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1 introduction
$.\mathrm{S}$tructuring linear and nonlinear effects caused by Coriolis force, $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ buoyancy force
$\ln$ neutral $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ stably stratified fluid, are surveyed and discussed in this article.

Stability analysis is considered when the rotating flow consists of preexisting coherent
large-scale vortices subject to three-dimensional disturbances. System rotation does not
affect the motion of an incompressible two- dimensional (2D) flow but it alters its stability
with respect to three- dimensional (3D) disturbances. When the background flow consists
of arrays of vortices, this problem has many applications in geophysical or industrial flows.
When considering both cyclonic and anticyclonic vortices in a rotating frame, it is well
admitted $\mathrm{t}\mathrm{h}\mathrm{a}.\mathrm{t}$ moderate anticyclones are preferentially destabilised, but explanations for

$.\mathrm{t}$ his and preclse ranges of parameters (Rossby number especially) are often not consistent
$\ln$ the literature. This problem, which has been the subject of an abundent literature, –
with analyses, physical and numerical experiments–, is revisited in this paper by looking
at the linear stability, with system rotation, of simple flows. Special emphasis will be
placed on a street of Stuart vortices, an interesting model for the sheared mixing layer
with spanwise billows. Results of classic analyses in terms of normal modes are briefly
recalled and contrasted with results of an asymptotic analysis (Lifschitz&Hameiri, 1991)
for short wave disturbances, which are localised around fluid trajectories.

A second line of attack, for dynamics of rotating turbulence, addresses the creation
of structure through nonlinear interactions which are altered by Coriolis force. A similar
approach is touched upon for stably stratified flows with and without rotation. This
illustrates what can be explained from classical approaches to anisotropic homogeneous
turbulence, taking advantage of close relationship between ‘two-point closures theories’
and ‘weakly nonlinear theories for wave turbulence’. Anisotropic description allows to
represent linear and nonlinear interactions in terms of detailed eigenmodes of motion,
like ‘vortex’ and ‘waves’, including the angular dependence of related scalar spectra and
cospectra in Fourier space. This anisotropic description was shown to be relevant to
obtain precise indicators of the ‘columnar’ and ‘pancake’ structuring in physical space.

Additional effects of local forcing and confinment are investigated to understand
the creation of coherent quasi-two dimensional vortices by pure rotation, from initially
strongly three-dimensional, unstructured turbulence.

‘Rapid Distortion Theory’ (RDT hereinafter) for homogeneous turbulence plays a
central role in both linear stability analysis and turbulence modelling. On the one hand,
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the asymptotic method (Lifschitz&Hameiri, 1991) can be considered as a zonal ‘RDT’
approach to the linear stability of nonhomogeneous flows with coherent vortices. On the
other hand, ‘homogeneous RDT’ provides crucial building blocks for nonlinear theories,
such as the basis of eigenmodes and related dispersion relationships, in homogeneous,
rotating $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ stably stratified turbulence, or wave-turbulence.

Background equations are recalled in the following, with the essentials for understand-
ing internal waves regimes. Navier-Stokes equations with the Boussinesq approximation
in a rotating frame are

$(\partial_{t}+\mathrm{u}\cdot\nabla)\mathrm{u}+2\Omega \mathrm{n}\cross \mathrm{u}+\nabla p-\nu\nabla^{2}\mathrm{u}=\mathrm{n}b$ (1)

$(\partial_{t}+\mathrm{u}\cdot\nabla)b-\chi\nabla^{2}b=-N^{2}\mathrm{n}\cdot \mathrm{u}$ (2)
$\nabla\cdot \mathrm{u}=0$ (3)

where $\mathrm{u},$ $p$ and $b$ are the fluctuating velocity, pressure (divided by mean density of ref-
erence), and buoyancy force intensity, respectively. $\mathrm{n}$ denotes the vertical unit upward
vector with which are aligned both the gravitational acceleration, $\mathrm{g}=-g\mathrm{n}$ , and the angu-
lar velocity of the rotating frame $\Omega=\Omega \mathrm{n}$ . The buoyancy force is related to the fluctuating
temperature field $\tau$ by $\mathrm{b}=-\mathrm{g}\beta\tau$ , through the coefficient of thermal expansivity $\beta$ , and
the temperature stratification is characterized by the vertical gradient $\gamma$ . Using $b$ instead
of $\tau$ in the first two equations above yields introducing the Brumt-Waisala frequency $N$

only as the characteristic frequency of buoyancy-stratification, with $N=\sqrt{\beta g\gamma}$. Hence
the linear operators in equations (1) and (2) display the two frequencies $N$ and $2\Omega$ . With-
out loss of generality the fixed frame of reference will be chosen so that $n_{i}=\delta_{i3}$ from now
on, with $u_{3}$ the vertical velocity component.

The linear inviscid limit for the rotating neutral case, $\Omega\neq 0,$ $N=0$ , is firstly recalled
as follows. Only equation (1) without the buoyancy force term on the left-hand-side, and
equation (3) have to be considered. The linear inviscid limit is obtained by discarding
both advection and viscous terms in (1). Without the pressure term, this equation admits
sinusoidal solutions for horizontal velocity $u_{1},$ $u_{2}$ components, with frequency $2\Omega$ . Of
course, these pressureless solutions are not valid in the general case, and the pressure term
is needed for satisfying the solenoidal constraint (3). The pressure term is responsible for
a coupling between horizontal and vertical velocity components, and for the anisotropic
dispersion law of internal inertial waves. The last effect is essential since the pressureless
linearised equations admit oscillating solutions, but not really propagating waves solutions.
Eliminating velocity in the system of equations (1) and (3) yields

$\partial_{t}^{2}(\nabla^{2}p)+4\Omega^{2}\nabla_{V}^{2}p=0$ (4)

where $\nabla_{V}^{2}=\partial^{2}/\partial x_{3}^{2}$ denotes the vertical part of the Laplacian operator. An illustration of
the specific wave properties of inertial waves is given by the experiment of Mc Ewan, whose
typical results are shown in the first figure in the Greenspan’s book (1968). Typical cross-
shaped structures are visualised when the rotating flow is locally subjected to a harmonic
forcing of given frequency $\sigma_{0}$ , with $\sigma_{0}<2\Omega$ . In accordance with the normal form of
forced solutions $p=e^{-x\sigma_{0}t}\mathcal{P}(\mathrm{x})$ , the previous pressure equation becomes $\sigma_{0}^{2}\nabla_{H}^{2}P+(\sigma_{0}^{2}-$

$4\Omega^{2})\nabla^{2}{}_{V}P=0$ , showing a change from elliptic to hyperbolic form when $\sigma_{0}$ crosses the
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value $2\Omega$ by decreasing values. In addition, the pressure equation exhibits the typical
dispersion law

$\sigma_{k}=\pm\frac{2\Omega k_{3}}{k}=\pm 2\Omega\cos\theta_{k}$ (5)

with $k^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}$ for solutions under the form of plane waves $p=P\exp[\iota(\mathrm{k}\cdot \mathrm{x}-\sigma t)]$ .
The geometric factor in $\mathrm{k}$-space, which is exhibited by the dispersion law, is directly
related to the conical structure of rays in the experiment, in the forced resonance case
$\sigma_{k}=\sigma_{0}$ , or accordingly $\cos\theta_{k}=\pm\sigma_{0}/(2\Omega)$ . In the general unforced case where pressure
disturbances consist of a dense spectrum of modes with different angles $\theta_{k}$ , different fre-
quencies $|\sigma_{k}|$ are permitted, ranging from $0$ (horizontal wave vectors) to $2\Omega$ (vertical wave
vectors). These various frequencies, which are directly related to various orientations for
the phases of inertial modes through the angular-dependent dispersion law, underlies a
variety of strange behaviours, ranging from linear resonance with a given local forcing
(experiment above) to nonlinear third or fourth-order resonances. The celebrated ‘ellipti-
cal flow instability’ can be considered as a linear resonance induced by a small additional
strain, in which the oblique modes of inertial waves $\cos\theta_{k}=\pm 1/2$ are selectively amplified
in the presence of weak strain.

The paper is organised as follows. Linear approaches, which are useful in both tur-
bulence modelling and stability analyses, are recalled in section 2. They range from
‘homogeneous RDT’ to WKB theories, as the ‘geometrical optics’ used by Lifschitz and
Hameiri (1991). Results of the stability analysis of the Stuart vortices in rotating frame
are shown and discussed in section 3, with particular emphasis on the three ‘background’
instabilities, namely the centrifugal, elliptic and hyperbolic ones. The problem of cre-
ation of $2\mathrm{D}$ structure from $3\mathrm{D}$ initially unstructured turbulence in a rotating frame is the
core of the paper. The case of nonlinear dynamics, with interactions of inertial waves, in
homogeneous rotating turbulence is treated in section 4, and is the most detailed. Ad-
ditional effects of walls and local forcing are touched upon in section 5, in which results
of a numerical study are shown and discussed in connection with the experimental study
by Hopfinger et al. (1982). The case of stratified turbulence, with and without rotation,
is briefly considered in section 6, and nonlinear dynamics is discussed along the same
guidelines as pure rotating turbulence is, together with final concluding comments.

2 From RDT to zonal (or local) stability analysis

In the presence of a mean flow, denoted by capital letters $(\overline{U}_{i},\overline{P})$ , equation (1) for the
fluctuating components $(u_{i},p)$ includes additional ‘advection’ and ‘deformation’ terms in
its left-hand-side as follows:

$\overline{U}_{j}\partial u_{i}/\partial x_{j}+(\partial\overline{U}_{i}/\partial x_{j})u_{j}$. (6)

Neglecting nonlinear and viscous terms in equations for $(u_{i}, p)$ , in the presence of terms
(6), is the background for Rapid Distortion Theory (or RDT), introduced by Batchelor
and Proudman (1954), not to mention older seminal works by Kelvin, Orr, Prandtl, Taylor
... In neglecting nonlinearity entirely, the effects of interaction of turbulence with itself are
supposed small compared with those resulting from mean-flow distortion of turbulence.
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Implicit is the idea that the time required for significant distortion by the mean flow is
short compared with that for turbulent evolution in the absence of distortion.

For simplified analysis, the case of an extensional flow, with space-uniform velocity
gradients

$\overline{U}_{i}=\lambda_{ij}(t)x_{j}$ (7)

presents particular interest. If (7) is assumed to be valid in all the space, it is a necessary
condition to preserve statistical homogeneity of the fluctuating field. In turn, the gradient
of the Reynolds Stress tensor disappears in the equations for the mean, so that there is
no feedback of the fluctuating field in the equation governing the mean, and $\overline{U}_{i}$ has to
be a particular solution of Euler equations. Hence, solving the linearized equations which
govern $(u_{i}, p)$ in the presence of a given mean velocity gradient, is exactly the same
problem as occuring for the linear stability of the flow $(\overline{U}_{i}, \overline{P})$ , with $u_{i}$ and $p$ small
amplitude disturbance to that field.

This ‘RDT’ solution to an initial value problem, is most easily obtained via Fourier
synthesis. An elementary Fourier component of the form

$u_{i}=a_{i}(t)\exp[\iota \mathrm{k}(t)\cdot \mathrm{x}]$ (8)

yields a solution of the problem if $\mathrm{k}$ and $a_{i}$ satisfy a linear system of simple ordinary
differential equations, referred to as Townsend equations. The pressure fluctuation, which
is solution of a Poisson equation, is given by an algebraic relationship in term of $a_{i}$ , whereas
time dependency of the wavenumber represents convection of the plane wave $\exp[\iota \mathrm{k}(t)\cdot \mathrm{x}]$

by the mean flow (7). Likewise, the solution of Townsend equations has the form

$a_{i}[\mathrm{k}(t),t]=G_{ij}(\mathrm{k},t,t_{0})a_{j}[\mathrm{k}(t_{0}),t_{0}]$ , (9)

where $G_{ij}$ is a spectral Green’s function, which is a real deterministic quantity. At this
stage, it may be noticed that the RDT for homogeneous turbulence in the presence of
mean velocity gradients includes two problems:

$\bullet$ A deterministic problem, which consists of solving in the more general way the initial
value linear system of equations for $a_{i}$ . This is done by determining the spectral
Green function, which is also the key quantity requested in linear stability analysis.

$\bullet$ A statistical problem which is useful for prediction of statistical moments of $u_{i}$ and $p$ .
Interpretating the initial amplitude $a_{j}(t_{0})$ as a random variable with a given dense
spectrum, equation (9) yields prediction of statistical moments by products of the
basic Green’s function.

Applications to statistics will only be discussed when $G_{ij}$ consists of simple complex
exponential, in connection with wavy or steady modes of motion (sections 4 and 6).
Exactly the same deterministic problem as the one of ‘homogeneous RDT’ was addressed
in the context of flow stability (see, for instance, Bayly 1986, Craik&Criminale 1986),
although the two communities seem to be largely unaware of each other’s work. In
particular, the stability analysis in terms of time-dependent, distorted, Fourier modes
is attributed to Kelvin (1887) by the stability literature. In agreement with the generality
of the RDT formulation, which is not restricted to a special case of parallel pure shear
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flow (as in Kelvin), I proposed to refer to (8) as ‘Lagrangian Fourier modes’, which are
governed by ‘Townsend equations’.

Rotational mean flows yield rather complex RDT solutions, and only the steady case
has received much attention. (see Bayly, Holm&Lifschitz, and Craik and coworkers for
recent developments in unsteady cases). It can be shown that symmetry of $\lambda^{2}$ and $\lambda_{ii}=0$

(Craya 1958) imply that $\lambda_{ij}$ takes the form

$\lambda=$ (10)

when axes are chosen appropriately, where $S,$ $\Omega_{0}\geq 0$ . This corresponds to steady plane
flow, combining vorticity $2\Omega_{0}$ and irrotational straining $S$ . The general RDT problem
with arbitrary $S$ and $\Omega_{0}$ was analysed by Cambon (1982), while experimental realisations
of grid turbulence interacting with the mean flow represented by (2.6) were carried out
by Leuchter et al. (1992). The above class of steady mean flows is also compatible with
homogeneity in a frame of reference rotating about an axis perpendicular to the plane
of the flow. Cambon et al (1994) give details of RDT calculations for such flows. The
limiting case, $S=\Omega_{0}$ (Townsend 1956), corresponds to simple shearing and forms the
borderline between two distinct regimes, namely those in which the mean flow streamlines
are closed and elliptic about the stagnation point at the origin $(S<\Omega_{0})$ and those for
which they are open and hyperbolic $(S>\Omega_{0})$ . These two cases will be rediscussed in the
next section.

Assuming weak inhomogeneity, turbulence which is fine-scale compared with the over-
all dimensions of the flow can be treated under RDT by following a notional particle
moving with the mean velocity. Particles (fluid elements) are convected by the mean
velocity field according to

$\dot{x}_{i}=\overline{U}_{i}(\mathrm{x}, t)$ (11)

Thus, the results obtained for strictly homogeneous turbulence can be extended to the
weakly inhomogeneous case, but with a mean velocity gradient matrix $\lambda_{ij}(t)$ which re-
flects the $\partial\overline{U}_{i}/\partial x_{j}$ seen by the moving particle (Hunt 1973). This idea has been formalised
in the context of flow stability (see Lifschitz&Hameiri 1991) using an asymptotic ap-
proach based on the classical WKB method, which is traditionally used to analyse the
ray theoretic limit (i.e. short waves) in wave problems. The solution is written as

$u_{i}(\mathrm{x}, t)=a_{i}(\mathrm{x},t)\exp[\iota\Phi(\mathrm{x}, t)/\delta]$ (12)

with a similar expression for the fluctuating pressure, where $\Phi$ is a real phase function and
$\delta$ is a small parameter expressing the small scale of the ‘waves’ represented by (12), while
$a_{i}(\mathrm{x}, t)$ is a complex amplitude which is expanded in power of $\delta$ according to the WKB
technique. Over distances of $O(\delta)$ , one can use a spatial Taylor’s series representation for
$\Phi$ , up to the linear term, and approximate $a_{i}$ as constant. It is then apparent that (12)
is locally a plane-wave Fourier component of wavenumber

$k_{i}(\mathrm{x}, t)=\delta^{-1}\partial\Phi/\partial x_{i}$ (13)

The amplitude $a_{i}(\mathrm{x}, t)$ in (12) and the corresponding equation for the fluctuating pressure
are expanded as an asymptotic series in powers of $\delta$ and the result injected into the
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linearised equations without viscosity. At leading order, one finds equations for $\mathrm{k}$ and
$a_{i}^{(0)}$ , which have exactly the same form as the Townsend equations (for $\mathrm{k}$ and a in (8) in
homogeneous RDT). These equations are recalled in the next section.

3 Application to local stability of Stuart vortices
The three background instabilities, namely the centrifugal, elliptic and hyperbolic ones,
and their alteration by system rotation are not discussed in general here for the sake of
brevity (see Kloosterziel&van Heijst, 1991, and Cambon 1999).

The array of Stuart vortices is periodic in the streamwise direction $x_{1}$ only, and the
vorticity of the eddies has the same sign. The streamfunction is given by

$\Psi=\ln(\cosh x_{2}-\rho\cos x_{1})$ (14)

where $\rho,$ $0<\rho<1$ , characterizes the vorticity distribution inside the vortices. This is
a good model of the first instability of the plane mixing layer. The limiting case $\rho=0$

gives the classic parallel flow with tangent-hyperbolic profile, with no dependency on the
streamwise coordinate and no concentrated eddies. The other limit $\rho=1$ corresponds to
an array of concentrated point vortices. In the general case, $\rho$ gives both the ellipticity and
the vorticity in the core of the eddies (see fig. 1 for $\rho=1/3$ ). The Rossby number is defined
as the ratio $Ro=W_{0}/(2\Omega)$ of core vorticity to system vorticity, with $W_{0}=-(1+\rho)/(1-\rho)$ .
The linear stability approach of Leblanc &Cambon (1998) included both a nonlocal
method of normal modes and a particular application of the local analysis, limited to
stagnation points. At high values of the spanwise wave number $k_{3}$ , both analyses were
shown to coincide well with identification of the role of elliptic and hyperbolic points.
Especially, the coefficient of amplification of the normal mode was shown to coincide with
the one given by the temporal Floquet analysis (see below) around the elliptic stagnation
point at the core. Nevertheless, no clear evidence of a centrifugal mode of instability was
given by the nonlocal method, likely due to the somewhat low values of $\rho$ investigated,
and perhaps due to a lack of numerical resolution. The local method, applied here only
to stagnation points, was, of course, not relevant for identifying such a mode. Other
numerical results for nonlocal stability in the same case (Stuart vortices in rotating frame)
have suggested that a centrifugal mode does exist in the anticyclonic cases (Potylitsin
&Peltier 1999). These results, and the relevance of local analysis proved by Sipp $et$

al. (1999) for identifying the centrifugal mode in $2\mathrm{D}$ Taylor-Green flow, have suggested
to extend the local analysis to streamlines of Stuart vortices other than the stagnation
points. This work is in progress (Cambon, Godeferd&Leblanc 1999), of which method
and typical results are summarized in the following.

Following the WKB analysis of Lifshitz&Hameiri (1991), Townsend equations have
to be numerically solved in the rotating frame following different given trajectories $((11)$

$\mathrm{o}\mathrm{r}\Psi=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ in (14) $)$ . The system of linear equations becomes

$\dot{x}_{i}=\overline{U}_{i}$ (15)

$\dot{k}_{i}=-\overline{U}_{j,i}k_{i}$ (16)

$\dot{a}_{i}=-[(\delta_{ij}-2\frac{k_{i}k_{j}}{k^{2}})\overline{U}_{jl}+2\Omega(\delta_{ij}-\frac{k_{i}k_{j}}{k^{2}})\epsilon_{j3l}]a_{l}$ (17)
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Figure 1: The Stuart flow. Isovalues of the streamfunction (14). Case $\rho=1/3$ .

in the rotating frame. In the above system of ODE, the velocity components $\overline{U}_{i}$ and the
velocity gradient matrix $\overline{U}_{i,j}$ are analytically expressed at any point using (14). These
equations are solved given initial data, denoted by capital letters, so that X is the initial
position on the trajectory (Lagrangian coordinate), $\mathrm{K}$ is the Lagrangian wavevector, and
A is the initial amplitude.

Only closed trajectories, identified by the abcissa $0<x_{0}<\pi$ , with X $=(x_{0},0,0)$

are considered here. The Lagrangian, initial, wave vector is chosen normal to the initial
velocity, so that $\mathrm{K}=(\sin\theta_{k}, 0, \cos\theta_{k})$ , with $0\leq\theta_{k}\leq\pi/2$ . The angle $\theta_{k}=0$ characterizes
pure spanwise, pressure-less modes, whereas $\theta_{k}=\pi/2$ characterises $2\mathrm{D}$ modes. The Green
function of the linear system of equations (15-17), as in (9), is numerically computed, after
a period $T$ , which corresponds to the time to run a complete loop,

$a_{i}(\mathrm{X}, \mathrm{K}, T)=G_{ij}(\mathrm{X}, \mathrm{K}, T, 0)A_{j}$ (18)

choosing $A_{j}=\delta_{j1},$ $A_{j}=\delta_{j2},$ $A_{j}=\delta_{j_{3}}$ , successively. Then the Floquet parameter
$\sigma(\mathrm{X}, \mathrm{K}, T)$ related to the modulus $s$ of the maximum eigenvalue of the Floquet ma-
trix $G_{ij}$ in (18) through $\sigma=\ln(s)/T$ , is identified for each trajectory, labelled by $x_{0}$ , with
$\mathrm{X}=(x_{0},0,0)$ , and each initial wavevector, labeled by $\theta_{k}$ .

The distribution of the Floquet parameter is shown for different closed trajectories
and different positions of the wave vector in figures 2 and 3. The thick line curve on the
bottom plane represents the absolute circulation $\Gamma_{a}$ plotted versus $x_{0}$ ; this is computed
numerically for the different non-circular trajectories. The case $\rho=1/3$ is considered in
figure 2, whithout rotation, and in figure 3 ( $Ro=-2$ at the core). This case was addressed
by Leblanc and Cambon (1998). The values of vorticity and ellipticity at the core are
$W_{0}=-2$ and $E=1.732$ , respectively. These figures enable us to identify the three typical
modes and their alteration by system rotation in a clear way, using an inexpensive ‘local’
(trajectory by trajectory) computation. Local analysis is invaluable for substituting the
informative taxonomy of unstable modes, $hyperbolic_{f}$ elliptic, centrifugal, to the zoological
one, braid, $core_{f}$ edge, used for instance by Peltier and coworkers since 1994.

As shown in figures 2 and 3, the elliptic mode is captured as an oblique mode whose
angular location $\theta_{k}$ and amplification rate $\sigma$ is found for individual streamlines near the
core, in a way consistent with previous RDT and stability analyses for extensional flows
(Cambon 1982, Bayly 1986, Cambon et al. 1994). In particular, the elliptic mode, which
is located at $\theta_{k}\sim\pi/3$ with no rotation, is shifted towards a spanwise mode $\theta_{k}\sim 0$ and
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Figure 2: Floquet parameter distribution for different closed trajectories, given by (14)
and initialized at $\mathrm{X}--(x_{0},0,0)$ , and for different angles $\theta_{k}$ . The thick curve represents
absolute circulation. Case $\rho=1/3,$ $\Omega=0$ . ‘Elliptic’ and ‘hyperbolic’ bumps

Figure 3: Legend as in fig. 2. Case $\rho=1/3,$ $Ro=-2$ . ‘Elliptic’ and ‘Centrifugal’ bumps.
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more amplified in the anticyclonic case, in agreement with a maximum amplification for
$Ro=-2$ . These results are also consistent with the ones of Sipp and coworkers for the
flattened Taylor-Green vortices.

The identification of the centrifugal mode in the anticyclonic cases $(Ro<0)$ is also
clear and accurate using the local analysis along intermediate streamlines between the
core and the periphery. This mode is confirmed to be essentially spanwise $(\theta_{k}=0)$ , and
located nearly outward the streamline where absolute circulation reaches a maximum.
This characteristic streamline moves towards the periphery when the anticyclonic system
rotation is smaller and smaller, so that the centrifugal and the hyperbolic modes can
eventually merge. It is confirmed that the unstable hyperbolic mode is essentially spanwise
$(\theta_{k}=0)$ , located near peripheral streamlines, and cancelled by large enough rotation rate,
without a net distinction between cyclonic and anticyclonic cases.

The most important result is the competition between centrifugal and elliptic insta-
bility in the anticyclonic case. For values of the Rossby number around $Ro=-2$ , where
both types of modes are important, the elliptic instability is shown to be dominant for
the lowest value of $\rho$ , as in fig. 3, whereas centrifugal instability is dominant for the cases
with weaker core ellipticity. Finally, the centrifugal instability explains the asymmetry of
the effect of system rotation and preferential destabilisation of anticyclonic vortices for
quasi circular vortices, whereas this explanation is provided by the elliptic instability if
the core of the vortex is elliptic enough.

4 Pure rotating homogeneous turbulence

4.1 The transtion from $3\mathrm{D}$ to $2\mathrm{D}$ structure: a nonlinear mech-
anism

In the absence of mean gradients in the rotating frame, the vorticity is governed by

$\frac{\partial\omega_{i}}{\partial t}+2\Omega_{j}\frac{\partial u_{i}}{\partial x_{j}}=\frac{\partial u_{i}}{\partial x_{j}}\omega_{j}-u_{j}\frac{\partial\omega_{i}}{\partial x_{j}}+\nu\frac{\partial^{2}\omega_{i}}{\partial x_{j}\partial x_{j}}$ (19)

Only the (linear) second term in the left-hand-side explicitly involves the angular velocity
of the rotating frame of reference. Nonlinear and viscous terms are gathered on the
right-hand-side. In agreement with the Proudman theorem, a two dimensional state, or
$\Omega_{j}\partial u_{i}/\partial x_{j}=0$ , is found in the limit of low Rossby number, high Reynolds number, and
slow motions. The first two conditions yield neglecting right-hand-side terms, whereas
the last one amounts to neglect the temporal derivative. It is important to point out that
the Proudman theorem says only that the slow manifold of the linear regime necessarily
is the two-dimensional manifold, but it cannot predict the transition from $3\mathrm{D}$ to $2\mathrm{D}$

structure, which is a typically nonlinear and unsteady process (see Cambon et al., 1997,
for a survey).

For unforced, unbounded, turbulent field, the linear solution consists of superposition
of inertial waves (for $u_{i},$ $\omega_{i},$ $\mathrm{p}\ldots$ ), of the form

$u_{i}( \mathrm{x}, t)=\int\exp(\iota \mathrm{k}\cdot \mathrm{x})[A_{i}^{1}\exp(\iota\sigma_{k}t)+A_{i}^{-1}\exp(-\iota\sigma_{k}t)]d^{3}\mathrm{k}$ (20)
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where the $A_{i}^{\epsilon}(\mathrm{k}),$ $\epsilon=\pm 1$ , are projections of the initial disturbance field onto the two
eigenmodes of linearised equations. Of course, Fourier synthesis is used for convenience,
or $u_{i}( \mathrm{x}, t)=\int\exp(\iota \mathrm{k}\cdot \mathrm{x})\hat{u}_{i}(\mathrm{k}, t)d^{3}\mathrm{k}$, so that we do not discuss a possible replacement
of the integral operator in (20) by a discrete summation. Anyway, the dispersion law
for transverse pressure waves (5) is recovered as $\sigma_{k}=\pm 2\Omega_{k}^{\Delta}k$ and the slow manifold is
recovered as the wave plane orthogonal to the rotation axis, for $k_{3}=0$ which corresponds
to $\partial/\partial x_{3}=0$ in physical space. According to (20), the linear solution only describes phase-
turbulence, and conserves the spectral density of energy, or $\hat{u}_{i}^{*}\hat{u}_{i}$ , so that the transition
from $3\mathrm{D}$ to $2\mathrm{D}$ turbulence must be interpreted as an angular drain of energy from oblique
wavevectors $k_{3}/k\neq 0$ towards the waveplane $k_{3}=0$ , energy drain which is mediated by
nonlinear interactions.

4.2 wave turbulence and closure theories
Equation (1) with zero buoyancy and with incompressibility constraint (3) becomes

$( \partial_{t}+\iota/k^{2}+\iota\epsilon\sigma_{k})\xi_{\epsilon}(\mathrm{k}, t)=,\sum_{\epsilon’,\epsilon’=\pm 1}\int_{p+q=k}m_{\epsilon\epsilon’\epsilon’’}\xi_{\epsilon’}(\mathrm{p}, t)\xi_{\epsilon’’}(\mathrm{q}, t)d^{3}\mathrm{p}$ (21)

with $\epsilon=\pm 1$ , after projection onto the normal modes of $\mathrm{u}$ in Fourier space. The basis of
eigenmodes (see [10], [31], [13]) is used to express the Fourier coeficient \^u as

\^u
$= \xi_{+}\mathrm{N}(\mathrm{k})+\xi_{-}\mathrm{N}(-\mathrm{k})=\sum_{\epsilon=\pm 1}\xi_{\epsilon}\mathrm{N}(\epsilon \mathrm{k})$

, (22)

with
$\xi_{\epsilon}=\hat{\mathrm{u}}\cdot \mathrm{N}(-\epsilon \mathrm{k})$ , $\epsilon=\pm 1$ , (23)

Equation (21) yields exact separation between the linear, diagonal, operator in the left-
hand-side, and the triadic nonlinear operator in the right-hand-side. Using (21), the ‘rapid
distortion’, or equivalently the ‘linear inviscid’ limit, as in (20), is simply

$\xi_{\epsilon}(\mathrm{k}, t)=\exp[\iota\epsilon\sigma_{k}(t)]\xi_{\epsilon}(\mathrm{k}, 0)$ (24)

instead of $\hat{u}_{i}(\mathrm{k}, t)=G_{ij}(\mathrm{k}, t, t_{0})\hat{u}_{j}(\mathrm{k}, t_{0})$ (general RDT solution, without advection, see
(9) $)$ . Replacing the initial data at fixed $t_{0}=0$ in (24) by a new unknow variable, say $a_{\epsilon}$ ,
so that

$\xi_{\epsilon}(\mathrm{k},t)=\exp[\iota\epsilon\sigma_{k}t]a_{\epsilon}(\mathrm{k},t)$ (25)

an equation for $a_{\epsilon}$ is readily derived from (21). Using the above transformation (24)
(which amounts to the ‘Poincar\’e transformation’ used by [1] in the case of pure rotation),
the nonlinear dynamics of $a_{\epsilon}$ is easily shown to be

$\dot{a}_{\epsilon}=,\sum_{\epsilon\epsilon^{\prime’\prime}=\pm 1}\int_{k+p+q=0}\exp[2\iota\Omega(\epsilon\frac{k_{||}}{k}+\epsilon’\frac{p_{||}}{p}+\epsilon’’\frac{q_{||}}{q})t]\cross$

$\cross m_{\epsilon\epsilon’\epsilon’’}(\mathrm{k}, \mathrm{p})a_{\epsilon}^{*},(\mathrm{p}, t)a_{\epsilon}^{*},,(\mathrm{q}, t)d^{3}\mathrm{p}$ (26)

which is driven by the phase term

$\exp[\iota(\epsilon\sigma_{k}+\epsilon’\sigma_{p}+\epsilon’’\sigma_{q})(t-t’)]$ (27)
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Indeed, the zero value of the phase of the above complex exponential characterises the
resonant condition, and the simultaneous conditions

$\epsilon\sigma_{k}+\epsilon’\sigma_{p}+\epsilon’’\sigma_{q}=0$ with $\mathrm{k}+\mathrm{p}+\mathrm{q}=0$

gives the resonant surfaces. At small Rossby number, the long-time behaviour is dom-
inated by near-resonant interactions, and a qualitative analysis of Waleffe (1993) has
shown how resonant interactions can concentrate energy towards the $2\mathrm{D}$ manifold. More
generaly, it is possible to directly construct equations for ‘slow’ amplitude square and
cross-correlations, or $<a_{+}^{*}a_{+}>,$ $<a_{-}^{*}a_{-}>,$ $<a_{+}^{*}a_{-}>$ , from the above equations (26).
These quantities are kept constant in the ‘RDT’ limit, whereas the nonlinear terms re-
sponsible for their slow evolution are constructed, using either asymptotic developments
of weak wave-turbulence or suitably generalized two-point closures. In order to connect
that with classic turbulence theory, we will proceed in a slightly diferent way, by con-
sidering a fully anisotropic second order spectral tensor and related transfer tensor. The
second-order spectral tensor $\Phi_{ij}(\mathrm{k}, i)$ , is the Fourier transform of the two-point covariance
matrix

$<u_{i}(\mathrm{x}, t)u_{j}(\mathrm{x}’, t)>$ (28)

and its more general expression for homogeneous anisotropic turbulence is

$\Phi_{ij}=$ (29)

using an orthonormal frame of reference, associated with polar-spherical coordinates
$(k, \theta, \phi)$ of $\mathrm{k}$ in Fourier space, in close connection with the Craya-Herring decomposi-
tion for the velocity field. Hence $\Phi_{ij}$ can be expressed as a sum of different contributions,
in term of the scalars $e$ (energy spectrum), $Z$ (polarisation anisotropy), with $Z=Z_{f}+\iota Z_{i}$

complex, and $\mathcal{H}$ (helicity spectrum), which all depend on $\mathrm{k}$ . Isotropic turbulence is char-
acterized by $e(k, \theta, \phi, t)=E(k, t)/(4\pi k^{2}),$ $Z=\mathcal{H}=0$ , so that the real part of $\Phi_{ij}$ , which
is involved in classic one-point correlations, involve $e$ and $Z$ contributions as follows

$Re(\Phi_{ij})=$ $\frac{E(k)}{\underline 4\pi k^{2}}P_{ij}$ $+(e(k,$ $\theta,$$\phi)-\frac{E(k)}{\underline 4\pi k^{2}})P_{ij}+$ $\underline{Re(ZN_{i}N_{j})}$ (30)
Polarisation anisotropyPure isotropic part Directional anisotropy

(see [13] for details, $Re$ denotes the real part of a complex quantity, $P_{ij}$ is the classical
projection operator, and $N_{i}$ is the eigenvector as in (22) $)$ . It is clear from the above
equation that the anisotropy is twofold. A lessening of dimensionality is only reflected by
a nonzero value of the second term. Indeed, the directional anisotropy, which is expressed
by a departure of $e$ from a spherical equidistribution, is extreme in a pure two-dimensional
state, where $e$ is concentrated onto the plane $k_{3}=0$ . The set $e,$ $Z,$ $\mathcal{H}$ is governed by the
following system of equations

$( \frac{\partial}{\partial t}+2\nu k^{2})e=T^{e}$ (31)

$( \frac{\partial}{\partial t}+2\iota/k^{2}+4\iota\cos\theta_{k})Z=T^{Z}$ (32)
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$( \frac{\partial}{\partial t}+2\nu k^{2})h=T^{h}$ (33)

in which the right-hand-sides reflect nonlinear transfer terms. Of course, the set $(e, Z, \mathcal{H})$

is imediately derived from the set of amplitude correlations $<a_{+}^{*}a_{+}>,$ $<a_{-}^{*}a_{-}>$ ,
$<a_{+}^{*}a_{-}>e^{-4\iota\cos\theta_{k}t}$ through linear combination, and the generalized transfer terms $T^{()}$

are cubic in terms of these amplitudes.
In the general derivation of EDQN (Eddy Damped Quasi Normal) closures, detailed

anisotropy is preserved, and the structure of linear propagators is an essential ingredient.
The complete equation (see Cambon&Scott 1999) is not recalled for the sake of brevity. A
complete closure of generalized transfer terms $(T^{e}, T^{z}, T^{h})$ in term of $(e, Z, \mathcal{H})$ is eventually
derived using the decomposition (30) and the following Kraichnan’s ‘response tensor’

$G_{ij}^{QN}=Re[N_{i}N_{j}^{*}\exp(\iota\sigma_{k}(t-t’))]\exp[-\mu_{k}(t-t’)]$ (34)

in which the viscous $+\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{y}$ damping term $\mu_{k}$ has to be specified, or is governed by
additional dynamical equations in more complex DIA or TFM versions. In the case of
strong rotation, its role is only to ensure suitable convergence of temporal integrals, and
its shape is unimportant. The final step in applying the procedure is the so-called ‘marko-
vianization’. In our context, this amounts to separate in the integrands terms considered
as rapidly evolving, and terms, linked to $a_{\epsilon}$ in (25), considered as slowly evolving. Only in
the latter, the non-instantaneous dependency with respect to the past time $t’$ is reduced
to an instantaneous dependency, making $t’=t$ . The first non-trivial application of this
procedure to turbulence with waves was called EDQNM2. His advantage was to exhibit
a generic closure relationship, for instance

$T^{e}= \sum_{\epsilon,\epsilon’,\epsilon’’=\pm 1}\int_{k+p+q=0}\frac{S^{QN}(\epsilon \mathrm{k},\epsilon’\mathrm{p},\epsilon’’\mathrm{q})}{\mu_{k}+\mu_{p}+\mu_{q}+2\iota\Omega(\epsilon\cos\theta_{k}+\epsilon’\cos\theta_{p}+\epsilon’’\cos\theta_{q})}d^{3}\mathrm{p}$ (35)

in which the same phase term as in (27) naturally appears through the three-fold product
of Green’s functions (34). The main result of EDQNM2, when contrasted with a high
resolution $(128\cross 128\cross 512)$ Large-Eddy-Simulation, is shown on fig. 4. This is the trend
to concentrate the spectral density of energy $e(k, \cos\theta_{k}, t)$ towards the wave plane normal
to the rotation axis, or $cos\theta_{k}=0$ , in agreement with a partial two-dimensionnalisation
mediated by the nonlinear spectral transfer $T^{e}$ in (31).

Recently, it was shown that the treatment of the ‘rapid’ phase in the oscillating term
$Z$ in (32) was not consistent with a systematic separation rapid-slow based upon (25) and
its statistical moments up to the third order, and an improved version, EDQNM3, was
constructed. Even if the two versions yield similar numerical results in rotating turbulence
started with almost isotropic initial data, realizability is not ensured by EDQNM2 for any
initial data, and localized lack of realizability were exhibited in the stably stratified case
(van Haren 1993). As a bonus, a realisable, simplified asymptotic model AQNM is being
derived from the EDQNM3 version (Scott 1999) in the limit $\mu_{k}<<\Omega$ . This model gives
the opportunity to investigate the limit of very small Rossby numbers, very high Reynolds,
and very long time, limit which cannot be captured by standard pseudo-spectral DNS,
and even by standard numerical calculations of discretized EDQNM2-3 versions.

Going back to experimental (Jacquin et al., 1990) and numerical (more or less clas-
sic DNS-LES) experiments, which only deal with short times and moderate Reynolds
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Figure 4: Isolines of kinetic energy for LES computations $(a)$ at $\Omega=0$ at time $t/\tau=427$ ,
$(b)$ EDQNM2 with $\Omega=0;(c)$ LES with $\Omega=1$ at $t/\tau=575$ ; and $(d)$ EDQNM2 calculation
with $\Omega=1$ at time $t/\tau=148$ . The vertical axis bears $\cos\theta_{k}$ (from $0$ to 1 upwards) and
the horizontal one the wave number $k$ . (Courtesy from Cambon et al. 1997)

numbers, they confirm that the nonlinear tendency to create columnar structures is very
subtle and cannot yield to well organised arrays of $2\mathrm{D}$ vortices. The eventual appearance
of such ‘rotors’ in other low resolution DNS or LES in periodic boxes is only a numerical
artefact. In an actual experiment or–explicitly inhomogenrous–numerical simulation,
however, the nonhomogeneous forcing $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ the presence of solid boundaries can enforce
the creation of such organised vortices.

5 Additional role of forcing and solid walls

Although they confirm the significant anisotropisation linked to partial two- dimension-
alisation, physical experiments and high resolution DNS and LES do not really show
creation of coherent quasi-2D vortices, as far as the conditions for reproducing homo-
geneity are fulfilled. One of this condition is to stop the computation when the most
amplified integral lengthscale becomes of the same order of magnitude as the length of
the computational box. A good compromise to reach higher elapsed times without de-
veloping spurious anisotropy was obtained by Mansour with an elongated computational
box with length in axial direction four times the length in other two directions (corre-
sponding to $512\cross 128\cross 128$ LES used in Cambon et al. 1997). Apparently more complete
two-dimensionalisation with creation of strong axial rotors was shown in the low resolu-
tion $64^{3}$ LES of Bartello et al. (1994), but this is a numerical artifact due to blocking
the integral lengthscales when the computation is performed for too large elapsed times.
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Figure 5: Vortex structures identified by NAM is -values (tubes) and vorticity iso-values.
(Courtesy from Godeferd&Lollini 1999)

Another difference of the latter study with DNS and LES studies, in which homogeneity
is fulfilled (Bardina et al. 1985, Cambon et al. 1997), was the rise of a two-component
limit for the Reynolds stress tensor in [3] $(\overline{u_{3}^{2}}<<\overline{u_{1}^{2}}\sim\overline{u_{2}^{2}})$ , in close connection with inter-
ference with periodic boundaries. The last numerical study has suggested that boundary
effects are important for reenforcing the rise of coherent axial vortices. Hence a numerical
simulation of rotating turbulence between two solid parallel walls has been performed by
Godeferd&Lollini (1999) by means of a pseudo-spectral code. Another, more important,
motivation for the DNS was to try to reproduce the essential results of the experiment by
Hopfinger et al. (1982) in which confinment and local forcing are additional, essentially
inhomogeneous, effects with respect to the Coriolis force. Typical DNS results are briefly
presented and discussed as follows. A transition is shown to occur between the region
close to the forcing and an outer region in which coherent vortices appear, the number of
which depends on the Reynolds and Rossby numbers. Identification of vortices is shown
in fig. 5 using both $\mathrm{i}\mathrm{s}\mathrm{o}$-vorticities (noisy spots) and a specific criterion (Normalized An-
gular Momentum), which was suggested by experimentalists in PIV for obtaining smooth
isovalues. Asymmetry in terms of cyclones-anticyclones is mainly induced by the Ekman
pumping near the solid boundaries, yielding helical trajectories. This is illustrated in fig.
6, in which a pair cyclone-anticyclone is isolated. Even if the Ekman pumping generates
a three-component motion, the presence of the horizontal walls, and the presence of the
forcing in a horizontal plane between them, are essential for enforcing coherent vortices.

Nevertheless, and in contrast with the experimental results, the asymmetry cyclones-
anticyclones was not obtained in term of number and intensity, but for a case. In the same
way, the typical distance between adjacent vortices is of the same order of magnitude as
their diameter, and the Rossby number in their core is close to one. It was expected
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Figure 6: Selected pair of cyclonic-anticyclonic eddy structures. (Courtesy from Godeferd
&Lollini 1999)

that for a given symmetric distribution of more intense and concentrated vortices (higher
Rossby number), the centrifugal and elliptic instabilities could act in destabilizing the
anticyclones, so that dominant cyclones could emerge, as in the physical experiment. It
seems that the insufficiently high Reynolds number is responsible for the lack of intensity
and concentration. Hence, the conditions of stability–rediscussed in conclusion– are
no relevant for strongly favouring the cyclonic eddies, but they could do that for higher
Reynolds DNS or LES.

6 Concluding comments

6.1 Stably-stratified homogeneous turbulence with and without
rotation

In this case, which is not discussed in detail for the sake of brevity, it is necessary to
reintroduce the buoyancy force term $b$ in eq. (1). Using a special frame of reference and
a unique vector for $u_{i}$ and $b$ , the initial five components-problem $(u_{1}, u_{2}, u_{3},p, b)$ reduces
to a three-component one, with three eigenmode amplitudes $(\xi_{0}, \xi_{+1}, \xi_{-1})$ . Two of them
characterise wavy motion $(\epsilon=\pm 1)$ , similarly to the case of pure rotation, but the presence
of a steady mode $(\epsilon=0)$ is an important new thing. The steady mode corresponds to the
solenoidal part of the horizontal velocity field, or ‘vortex’ mode (Riley et al. 1982) in pure
stratified flows, and to the ‘quasi-geostrophic’ mode in the combined rotating-stratified
flow. Hence, the case of stably stratified turbulence is very different from the case of pure
rotation, even if the gravity waves present strong analogies with inertial waves, and if all
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the equations of section 5 can have a similar form (but with $\epsilon=\pm 1$ and $\epsilon=0$ in (21) and
(26) $)$ .

The vortex mode is present for any wavevector orientation, and contains half the total
kinetic energy in isotropic turbulence. Pure vortex interactions were found to be domi-
nant; resonant conditions are obtained with $\epsilon=\epsilon’=\epsilon’’=0$ in (21) and (26) with no need
to restrict to resonant surfaces as for resonant wave interactions. Godeferd and Cambon
(1994) have shown that the spectral energy concentrates towards vertical wavenumbers
$k_{\perp}\sim \mathrm{O}$ . These wavenumbers correspond to horizontally (because $\mathrm{k}$ and \^u are perpendic-
ular) stratified turbulent structures with dominantly horizontal, low-frequency motions.
As for the $‘ 2\mathrm{D}$ transition’ expected in pure rotation, a new dynamical insight was given to
the collapse of vertical motion and layering expected in stably stratified turbulence. Only
recently, reintroducing a small but significant vortex part in their wave turbulence analy-
sis, Caillol and Zeitlin (1999) found that: ‘The vortex part obeys a limiting slow dynamics
equation exhibiting vertical collapse and layering which may contaminate the wave-part
spectra’. This is in complete agreement with the main finding of [18]. It is important to
point out that this result reflects a scrambling of any triadic interactions, like $(0\pm 1\pm 1)$ ,
including at least one wave mode, so that the pure vortex interaction (000) becomes dom-
inant. The corresponding ‘vortex energy transfer’ is strongly anisotropic, it does not yield
a classic cascade (which would contribute to dissipate the energy) but instead yields the
angular drain of energy which condensates the energy towards vertical wave-vectors, in
agreement with vertical collapse and layering. At much larger times, the transfer terms
including wave contribution could become significant through resonant wave triads, but
this would occur in a velocity field yet strongly altered (thence strongly anisotropic) by
collapse and layering. As for the case of pure rotating turbulence, linear ‘RDT’ solutions
as (20), even with an aditional steady term $A_{i}^{0}$ , are not capable of predicting irreversible
collapse and layering of the velocity field. Nevertheless, they can present interest for
calculating two-time second order Eulerian correlations, in connection with prediction of
a plateau for lagrangian one-particle vertical dispersion (Kaneda&Ishida, Nicolleau&
Vassilicos, papers to appear).

The case of combined effects of rotation and stratification presents particular interest
in the geophysical context for large enough horizontal length scales, and is the subject
of many works in progress, using weakly nonlinear wave-turbulence theories and accurate
DNS data. ([1], Kimura&Herring)

6.2 General comments
$\bullet$ Anisotropic ‘two-point closures’ ([13], [14]) versus ‘wave-turbulence’ theories ([1],

[7], [32] $)$ .
As for ‘RDT’ and ‘linear stability’ communities, there is too few common works on
possible points of contact between the two communities. An important common
formalism exists, provided the closures be using the bases of eigenmodes without
isotropy assumption. The presence of a damping term in the closures, as $\mu_{k}$ in (34)
plays a particular role, even if very small, to regularise the ‘resonance operator’,
which often reduces to a Dirac Delta function in wave-turbulence theories.

$\bullet$ Anisotropy versus structure.
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Anisotropic spectral description, with angular dependance of spectra and cospectra
in Fourier space, allows to quantify columnar or pancake structuring in physical
space. Among various indicators of the thickness and width of pancakes, which can
be readily derived from anisotropic spectra, integral lengthscales related to different
components and orientations are the most useful.

$\bullet$ Homogeneous versus confined turbulence.

Vertical confinment and local forcing were shown to favour the emergence of organ-
ised eddies, in the rotating flow, even if the Ekman layer and the forcing generated
more three-dimensionality at small scale. More generally, interaction of geometry
with the ‘natural’ development of $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}\mathrm{a}\mathrm{r}/\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{k}\mathrm{e}$ structures has to be studied
in the general case.

$\bullet$ Structure versus stability analysis.

This topic could link the two parts of our survey of rotating flows: stability analy-
sis of preexisting coherent vortices, and creation of structures through nonlinearity,
confinment and forcing. But the vortices appearing in fig. 5 seem to be too weak to
be affected by the centrifugal $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ elliptic instabilities discussed in section 3, so
that a clear asymmetry in term of cyclonic and anticyclonic eddies was not found.
For the stably stratified case, a recent ‘zig-zag’ instability (Billant&Chomaz 1999)
was recently proposed to explain the layering (see also Dritschel et al., 1999, in
the different context of quasi-geostrophic flows with both stable stratification and
system rotation). The typical thickness of the slices, however, is likely much larger
than the one seen in a typical turbulent stratified flow. Even if linear stability of
preexisting large coherent structures can give qualitative information about the ge-
ometry of $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n}\mathrm{a}\mathrm{r}/\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{s}$ fine structures, nonlinear (and nonisotropic) cascade
and dissipation remains essential features to predict typical length scales.
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