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SUPERSYMMETRIES AND RECURSION OPERATORS FOR
N =2 SUPERSYMMETRIC KDV-EQUATION

PauL H.M. KERSTEN
FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF TWENTE
P.0O.Box 217, 7500 AE ENSCHEDE, THE NETHERLANDS
E-MAIL:KERSTENQMATH.UTWENTE.NL

1 Introduction

In this lecture we shall discuss the supersymmetric extensions of the classical
KdV equation

Uy = —Uggr + OUUS (1)

with two odd variables, the situation N = 2. The construction of such
supersymmetric systems runs along similar lines as for the supersymmetric
extension of the classical nonlinear Schrédinger equation. For additional
references see also [1, 2, 3, 5].

The extension is obtained by considering two odd (pseudo) total deriva-
tive operators D; and D, given by

D1 - 801 + 91D$, Dz = (992 + Hng, (2)

where 0y, 0, are two odd parameters. Obviously, these operators satisfy the
relations D? = D2 = D, and [Dy, Dy] = 0.

The N = 2 supersymmetric extension of the KdV equation is obtained
by taking an even homogeneous field ®

d=w+ 911/} + 92(,0 + 029111, (3)

with degrees deg(®) = 1, deg(u) = 2, deg(w) = 1, deg(p) = deg(v) =
3/2, deg(f;) = deg(f2) = —1/2, and considering the most general evolution
equation for ®, which reduces to the KdV equation in the absence of the odd
variables ¢, 1.



Proceeding in this way, we arrive at the system
1
®; = D, (—Dgfb + 30D, D, + —2—(a —1)D D;®* + a<1>3) : (4)

Rewriting this system in components, we arrive at a system of partial dif-
ferential equations for the two even variables u,w and the two odd variables

()0? w’ i'e"

u; = —uz + 6uu; — 3Py — 3PPy — Jawwy — (a + 2)wws + 3au;w?
+ 6avww; + 6aw Py + aw,p + bawp,
0 = — 3 + 3urp + 3up; + 6aww, ¢ + 3aw’ey — (a+ 2)with
— (a + 2)wpy — (a — L)weyp — (a ~ Dwithy,
Py = —3 + 3wyt 4 3uRhy + 6awwP + 3aw Py + (a + 2)wips
+ (a + 2)wp, + (@ — D)wep + (a — Lwip,
w; = —ws + 3aw?w; + (a + 2)uw + (a + 2)vw; + (a — )i
+ (e — 1)ver. (5)

It has been demonstrated by several authors [2, 1] that the interesting equa-
tions from the point of view of complete integrability are the special cases
a=-2,1,4.

First we discuss the case a = —2. We shall present results for the con-
struction of local and nonlocal conservation laws, nonlocal symmetries and
finally present the recursion operator for symmetries.

It should be stressed that all constructions and computations are carried
through along the theoretical lines laid down in [4, 5] A similar presentation
is chosen for the case a = 4, and finally for the most intriguing case a = 1,the
results of which are given in [5].

The structure is extremely complicated in this last case. The reason for
the complexity is strongly related to the appearance of nonlocal variables
of degree 0, which play an essential role in the construction of symmetries ,
conservation laws, recursion symmetries.
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2 Caseaq=-2

In this subsection we discuss the case a = —2, which leads to the following
system of partial differential equations

Uy = —uz + 6uug — 3ppy — 3Py + bwiwy — 6uyw? — 12uww,

— 12w — 12w — 12wy,
Py = —p3 + 3urp + 3upr — 12wwip — 6w’y + 3wy + 3with,

Y = —th3 + 3w + 3uhy — 12wwiyp — 6wth; — 3wy — 3wy,
wy = —w3 — 6ww; — 3P — 3. (6)

The results obtained in this case for conservation laws, higher symmetries
and deformations or recursion operator will be presented in subsequent sub-
sections.

2.1 Conservation laws

For the even conservation laws and the associated even nonlocal variables we
obtained the following results.

1. Nonlocal variables pp; and pg 2 of degree 0 defined by

(pO,l)a: = w,

(Po,1)t = 3y — 2w® — wy;

(Po,z)z =P

(Po2)e = 12p3,1 — uy + 3ww, (7)

(see the definition of py; and p3; below).
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2. Nonlocal variables p; 1, p1,2, P1,3, P1,4 of degree 1 defined by the relations

(P1,1)z = u,
(p1,1)e = =31 — 31 + 1209w + 3u® — 6uw? — ug + 3w?;

(P12)e = ¥T1 — a1,
(P12): = -2/)2'@% + 241 + szq%u
— 6y w’ — 3qrwr — 2931 — 3pTywr — 3pqyu + Bpgiw’ + 2pp;

(p1,3):c = ¢Q%,
(p13)e = —"/)2% + 3¢Q%U - 6%0‘1%102 + o1y — 390(1%’!111 — ©ir;

(Pra)e = —p2ay + 3Pasw; + 3pgiu — 6pg w®
— 200, + 61w — 3w* — 2ww,y + w? (8)

(the variables ¢1 and 7; are defined below).

3. Nonlocal variable py; of degree 2 defined by (omitting (po,1)¢, for sim-

plicity)
(P21)s = @103u + Y1qy + V71w + pquw. 9)
4. Finally, the variable p3; of degree 3 defined by (omitting (ps,1):, for
simplicity)
(P31)e = 211‘(‘¢¢1 — 1 + dpypw + u® — 2uw® — ww,). (10)
Remark

It should be noted that the first lower index refers to the degree of the object
(in this case the nonlocal variable), while the second lower index is referring to
the numbering of the objects of that specific degree. The number of nonlocal
variables of degree 3 is 4, since this number is the same as for nonlocal
variables of degree 1, cf. (8). This total number will arise after introduction
of these nonlocal variables and computation of the conservation laws and the
associated nonlocal variables in this augmented setting. These conservation
laws and their associated nonlocal variables are of a higher nonlocality. We
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shall not pursue this further here, because the number of nonlocal variables
found will turn out to be sufficient to compute the deformation of the system
of equations (6), or equivalently the construction of the recursion operator
for symmetries.

For the odd conservation laws and the associated odd nonlocal varlables we
derived the following results.

1. At degree 1/2 we computed the variables q1 and q1 defined by

(‘1§)t = —9 + 3Ppw; + 3pu — 6w
(a%)w = ¢7

(@) = —%2 + 3pu — 6vw? — 3pw;. (11)
2. At degree 3/2 we have the variables qs and 73 defined by

(93)z = @u - pw,
u? — 6q1uw — qxuz + 3q1w1 + pow — P1u — prwy — 31/;¢1q1
— 3Yww, — 3<p<p1q1 + 12<pwq1w 3puw + 6w® + pws;
(@)e = —(gyu+pu),
(@3)e = —3qyu’ + 6qxuw +quup — 3quw] + Yaw — Yrwr + P1u + 3Pyiqy
— 3puw + 69w + Yw, + 390(p1q% - 12<,o¢q%w wu; + Jpww;.
(12)
3. Finally, at degree 5/2 we obtained qs and Js defined by the relations

8)e = q1P11% + 3qrww1 + 1w + YU — pp1aw,
(@3)= = —@1P1au+ qui = 3qww; +Prw ~ gpaw. (13)



Thus the entire nonlocal setting comprises the following 14 nonlocal variables:

Do,1, Po,2 of degree 0,
D11, P1,2, P1,3; P14 . of degree 1,
P2,1 of degree 2,
D3,1 of degree 3,
1
q1, q1 of degree 2
3
93, G2 of degree 1
_ 5

s, 4 of degree 3 (14)

In the next subsections the augmented system of equations associated
to the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

2.2 Higher and nonlocal symmetries

In this subsection, we present results for higher and nonlocal symmetries for
the N = 2 supersymmetric extension of KdV equation (6),

0 0 0 0
Y=Y+ Y — Y +Y¥— +...
ou * ow * dyp + oY +
We obtained the following odd symmetries, just giving here the components
of their generating functions,

Yi, =¥ Y, =91

Y%u:l:—‘l?, Y%u,2=901,

Y%‘p’l:—wl, Y;zzu,

Yf’l = u; VY =w (15)

1
2 '2"2
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and Yg 1, Y3 o whose representation is given in [5]. We also obtained the

following even symmetries:

Moreover there is a symmetry of degree 2, Y5 ; whose representation is given

in [5].

You =>0’
Y51 =0,
Yo‘fl =1,
Yolﬁ = =%
}/11,‘1 = Uy,
Yfﬁ = ws,
Y1v,’1 = 1,
Y1 1= (U

Y, = P1g1 + 2wwy,
Y = WZ% + wy,

Y2 = —qu+ o1 — Yuw,
Yl = —qywi — pu;

Y= ¢1_(.7% — 14y,

Yia = —v¥q; — 71,

Y5 = 1w + quu — o1 + 29w,
u+ qiwy + 91 + 2pw;

Y = —Tiu+ quwr + 1 + 20w,
Y, = —qiw1 — q1u+ @1 — 2Yw

(16)
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2.3 Recursion operator

Here we present the recursion operator R for symmetries for this case ob-
tained as a higher symmetry in the Cartan covering of the augmented system
of equations (14). The result is

8 ) 8 8
panened u_ w..—._. — 1/).—.
R=R's+R 8w+R +R 50 T (17)

where the components R*, R*, R¥, RY are given by
Ry = wy, + wy(—4u + 4w?)
+ Wy, (—4w) + wy (8uw — 2wy — 61h)
0 (=20) + w01 — Bw) + wyy (~20) + wy(r + Bypw)
+ wq% (02 = 31w — 3wy — pu — qruy)
7y (Y2 + 31w + 3pwr — Yu — Jyu)
gy ( (1/’ ) + wag (=p1) + wpy o (211) + wpy 5 (1)
+ Wm,l( 2uy + dwwy + p1q1 +1qy),
Ry = wy, + wy(4w?) + wy(—29) + wy (20)
+ wq% (=1 — pw - (I%’w1) + w'q%((pl —Yhw — q%wl)
+ wq% (=) + wﬁg (=) + Wp1,4 (2w;) + Wp1,2 (w1)
+ wp 1 (Vg1 — @71), |
Ry = wu(—20) + wu, (=2¢) + wu (=91 + 8pw)

+ Wy, + wWp(—2u + 4w?) + wy (—2w;)
+ Way (—uy + 3ww,; + c,olq%)

+ wy, (—uw — wy + 2009 + wl'q%)
+ wq% (_wl) + wﬁg (_u) + Wy, 4 (2(P1) + wm.z(‘Pl)

+ wpl.x(‘% —qiu + @%wl%
(18)



Ry = wu(=2¢) + wu, (20) + wu (01 + 8¢w)
+ Wy (2w1) + wy, + wy(—2u + 4w?)
+ wq%(uw + w2 — 209 + iqy)

+ W, (—uy + 3ww; + 1/)16%)
+ WQ,} (u) + wﬁg (—wl) + Wpy 4 (2’lﬁ1) + Wp 2 (¢1)

+ me(—T/h L q%u) (19)
It should be noted that the components are giveﬂ in the right-module struc-
ture .
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