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Berezin Transforms and Laplace-Beltrami Operators
on Homogeneous Siegel Domains

— commutativity, symmetry of the domain and a Cayley transform —

TAKAAKI NOMURA! (Kyoto University)

1. Preliminaries

Homogeneous Siegel domains are described in terms of normal j-algebras (cf.
[15]), of which we are going to give the definition. Let g be a split solvable Lie
algebra, J a linear operator on g with J2 = —I and w a linear form on g. Then the
triple (g, J,w) is called a normal j-algebra if

(L) [Jz,Jy] = [z,y] + J[Jz,y] + J[z, Jy] (for all z,y € g),
(1.2) (z|y)w = ([Jz,y],w) defines a J-invariant inner product on g.

We describe here some basic facts about normal j-algebras following [15] and [17]
(see also [16]). Let (g,J,w) be a normal j-algebra. Let n := [g,g] be the derived
algebra of g, and a the orthogonal complement of n in g relative to the inner product
(-]-)w- Evidently we have g = a +n. Moreover, a is a commutative subalgebra of

g such that ad(a) consists of semisimple operators on g. For every o € a* we set
ne:={z€n; [h,z] =(h,a)z forall hea}.

Take all o € a* such that n, # {0} and Jn, C a, and number them as a,..., o.
We have dima = r and dimn,, = 1 for every k. The number r is called the rank
of the normal j-algebra g. We can reorder oy, ..., o, if necessary, so that all the «
such that nq # {0} (such an « is called a root of the normal j-algebra) are of the
following form (some roots might be missing):

slam+ar) (1Sk<m<r), slom—ax) (1Sk<mZr),

30 (1<k<r), o 1<k<).
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We note that if o, 8 are distinct roots, then n, is orthogonal to ng. Put

9(0) =ad z n(am—ak)/2a 9(1/2) = Z na,-/Z,
i=1

m>k

8(1) =D Ma; ® Y Namtar)2-
i=1

m>k

Understanding g(z) = 0 for ¢ > 1, we have [g(),g(j)] C g(¢ + 5). Moreover
TMam-ar)/2 = Mam+ar)2 (M >Fk),  Jngp=ngp (1Sis7),

so that Jg(0) = g(1) and Jg(1/2) = g(1/2). Taking E; € n,, (¢ = 1,...,7) such
that ax(JE;) = ki, we put H; := JE; € a and

(1-3) H:=H1+."+H’r) E:=E1+...+Er.
We write down here the constants used frequently in this note:

Nk = diMg N, )2 = diMg Naptaye (1S k<m ),

1
(1.4) b := §dimIR Mg, 2 (1S2iST),
1 .
d; Z=1+'2'(anj+znji) (ISj<s7).
k>j i<j

Let G = exp g be the connected and simply connected Lie group corresponding
to g. Note that g(0) is a Lie subalgebra of g. We denote by G(0) the corresponding
subgroup exp g(0) of G. The group G(0) acts on V := g(1) by adjoint action. Let
§ be the G(0)-orbit through E. By [17, Theorem 4.15]  is a regular open convex
cone in V, and G(0) acts on  simply transitively. Being invariant under J, the
subspace g(1/2) is considered as a complez vector space by means of —J. We shall
write this complex vector space by U. We put W := V¢, the complexification of V.
The conjugation of W relative to the real form V is written as w — w*. The real

bilinear map @ defined by

Qu, o) = %([Ju,u'] —ifud]))  (wdd € g(1/2))

turns out to be a complex sesqui-linear (complex linear in the first variable and
antilinear in the second) Hermitian map U x U — W which is Q-positive. This

means that

QW u) = Q(u,uw)* (u,u' €U), Qu,u) € Q\ {0} forallu e U\ {0}.



With these data we define the Siegel domain D corresponding to the normal j-
algebra (g, J,w) to be

D:={(u,w) €U xW; w+w*—Qu,u) € Q}.

Note that we take a generalized right half plane rather than a more familiar upper
half plane.

Consider the Lie subalgebra np := g(1) +g(1/2). It is at most 2-step nilpotent.
Let Np = exp np be the corresponding connected and simply connected nilpotent Lie
group contained in G. We write the elements of Np by n(a,b) (a € g(1), b € g(1/2)).
The group Np acts on D by

(1.5)  n(a,b)- (u,w) = (u+b, w+ia+3Q(bb)+Q(u, b)) ((u,w) € D).

On the other hand, the adjoint action of G(0) on g(1/2) commutes with J. This
implies that G(0) acts on U complex-linearly. Moreover the adjoint action of G(0) on
V = g(1) extends complex-linearly to W, so that G(0) acts on D complex-linearly.
Hence G = Np x G(0) acts on D simply transitively. To see this more explicitly,
put e := (0, E) € D. Then given z = (u,w) € D, we can find a unique h € G(0)
satisfying hE = Rew — Q(u,u)/2. Taking n = n(Imw,u) € Np, we see by (1.5)
that z =nh -e.

For every s = (s1,...,5-) € C" let X_ be the one-dimensional representation of
A := exp a defined by

X (epotka) = exp(z sktk> (t1,...,t €R).
k k

Let N := expn. It is clear that G = N x A. We extend X_ to a one-dimensional
representation of G by defining x (n) = 1 for n € N. Let us define functions
As (s € CT) on Q by Ag(hE) = x_(h) (h € G(0)). Evidently it holds that

(1.6) Ag(hz) = x,(R)As(z) (b € G(0), z € Q).

We know that A, extends to a holomorphic function on the tube domain Q + iV
(cf. for example [7, Corollary 2.5]).

For h € G(0), let Adguy(h) := (Adh)|g). Moreover let Ady(h) stand for
the complez linear operator on U defined by the adjoint action of h € G(0) on
g(1/2), and det Ady(h) its determinant as a complex linear operator. Then, with
d:=(dy,...,d,) and b := (by,...,b,), we have for h € G(0)

(1.7) det Adgqy(h) = x4(h), | det Ady(R) |* = X, ().
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By [6, §5] or [18, §I1.6], it is known that D has a Bergman kernel «. If Hol (D)

denotes the Lie group of the holomorphic automorphisms of D, then « satisfies
(18) K'(Zl) ZZ) = K'(g *21, 8- 22) det g,(zl) det g/(zQ) (g € Hol (D)u 21,22 € D)»

where ¢'(z) is the complex Jacobian map of g at 2 € D. The description of the
simple transitive action of G on D together with the property (1.7) and (1.8) shows

(1.9)  K(21,22) = C - Alpa-p (w1 + wh — Qui,u)) (25 = (uj,w;) € D)

with C = (e, €)Agq1b(2E) > 0. We put 77 := A_sq-p in what follows for simplicity.

2. Cayley transform
Let D, be the directional derivative in the direction v € V given by

d
D) = i),
For every z € 2 we define Z(z) € V* to be —V logn(z), that is,
(v,Z(z)) = —=Dylogn(z)  (veEV).
T is called the pseudoinverse map. By [3, §2], T gives a diffeomorphism of €2 onto
the dual cone Q* in V*, where
O ={6eV*; (5,6) >0 forallze )\ {0}}.

The group G(0) acts also on V* by the coadjoint action: h-& = §o h~1, where
h € G(0) and ¢ € V*. It is easy to show by using (1.6) that Z is G(0)-equivariant:

I(hz) = h-ZI(z) (h € G(0), z € Q).

In particular, Z(\z) = A~1Z(z) for all A > 0, and G(0) acts on Q* simply transitively.
Moreover, Z can be extended to a rational map W — W* [4, Satz 1.2.3].

In order to find an inverse map of Z, we need to dualize the above matters
concerning Z. First we define EY,...,E} € V* by

<ZZ‘jEj + Z ka, E:> = Ty (xj € R’ ka € n(am+a")/2)’
Jj=1

m>k

and for every s = (s1,...,5,) €ER",
E!:=8,E+---+sE €V™"

S

We can show that Z(E) = Ej4,,. Next we put s* := (s, ...,51) and set
X=X AL Biag) = xi(R) (k€ G(O).
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Ay is a function on * such that AX(h- &) = xi(h)A%(€) for h € G(0) and £ € V*.
We define n* := A* 54._« and

(Z°(€), f) == —Dylogn™(§) (€, feV7)
Thus Z*(§) € V and Z* gives a diffeomorphism of Q* onto 2. Moreover, Z* is G(0)-
equivariant, that is, Z*(h - £} = h(Z*(£)) for any h € G(0). We can prove that Z* is

extended to a rational map W* — W.
Proposition 2.1. 7* =771,
Theorem 2.2 ([11]). (1) Z is holomorphic on Q + 1V, and I* is holomorphic on
QF +iV>. :
(2) Z(Q2+14V) is contained in the holomorphic domain of T*, and T*(2* +iV'*) is
contained in the holomorphic domain of I.
Remark 2.3. In general we cannot have Z(Q2 + iV) C Q* + ¢V* if Q is no longer
selfdual. This failure is given by an example where 2 is the Vinberg cone. See [11]
for details.

Now considering E3,4,,, naturally as an element of W*, we define

C(w) = Ejq,p —2I(w+E) e W* (weWw).

It is evident that C is a rational mapping W — W* which is holomorphic on Q+:V.
Let U' denote the space of all antilinear forms on U. We set for z = (u,w) € U x W

C(z) == (2Z(w + E) 0 Q(u, ), C(w)) € Ut x W™.

Clearly C is a rational map U x W — Ut x W*. It should be noted that if z =
(u,w) € D, then we have w € Q + 1V, so that C(z) is holomorphic on D. We call
C a Cayley transform. This is a slight modification of Penney’s [14]. By a verbal

translation of Penney’s proof [14] we have
Proposition 2.4. The image C(D) of D is bounded.

To give the inverse map of C explicitly we note first that
(2.1) (v1|v2)y = Dy, Dy, logn(E) (v1,v2 € V)

defines an inner product on V (see [3, §2]). Extending this inner product to a
complex bilinear form (denoted by the same symbol (-|-),) on W x W, we define
fe W and w € W* for f € W* and w € W respectively by

<w,|f)n=<wl’f)1 (wlvﬂ;)=<wl|w>'fl (w'EW).
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Next we put

(2.2) (u1|uz)y = (Qur,u2) | E)y  (ur,u2 €V).

It is easy to see that this is a Hermitian inner product on U. Now define lincar maps
F— F from Ut to U and u — @ from U to Ut by

(Flu)y=(,F), (v,8)=(@lv), @ €eU)

Obviously they are inverse to one another. Moreover, for every w € W, let ¢(w) be

the complex linear operator on U determined through

(23) (QO(’UJ)Ul !Ug)n = <Q(’U,1,U2) [w >7] (Ul, Ug € U)

Clearly ¢(F) is the identity operator, and it is easy to see that p(w*) = p(w)*. Let

us set

B(f) :=2T"(Bjao — /) —E€W  (feW"),
B(F,f):= (p(E— f)'F, B(f)) eUxW ((F,f) €U x W").

It is evident that both B and B are rational mappings.

Theorem 2.5 ([11]). C: D — C(D) is biholomorphic and birational with C™! = B.

Remark 2.6. Suppose that D is quasisymmetric in this remark. This means that €2
is selfdual with respect to the inner product (-|-), defined by (2.1). We identify
V* with V and W with W* by (-|-),. Then by [1, Proposition 3} the product o
defined by '

1
(v10v2 |V )y = —3 Dy, Dy, D, log n(E) (v1,v9,v3 € V)

is a Jordan algebra product, so that V' is a Euclidean Jordan algebra in the sense of
[5]. The identity element is F, and by the above identification we have Z(z) = z~1,
the Jordan algebra inverse of z. Identifying further U' with U by means of (-|), in

(2.2), we get
Clu,w) = (2p(w+ E)'u, (w— E)(w+ E)™).
Thus our C coincides with Dorfmeister’s in [2, (2.8)] for quasisymmetric D. We note

that the map w — @(w) with ¢(w) as in (2.3) is a representation of the complex

Jordan algebra W = V¢ in the present case (cf. [2, Theorem 2.1}).



3. A characterization of symmetric Siegel domains

By definition, the spaces g(1/2) and V' = g(1) have the real inner product (- |- ),
of (1.2). We first export this inner product to V* canonically by identifying V* with
V by (-|-)w. Note that this identification is not quite the same as in Remark 2.6
in general. The real inner product on V* obtained this way is again denoted by
(-] )w, which is extended naturally to a Hermitian inner product (-|-), on W*. On

the other hand the complex vector space U has a Hermitian inner product (-|-),
defined by

(3.1) (U1 | u2)w == 2(Qu1, u2),w) = ([Juy, ug),w ) — @ { [uy, us,w ).

We note that Re (u; |us2)y = (u;|us ), for uj,us € U. By a procedure similar to
the above we introduce a Hermitian inner product (-|-), on U by importing the
Hermitian inner product (3.1) from U.

Let 8 € g* be the Koszul form given by

(z,8) :=tr(ad(Jz) — J o (ad z)) (z €g).
It is known by [10] (see also [9, §5]) that ([Jz,y], 8) is (the real part of) the inner

product on g induced by the Bergman metric of the corresponding Siegel domain D
up to a positive multiple. Indeed we can show that f|, is equal to Ej4., extended
to n by zero-extension.

Theorem 3.1 ([12]). One has ||C(g- €|l = [[C(g7* - €)|l for all g € G if and only
if the following two conditions are satisfied:
(1) D is symmetric,

(2) wls is equal to a positive number multiple of B),.

Remark 3.2. Since C : D — C(D) is biholomorphic with C(e) = 0, we have
IC(g-e)llw=1C(g7" - e)ll forallgeG
< |h-0llo=|h""-0||, foralheG:=CoGoC".

4. Berezin transforms

For simplicity we set
b +d; +p;/2
Ao = max 2% ¥ Pilz s/ :
155<r bj + 2dj
where p; = ij ngj. Let A > Ag. This is the condition for the non-triviality of

certain Hilbert spaces H#(D) of holomorphic functions on D (cf. [17] or [7]). Let
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be the Bergman kernel of D (see (1.9)). The Berezin kernel Ay on D is given by

AA(ZI,ZQ):( (21, 22)) ))A (21,2 € D).

5(21, Z1) /‘6(22, 22

We put ay(g) := Ax(g-e, ) (g € G). Then it is easy to see that ax(g) = ar(¢97).

We know that a) is integrable on G with respect to the left Haar measure. Consider
the space L?(G) on G for the left Haar measure. The Berezin transform B,, when

transferred to L%(G), is given by the convolution operator

Byf(z) = /G fWay ' 2)dy = frax@)  (f € L*(G)).

On the other hand, the inner product (-|-), on g defines a left invariant Rie-
mannian metric on G, relative to which we have the Laplace-Beltrami operator £,
on G. In order to express L, in terms of the elements of the enveloping algebra
U(g), we set for X € g

X f(z) = % flexp—tX))| . Rila)= % faexpiX)|
These are extended to U(g) by homomorphisms. Though the following lemma holds
for any connected Lie group, we write it down here in our situation. See [19, Theo-

rem 1] for a proof.

Lemma 4.1. Take U € g for which one has (X |¥), = trad(X) for all z € g.
Then L, = —A+ T, where A := X7 +- -+ X3y with an orthonormal basis {X;}2Y)
of g relative to (-|-)w-

We note that ¥ € a in our case.

Theorem 4.2 ([13]). Let A > Ao be fized. Then, By commutes with L, if and only

if D is symmetric and w|, is equal to a positive number multiple of [|x.

We indicate here how Theorem 4.2 is derived from Theorem 3.1.
(1) B, commutes with £, <= (—A + ¥)ay = (—A + ¥)a,.
(2) Since ax(g) = ax(g™), we have Xax(g) = Xax(¢7?) forall X € U(g) and g € G.
(3) (A=Dar(g) =Aax(g)(A]IC(g-€)]|2 = (T,a)) for some a € a*.
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