the Planck
constant divided by 27) and ¢ (the speed of light) one, i.e., i =c=1. ’

Let w : R — [0,00) be a Borel measurable function such that 0 < w(k) < oo for

all k € R® and w(k) # 0 for almost everywhere (a.e.) k € RY with respect to the
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d-dimensional Lebesgue measure. We here assume that

i b)) = 1.2
klenl{dw(k) 0 (1.2)

because we are interested in the case without infrared cutoff. Let @ be the multiplication
operator by the function w, acting in L2(R"). We denote by dI'(w) the second quantization
of & [RS2, §X.7] and set

Hy = dT(0) = /R dkw(k)a(k) a(k),

where a(k) is the operator-valued distribution kernels of the smeared annihilation operator
a(f), so a(k)* is that of creation operator a(f)*:

a(f) = [, dka(k)F(E), (13)
a(f) = [, dka(k) f(k) (14)

for every f € L2(R9) on Fp. Let €l be the Fock vacuum in Fy:
Q:={1,0,0,--} € F. (1.5)

The Segal field operator ¢,(f) (f € L*(RY)) is given by

1 .
¢s(f) = 7 (@(f)" +a(f)). | (1.6)

The inner product (resp. norm) of a Hilbert space K is denoted (-, - )x, complex linear
in the second variable (resp. || - ||c). For each s € R, we define a Hilbert space

M = {f : RY — C, Borel measurable | w*2f € L2(R")}
with inner product (f,g)s := (w*?f,w*/?g)2(r+) and norm
Iflls = W%l 2may, f € M.
We shall assume the following (A.1) to obtain upper bounds for the ground state energy:

(A.1) The function A(k) of k € R satisfies that A € M_; N M,.

We call the following condition the infrared singularity condition (see [Da2, p153],
[AH2])

IMla=o00, (e, Mwg¢ L*(RY)). (1.7)
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Remark 1.1 Recently, Bach, Fréhlich and Sigal showed in [BFS2] that the Pauli-Fierz
model has a ground state even under the infrared singularity condition. Moreover, Arai
and the author proved that if the ground state energy of a Hamiltonian has a condition,
then its ground state exists even under the infrared singularity condition [AH2).

The Hamiltonian of the spin-boson model is defined by

Hyy = ga3®I+I®Hb+\/§aal®¢>s(>\) (1.8)

acting in the Hilbert space
F=C®F=Fek, (1.9)

where 0 < p is a splitting energy which means the gap of the ground and first excited
state energy of uncoupled chiral molecule to a radiation field, @ € R a coupling constant,
and o, 03 the standard Pauli matrices,

(o1 (10
1"\1 0/’ 7 \o -1 )"

For simplicity, we denote the decoupled free Hamiltonian (a = 0) by Hy:

Hy = gag®I+I®Hb (1.10)

H+2 o0
_ 2 Ll
0 H-%

For the above Hgg, we temporally introduce an infrared cutoff v > 0 such that the infrared
reqularity condition

Mw, € L*(RY), v>0, (1.11)

holds, which raise the bottom of the frequency w(k) of bosons (see [AH2]):

wy (k) == w(k) + v, v >0, (1.12)
Hy(v) = dT(@,), (1.13)
Hep(v) = gag © I +1® Hy(v) + V2001 @ ¢ (N), (1.14)
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where v is something like a ‘pad’ of the frequency w(k), namely v means the lower bound
of the frequency which we can observe precisely by an equipment. Of course, we shall
remove ‘v’ later by taking the limit v | 0 such as making the precision better.

For simplicity, we put
Hy:(0) := Hgg. (1.15)

For a linear operator 7' on a Hilbert space, we denote its domain by D(T). It is
well-known that Hgg(v) is self-adjoint on

D(Hy (v)) = D(I1® Hy (v), (1.16)
and bounded from below for all @ € R (1.17)

for every v > 0 by [AH1, Proposition 1.1(i)] since o; is bounded now.
For a self-adjoint operator T bounded from below, we denote by Ey(7") the infimum of
the spectrum o(T") of T

Eo(T) = inf o(T).

In this paper, when T is a Hamiltonian, we call Ey(T") the ground state energy of T even

if T has no ground state.
For Hgg(v) (v > 0) we set

Ess(v) := Eo (Hgs (v)) .

It is well known that for v > 0

2 2

A
N Vo

by easy estimation and the variational principle ( [Ar2, Theorem 2.4] and [Da2, p.161]).

(1.18)

< Es(v) < _ge_m?””‘”"”g —a?
0

So we have for every v > 0

2

A
N

for some G, € [0, 1]. Under a condition we know a concrete expression of G, [Hm2,

Es(v) = —ge—hz”*/wv”%@ e (1.19)

0

Theorems 1.5 and 1.6]. We can prove that

2 2

_ﬁ — a2 S hﬁ]l ESB(V) = ESB(O) < —02
0 v

> (1.20)

A A
Vw Vw

0
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even under the infrared singularity condition (1.7) (see [AH2, Proposition 3.2(iii)]). Under
(1.7) we have the infrared divergence

lm || =) =00 (1.21)
v|0 ||w, 0 ,
appearing in the van Hove model. On the other hand, we have
0<G, <1, v > 0. - (1.22)

Then, the problem of expressing the FEg(0) in the case without infrared cutoff is as
follows: Although lim, o ||\/w,||3G, is apparently infinite (except for the fortunate case
lim, ;o G, = 0) and the term of p is seemingly removed under the limit v | 0, we cannot
believe Esz(0) = —a?||A//wl||3. So, how does the term of u from the effect by the spin
survive in E5(0)? This is what the author would like to consider, so this work is the
sequel to his in [Hm?2].

Moreover, this work is also the first step for another scheme: Considering the result
in [BFS2], there is a possibility that the generalized spin-boson (GSB) model [AH1]
has a ground state even under the infrared singularity condition. Actually, as we showed
in [AH2, §6.2], a model of a quantum harmonic oscillator coupled to a Bose field with
the rotating wave approximation has a ground state, and the Wigner-Weisskopf model
[WW] has also a ground state under certain conditions even if we assume the infrared
singularity condition [AH2, §6.3].By our recent theory in [AH2], we know that if the right
differential E’,(0+) of Ess(v) at v = 0 is less than 1, then we have a ground state of
Hgp in the standard state space F. It may be worth pointing out, in passing, that Spohn
discovered a critical criterion between the existence and absence of a ground state in F
for the spin-boson model [Sp2, Sp3] by a method of the functional integration. Our goal
of the scheme is to characterize the existence and absence of ground states of GSB model
in terms of the ground state energy or correlation functions [AHH, AH2] by methods of
functional analysis.

The estimation (1.18) is not suitable to check whether E. (0+) < 1 or not. Because
(1.18) is obtained by regarding Hgs(v) as the van Hove model Hyy(v) perturbed by
bounded operator: '

Us Hss(v)Uo = Hyy(v) — 501, (1.23)

where

Hyw(v) = I ® Hy(v) + V2a03 ® ds(\) = < Hy(v)
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And, under the infrared singularity condition (1.7), the right differential of the ground
state energy Evu(v) = —a?||A/\/@,||3 (v > 0) of Hyy(v) is infinite [AH2, §6.1], i.e.,
2

= Q.
0

A

E(/H(O+) = w

So, we need another estimation which is not influenced by the van Hove model.

We show in Theorem 2.1 that the term of x influenced by the spin remains, moreover,
the spin may make 1/2 play a role such as the lower bound of frequency (a mass) of
bosons.

2 Ground State Energy of Spin-Boson Model

In this subsection, we give an answer for the first problem above by using the variational
principle. To do it, we have to assume the following (A.2) in addition to (A.1):
Fix arbitrarily é with

0<éd<1/3. (2.1)

(A.2) The splitting energy u and the coupling constant o satisfy

[P, o
dQ/ddk AR 5 < ! 5235 =:7,. (2.3)
Y ()

Theorem 2.1 (without infrared cutoff) Assume (A.1). For the Hamiltonian Hgy of the
spin-boson model without infrared cutoff (i.e., even under the infrared singularity condition
(1.7)), upper bounds and an equality are given as follows:

(a) (upper bound)

(a-1) Esgm)sfnm{_g, 20R(f ’/\)0+(f7wf)o})

feD@) 1+ 712
o 20R(f, No+ (f, who+ ull I

(a-2) Eo(0) < —g +

1€D@) L+I£1ls
(b) (equality) Let po # 0. Then, there exists ¢, o > 0 such that
_H 2 [ g B
ESB<O) = '—“2“ — Cu,al Rd (k) N _'lf (24)
2
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Moreover, assume (A.2) in addition to (A.1). Then,

B AR)P? 2 [A(K)?
— = dk ———— < FE, — k .
2 Y Jre w(k) ~ (0) < —a R4 d w(k) ’ (2:5)
and G, in (1.21) renormalizes the infrared divergence (1.22) in the following sense:
2
1 2 2 2
lim|—|| G, = —z=n 1+—9—(cu,a~1)/ dkm—
2
—ao? | dk MK m } <oco. (2.6)
RE (k) (w (k) + 5)
Remark 2.1 By the equality in Theorem 2.1 (b), we know that
Ess(0) < Eo(Hy). (2.7)

So, considering the diamagnetic inequality by Hiroshima [Hf1, Theorem 5.1], (2.7) means
that there is a difference between the spin-boson model and the Pauli-Fierz model as far
as concerning the ground state energy though the spin-boson model is regarded as an
approzimation of the Pauli-Fierz model in physics.

Since we use Skibsted’s result to make comment on a lower bound, we have to assume
the following (A.3) at present because of the reason coming Proposition 3.2:

(A.3) 2V, AW /0y e L2(RY), where

AR = 5A) + T,

d
= 2.
3] keR (2.8)

considered as a distribution on C$°(R4\ {0}).

Remark 2.2 Assuming (A.3) practically amounts to assuming the infrared regularity
condition, namely not the infrared singularity condition:

M w e L*(RY). (2.9)

Proposition 2.2 Let w(k) = |k|. Assume (A.1), (A.8), (2.2) and (2.9). Then, for all
a € R with :
9 1

< =TT
RERSTINAIE

(2.10)



92

(a) (lower bound)

k 2
Ee(0) > -5 — 202 [ dk -’—)‘(—)l—u (2.11)
2 RS (k) + =
2
(b) Assume (2.3) in addition. Then c,q in Theorem 2.1(b) is given as
Cua € (0, 2). : (2.12)

3 Spectral Properties of Wigner-Weisskopf Model

To prove Theorem 2.1 we use the properties of the Wigner-Weisskopf model [WW,
Dal, HiiS2, AH2]. So, in this section, we describe fundamental properties of the Wigner-
Weisskopf model.

We define a matrix c by

And let

Hb(O) = Hb,
wo(k) := w(k), k € R4 (3.3)

Then, for every o € R and £, v > 0, we define two Hamiltonians HZE(eo, €1; v) of the
Wigner-Weisskopf model by

Hl(eo, €1; V)
= (eoc*c+e1cc) @I+ 1R Hy(v) +a(c*®a(A) +c®a(N)) (3.4)

- (M ),

H; (o, €13 V)
= (erc*c+eocc) T+ TR Hy(v) +a(c"@a (V) +c®a(N) (3.5)

( Hy(v) +e1  aa(N)" )
aa(N)  Hy(v)+e )

We call HE(gg, &1 ; v) the Wigner-Weisskopf Hamiltonian. We may put for v =0

Hf(so, 1) := H¥(go, €1; 0) #is + or —. (3.6)
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Remark 3.1 The Wigner- Weisskopf model is one of several examples of the generalized
spin-boson model. We know it if we put By = (¢* 4+ ¢)/v/2, By = i(c* — ¢)/vV/2; A\ = A
and Ao = iA. This model is very simple, but it has an unusual property contrary to our
expectation (see Remarks 3.4 and 3.6).

It is easy to prove that HE (g9, €1 ; v) is self-adjoint on

D (HZ (20, e1;v)) = DI ® Hy (v)), (3.7)

and bounded from below
for every v > 0 by [AH1, Proposition 1.1(i)] since each B; is bounded, and
UfH (g0, €1; ¥)Uy = Hf (e, €1; v) for every v > 0, (3.9)

where the unitary operator U; is given by

0 I |

So, we have only to deal with the case # is +. For simplicity, we put

Hy(co, €1) := HX (g9, €15 0) (3.11)
Hy(co, €15 v) = HY (g9, €1; V), v >0. (3.12)
Let

o = €9 — €1, : (3.13)

and we may put
Ho(po; V) := Ho(o,0,;v), v >0, (3.14)
Ho(po) := Ha(0;0) = Ha(f1,0,50) (v =0). (3.15)

We have

Hu(go, €1; V) = Ho(pho; v) + 1l @I for every v > 0. - (3.16)

Remark 3.2 For g < 0, the above Wigner- Weisskopf Hamiltonian Hy (1o ; v) was treated
in [AH2, Theorem 6.15]. On the other hand, for jig > 0, Ho(po; v) was treated in [HiS2,
§6/ with v > 0, and [AH2, Theorem 6.14] with v > 0.
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As we did in [AH2, §6.2], we introduce a function D _ , for e € R and &;,v > 0 by

A(k)|?
D~ = — —a? | dk | 3.17
50611/( ) Z+€0 « R wu(k)+€1_z’ ( )

defined for all z € C such that |A(k)|*/|z — &1 — w, (k)] is Lebesgue integrable on R¢.
We put

Djo2) = Dy, (2) = —2+ o - / e (3.18)

In particular, as we mentioned in [AH2, §6.2], D> ,(z) is defined in the cut plane

Mo,V

C,=C\|[v, o), v>0 (3.19)

and analytic there. It is easy to see that DS ,(z) is monotone decreasing in z < v. Hence,
the limit

d%(po) = hngOV(') (3.20)
_ o IA(K))?
= V4 p— o ltllr(r)x Rddkw——_,,(k)—u+t
exists.
We have

o L oo IA(K)]?
Dso €1, V(Z) - (Z 51)+H0 « /Rd dkwy(k) _ (Z—El) (321)
= Dj . (z—¢1) (3.22)

for ever v > 0.
We may put for v =0

Dgo €1 (Z) D?o €1, 0( ) (323)
Dy, (2) := Dj, o(2), (3.24)
d*(po) == dg (o). (3.25)

The Wigner-Weisskopf model has a conservation law for a kind of the particle number
in the following sense:

We define
1+ g3

NE = RI+1® N, (3.26)
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which appeared in [HiiS2, §6], where N, is the boson number operator,
Ny :=dT(1) =Y ¢P®. . (3.27)

Here (3.27) is the spectral resolution of Ny, and P is the orthogonal projection onto the
¢-particle space in F; for each £ € {0} UN. The spectral resolution of NE p is given as

> ePf, (3.28)
=0

where

150 o po if ¢ =0

P = (3.29)
l%—"i PV 1+ 1% g PO ifreN.
HZX (e, ¢,;v) is reduced by P;*F for every a € R and each £ € {0} UN, i.e.,
PFHZ (g, 6,;v) C Hy (g, 6,5v) PF (3.30)
which means that

D (P;tH;‘ (€5, €4 1/)) cD (Hai (€0,€,57) Pf) ,
PEHZE (e,,6,;v) U = HE(e,,e,;v) PV for ¥ € D (Pijf (0,45 1/)) '

(see [Ka, p.278]). So, for every a € R, HE(g,,¢,;v) is decomposed to the direct sum of -
Hi (g5,€,5v)’s as

o0
HE(e,,e,3v) = P HiL (g, 63 v) (3.31)
=0

where H, fa(ao, g,;v) is self-adjoint on the closed subspace Fi£ defined by

Fif=PfF (3.32)
for each £ € {0} UN and
F=F ' (3.33)
£=0

The proof of the above statement is that, for instance, we have only to extend [Ka,
Problem 3.29] to its infinite version by repeating [Ka, Problem 3.29] with the closedness
of HX(g,,€,;v).
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We call Fif the £ sector.
We define vectors Q9 € Fj by

Q) = (?)@QO=<£>, (3.34)
o 1 Qo
w e (D)en=(%). o9
Then, we have
195 = 1. (3.36)

For every f € D(@), we define vectors QL(f) € Fi- by

QL(f) = ( . ) ® Qo+ ( ’ ) ® a(f)" % = ( a<;§3 o ) (3.37)

Ql_(f)::((1))@a(f)*90+(?>®90:(“(Q;Q‘)). (3.38)

Then, we have

1/2
IOl = (1+17118) - (3.39)
When a zero EZ _, , of D2 _ (2) exists in (—00, v+ €;), we define a function by
A(k) - _ 5

by k)= — € D(@,), ke R 3.40
gEO,EI,V( ) aw,,(k) +51 _ Eg)7€1’u (CL} ) ( )

Especially, we may put
92 . (k) :==g2. o(k)  keR* (v=0), (3.41)
EEO:),El = Ego,é‘l,o (V = O)a (342)

and

g oK) ==g3 o, (k), keR%  v>0, (3.43)
9po = Gpoor (¥ =0), (3.44)
Eﬁo,u = Ego,o,ya v Z 0, (345)
ES = E o, (v=0) (3.46)

For a self-adjoint operator T, we denote the set of all essential spectra of T by gess(T),
and pure point spectra by o,,(T).
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By the definition (3.14) of the Hamiltonian H,(uo;v), the free Hamiltonian of the
Wigner-Weisskopf model is Hy(ug; v) for every puo € R and v > 0. Then, it is clear that

pp (Ho (103 v)) = {0, po}, (3.47)
Oess (Ho (o3 V) = [min {0, po} ,00), . (3.48)
0 and pg are simple, (3.49)
the unique eigenvector of 0 is Q8 e Fo, (3.50)
and the unique eigenvector of jq is Q4 (0) € F;. (3.51)

The following theorem follows from [AH2, Proposition 6.13, Theorems 6.14 and‘6.15].
We note here that the proof of [AH2, Theorem 6.15] had already proved part (c) below:

Theorem 3.1 (a) Let v,d3(po) > 0. Then,

0 € gy (Ha (103 1), | (3.52)
Gess (Ha (10; 1)) = [V, 00). (3.53)

In particular, 0 is the ground state energy of Hy (1o ; v) with its unique ground state
Q8.

(b) Let d%(uo) < 0 < v and &?||A/\/wy||§ < po. Then,

{00 B2} € o (Ha (03 v)). (3.54)
Oess (Ho (103 v)) = [V, 00), (3.55)

with 0 < E5 , < v. In particular, 0 is the ground state energy of Hy(po; v).
Moreover,

if @?||N/ |2 < po, then 0 < E2 - 0 is simple, and QY is the unique

po,v?

ground state of Ho(po; v), (3.56)

if 2|/ /w2 = po, then 0= E2 ,; Q% and Q) (g5, ) are the degenerate
ground states of Hy(po; V). (3.57)

(c) Let d*(uo) <0 < v and po < &2||\/ /@, |l§. Suppose that

All2
2 o> o (“ A I3

M (e, po, wy)

: (3.58)

2
- M (Oﬁ, /J'Oawu) +
V% o
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where
IA(K)[?
= k . 3.5
M (eotos) = J e+ oIV (559
Then,
{Eow: 0} C oy (Ha (o5 v)), (3.60)
Oess (Ha (105 ) = B, + v, 00) (3.61)

with By, < 0. In particular, EZ, , is the ground state energy of Ha(po; v) with its
1

ground state 2. (g5 )

Remark 3.3 We are also interested in the case for large absolute value of the coupling
constant(i.e., |a| > 1). Fiz uo and make |a| so large. Then, we have d*(uo) < 0. Thus,
we have to investigate the case for d(uo) < 0 to know the case for large |a|. See Theorem
3.5 below.

Remark 3.4 In[v, co0) for v > 0, we can make a different eigenvalue from both of ES
and 0 by adding some conditions to w(k) and A(k) as we mentioned in [AH2, Remark
- 6.4]. Namely, as an effect of the scalar Bose field, a new eigenvalue appears in (v, 00).

Remark 3.5 It is easy to check that

=

Let po > 0. Then, if v = 0, then (8.58) does not hold by (3.62). Let uy < 0. Then, by
the definition (3.59), we get

2
— M («, po,wy) > 0. (3.62)
0

AR _ IR
—Ho —Ho

l
M (a, po,w,) < /Rddk
since o < 0 now, which implies that
the left hand side of (3.58) > —ug

since pip < 0 < M (o, po, wy). Thus, (8.58) is meaningful for the case of massive bosons
only.

We note here that, if d*(u) < 0, then

' Ak)[? [A(K)?
’1 ak < 2/ ,
Ho <@ 10 Jra wk)+t ~ “ Jra dk w(k) (3.63)
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AP AP
AT AN
/Rd o+t < /Rdd W (k)
forallt > 0.

In Theorem 3.1(c) for the case d*(uo) < 0, we cannot show the ground state energy of
H (1) for the massless bosons as we remarked in Remark 3.5, but if we add the condition
(A.3), then we can determine the pure point spectra of H,(ug) completely for the massless
bosons by using [Sk, Theorem 3.1]:

Proposition 3.2 Assume (A.1), (A.83) and (2.9). Let w(k) = |k| and d*(po) < 0. Then,

Opp (HC! (,U/())) = {Eﬁo ’ 0} ) (364)
Oess (Ha (1t0)) = [Eﬁo ) 00) (3.65)
for all @ € R with
1
2 — e ——
a® < O (3.66)

Especially, E, is the simple ground state energy with its unique ground state QY (ggo),
and 0 is the simple first excited state energy with its unique first excited state QY.

Remark 3.6 For the generalized spin-boson model, in a generic situation, we hope that
the ground state will be unique and that the rest of the spectrum will be pure absolutely
continuous as it is mentioned in [DJ, p.11]. However, we have to note that there is a
counter-example but familiar to us in physics as one of generalized spin-boson models.
Namely, in the case of Proposition 3.2, 0 is sitting very still as an excited state at the
same place for all coupling constant «, so 0 is not a resonance pole. It means that the
rest of the spectrum except the ground state energy is not only pure absolutely continuous
spectrum but also the other eigenvalues. Moreover, see Remark 3.4 above and Theorem
3.5 below, and we can find more interesting eigenvalues. This is a remark for our usual
expectation of the above spectral property for the generalized spin-boson model.

Here, we set the following condition

A(R) 2
|wu (k) — 2]

and we prove the following lemma:

(D), The function is not Lebesgue integrable for all z € (v, o0),

In the following proposition, we use the result of Hiibner and Spohn [HiiS2}, so we
employ the conjugate operator Dys in [HiiS2, (2.9)]:

1 1 1
I _ - . | . 3.67
Dys 5 (lvkwulzvkw Vi + Vi Viw lvkqu) ( )
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Proposition 3.3 Let w(k) = |k| and v > 0. Assume

[, dk KRS (w, (k) = o) > 0, (3.68)
DixeL*(RY) =12 (3.69)

and d%(po) < 0. Then,

(a)
Opp (Ha (IMO; V)) = {Eﬁo,u ’ 0} ) (370)
Oess (Ha (110;v)) = [min {ES, 0} + v, 00) (3.71)
for all o € R with

||| DusAllo < 1. (3.72)

(b) If po > a?||A/\/w, |3, then O is the simple ground state energy with its unique ground
state Q5 , and E7. , 1s the simple first excited state energy with its unique first excited
state Q) (g ,) for all a € R with (3.72).

(c) If wo < Q?||N /@, |3, then E% , is the simple ground state energy with its unique

Mo,V
ground state Qﬁr(gz‘oy,,), and 0 is the simple first excited state energy with its unique

first excited state QO for all o € R with (3.72).

(d) Assume po > 0 and \/fio]| DusAllo < [|A/v/@ullo, then Hy (po; v) has degenerate ground
states for a. = \/to/||\/\/Wullo with ground state energy 0 = EY ,, and ground
states are gien by Q% and QL (95.)-

We define expectations, 7g,q and 74, of the number of (massive) photons at the ground
and first excited states, respectively, as follows:

ﬁgrd = (\IJgrda I® Nb\IIgTd)}-7 (373)
Tost = (W1st, I @ NpWist)r, (3.74)

where W4 and ¥, denote the ground and first excited states of H,(uo; V), respectively.

By Proposition 3.3, we obtain the following corollary:
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Corollary 3.4 Let w(k) = |k| and v > 0. Assume (3.68), (3.69) and d%(p0) < 0. Then,

for all a € R with (3.72),
(a)
0 if  po > 0[N Vwll5,

ﬁgrd =

lgg 8 o o < @®IN/ s
(b) A reverse between Tgq and Mys occurs as follows:

{h—grd < Myst Zf Ho > O/QH/\/\/E;H(Q)’

Nst < —ﬁgrd Zf o < QQH)\/\/ wu”%'
We use the following condition in Theorem 3.5 (b) and (c) below:
(A.4) The functions, w(k), A(k), are continuous, and
[klllgloow(k) = 00.

Moreover, there exist constants vy, > 0 and C, > 0 such that

lw(k) —w(K)| < Culk — K (1 +w (k) +w(K)), k., k' € R

Theorem 3.5 Let v > 0. Assume (A.1). Then,
(a) there exists aww (V) > 0 such that
{Biias 0} C opp (Ha (105v))
with Fo (Ha (Ho;v)) < min {EY, ,, 0},
Oess (Ha (o3 v)) = [Eo (Ha (o3 v)) + v, 00)

for every a € R with |a| > aww(V).

(3.75)
(3.76)

(3.77)

(3.78)
(3.79)

(b) Let v > 0 (massive bosons). Assume (A.4) in addition. Then, there exists a ground

state Uww € F of Hy (to; V), namely

H, (NO§ V) Yww = Eo (Ha (,UO§ V)) Viww,
such that
{EO (Ha (NO; V)) ) Eﬁ07y7 0} C Opp (Ha (;u0§ V)) )
with (3.78) |
Uww & FoUF

for every a € R with |a] > aww (V).

(3.80)

(3.81)
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(c) Let v = 0 (massless bosons). Assume (A.4), Vw € L®(R%) and (2.9) in addition.
Then, there ezists a ground state Wy € F of Hy (1o;v) such that (3.80), (3.78)
and (3.81) hold for every a € R with || > aww(0).

Open Problem 3.1 We knew in Theorem 3.5 that there exists a non-perturbative ground
state state Uy in F, and Uy does not belong to the 0-sector or 1-sector. As we remark
in Remark 3.8 below, this fact plays a important role to show the phenomena for WW
model, which cannot be derived from the regular perturbation theory (see Remark 3.8).
But we have not yet known which sector Wy belongs to. This is an open problem.

Open Problem 3.2 Concerning Open Problem 3.1, in Theorem 3.5 we assumed the
infrared regularity condition, \Jw € L*(R%). The next open problem is whether the ground
state Uy appears in the standard state space F under the infrared singularity condition,
Mw ¢ LA2(R?), or not.

Remark 3.7 When the case of massive bosons (v > 0), we can apply the regular pertur-
bation theory to WW model for sufficiently small absolute value of the coupling constant
@, and then Theorem 2.1 says that we get either EY , or 0 as the ground state energy.
Theorem 3.5 means that, for sufficiently large absolute value of the coupling constant,
a non-perturbative ground state appears as an influence of the scalar Bose field with its
ground state energy so low that we cannot conjecture it by the regular perturbation the-
ory for sufficiently small absolute value of the coupling constant. For other models, the
similar phenomenon were investigated by Hiroshima and Spohn [HfS]. So, Theorem 3.5
may make a statement on the existence of a superradiant ground state in physics (see,
for instance, [Pr1, Pr2, En]) for WW model. Namely, we can say that, even for WW
model which is simple and familiar in physics, we may be able to show a phenomena of
superradiant ground state influenced by the scalar Bose field.

Remark 3.8 By applying the existence of such a non-perturbative ground state in Theo-
rem 8.5 (b) & (c) to our new result on stability of ground states [AH3], we shall show in
[AH3, Theorem 2.3] that there exists a value of coupling constants at which WW model
has degenerate ground states, and the following fact: We denote the ground state (resp.
first excited) state energy by Ef(a) (resp. EY(a)) iff the ground (resp. first excited) state
exists fora € R, e, <
E¥(a) :=inf 0, (Ha (po; v)) = Eo (Ha (105 V) (3.82)
(resp. BE(a) i= inf {oy (Ho (0o ) \ (EB(@)}} ). (383

Then, we obtain that for v > 0 there exists a; in a region such that

EP(ay) < EV(aq) < inf oess (Hoy (po; V). (3.84)



103

even if we assume that v > 0 is so small that
E§(0) < inf oess (Ho (po; v)) < E7(0) (3.85)

holds [AHS3, Theorem 2.3]. Although we can find many papers stating the possibility of the
existence of such the first excited state in quantum field theory, there is few papers pointing
out the definite existence despite under (3.85). These phenomena cannot be obtained by the
regular perturbation theory. Namely, they occur in the region {a € R|d%(uo) < 0} (see
Remark 3.3), not in the region of the coupling constants treated by Hibner and Spohn
in [HUS, §6] and ourselves in [AH2, Theorem 6.14(i)]. So, the ezistence of the non-
perturbative ground state derives very interesting phenomena.
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