

	provided by Kyoto University R
Kyoto University Research Information Repository	
Title	Phase-ShiftとControlled-Notで構成される量子回路につい て (計算機科学の基礎理論:21世紀の計算パラダイムを目 指して)
Author(s)	安倍, 秀明; 宋, 少秋
Citation	数理解析研究所講究録 (2000), 1148: 58-63
Issue Date	2000-04
URL	http://hdl.handle.net/2433/64014
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Phase-Shift と Controlled-Not で構成される量子回路について

安倍 秀明 (Hideaki ABE) *

1 はじめに

量子計算機は計算原理として量子力学を取り込んだ 新しい計算機である.量子計算機のモデルとして, Deutsch [4,5] は量子チューリング機械と量子回路 を提案した.また,量子回路は量子チューリング機 械と同じ計算能力をもつことが知られている [7].

本論文では補助ビットを用いた量子回路の並列 化に関する結果を示す. 従来研究として Moore と Nilsson [6] は Controlled-Not ゲートで構成される 任意の n 入力量子回路について, $O(n^2)$ 補助ビッ トを用いることで, 深さを $O(\log n)$ にできること を示した, また, t 個の s 入力 Phase-Shift ゲート と Controlled-Not ゲートで構成される任意の n 入 力量子回路について, $O(stn + n^2)$ 補助ビットを使 用することで, 深さ $O(\log n + \log t)$ にできること も示した.

本論文の結果として、Moore と Nilsson [6] の結 果を拡張し、使用できる補助ビットの数が任意に固 定された場合、上の二種類の量子回路について並 列化手法を示した.その特殊な場合として、Moore と Nilsson [6] の結果で使用する補助ビットの数を $1/\log n$ 倍にしても、同じ深さに並列化できること も示した.

2 諸定義

この節では,量子回路に関する諸定義を行う(詳し くは [5, 7] を参照).量子計算機では,一ビットを 二状態の物理系を用いて表現し,それを量子ビット と呼ぶ.量子力学では,二状態の物理系の状態は二 次元ヒルベルト空間のベクトルに対応する.ここ で,量子力学で用いられるケットベクトル表現 |·) を用いて

$$|0
angle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \ |1
angle = \begin{pmatrix} 0\\ 1 \end{pmatrix}^{t}$$

とする.また,任意の正整数 k と任意の $X = (x_1, x_2, \dots, x_k) \in \{0, 1\}^k$ に対し,

 $|X\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_k\rangle$

とすると,集合 $\{|X\rangle \mid X \in \{0,1\}^k\}$ は 2^k 次元 ヒルベルト空間の基底となる¹.ここで, \otimes はテ

*北陸先端科学技術大学院大学情報科学研究科, 〒 923-1292 辰口町旭台 1-1, Email: {h_abe, son}@jaist.ac.jp

¹本論文では,便宜のため, $X \in \{0,1\}^k$ に対し, $X \in \langle 0,1 \rangle$ ベクトル $X = (x_1, x_2, \dots, x_k)$,および,Xを文字列 X = 宋 少秋 (Shao Chin SUNG) *

ンソル積を表す. k 量子ビットの状態 $|\psi\rangle$ は基底 $\{|X\rangle \mid X \in \{0,1\}^k\}$ の線形重合わせ

$$|\psi\rangle = \sum_{X \in \{0,1\}^k} \alpha_X |X\rangle$$

と表現できる. ただし, $\sum_{X \in \{0,1\}^k} |\alpha_X|^2 = 1$ で ある. また, α_X は状態 $|\psi\rangle$ における $|X\rangle$ の振幅 と呼ばれ, $\alpha_X = |\alpha_X|e^{i\beta_X}$ となる β_X は状態 $|\psi\rangle$ における $|X\rangle$ の位相と呼ばれる. そして, 任意の $X \in \{0,1\}^k$ に対し, k 量子ビットの状態が $|X\rangle$ で あるとき, その k 量子ビットが値 X であると解釈 する.

また,量子力学の制約から,量子ビットの任意の 状態推移は量子ビットの状態のユニタリ変換とな り,また,任意のユニタリ変換による量子ビットの 状態推移が可能であることが知られている [3].こ こで,ユニタリ変換とはユニタリ行列で定義される 変換である.また,行列 U がユニタリとは,その 共役転置行列 U^{\dagger} がその逆行列 U^{-1} となる.任意 の正整数 k に対し, $2^k \times 2^k$ ユニタリ行列で定義 される任意のユニタリ変換を k ビット変換と呼ぶ. 以降, k ビット変換をその変換を定義するユニタリ 行列で表す.

以下では,本論文で用いる変換の定義を行う.ま ず,二ビット変換

$$\mathcal{U}_{CN} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

は Controlled-Not と呼ばれ,任意の二量子ビットの状態 $|\psi\rangle = \sum_{(x_1,x_2)\in\{0,1\}^2} \alpha_{(x_1,x_2)} |x_1,x_2\rangle$ に対し,

$$\mathcal{U}_{CN}|\psi\rangle = \sum_{(x_1,x_2)\in\{0,1\}^2} \alpha_{(x_1,x_2)}|x_1,x_1\oplus x_2\rangle \quad (1)$$

となる.ここで,第一ビットは制御ビットと呼ばれ, 第二ビットは目標ビットと呼ばれる.

また,任意の正整数 k に対し,ある k ビッ ト変換 U が Phase-Shift 変換(以下では,略 して PS 変換)であるとは, 2^k 個のある実数 $\gamma_{0^k}, \gamma_{0^{k-1}1}, \dots, \gamma_{1^k}$ が存在し, U が以下のように

 $x_1x_2\cdots x_k$ とする二つの表記法を用いている.

定義されるときである.

$$\mathcal{U} = \begin{pmatrix} e^{i\gamma_{0^{k}}} & & 0 \\ & e^{i\gamma_{0^{k-1_{1}}}} & & \\ & & \ddots & \\ 0 & & & e^{i\gamma_{1^{k}}} \end{pmatrix}.$$

このとき,任意の k 量子ビットの状態 $|\psi\rangle = \sum_{X \in \{0,1\}^k} \alpha_X |X\rangle$ に対し,

$$\mathcal{U}|\psi
angle = \sum_{X\in\{0,1\}^k} lpha_X e^{i\gamma_X} |X|$$

となる.

次に,量子回路を構成する素子である量子ゲート と補助ビットの定義を行う.任意の正整数 k に対 し, k ビット量子ゲートとは, k 量子ビットの入力 と出力をもち, ある k ビット変換 U が存在し,入 力の状態 $|\psi\rangle$ に対して状態 $U|\psi\rangle$ を出力の状態とす る.このとき,この k ビット量子ゲートは k ビッ ト変換 U を実現するという.本論文では,二ビッ ト変換 U_{CN} を実現する二ビット量子ゲート,CNゲート,とある k ビット PS 変換を実現する k ビッ ト量子ゲート, k ビット PS ゲート, を使用する. また,補助ビットとは,量子ビットであり,その状 態は入力時と出力時とも $|0\rangle$ である².補助ビット の役割として,量子ビットの状態の保存,並列に配 置できる量子ゲートの数を増やすなどがある.

任意の正整数 n に対し, n 入力一層の量子回路 とは n 量子ビットの入力と出力をもち,入力を共 有しない量子ゲートで構成され,実現する n ビッ ト変換は各量子ゲートが実現する変換のテンソル積 となる.ここで,どの量子ゲートの入力でもない量 子ビットには2×2単位行列で定義される変換 I を実現する一ビット量子ゲートが配置されていると考 える.そして, n 入力量子回路とは, n 入力一層の 量子回路の系列であり,実現する n ビット変換は 各一層の量子回路が実現する n ビット変換は なる.また,本論文では,量子回路の複雑さの尺度 として深さ(すなわち,層の数)と補助ビット数を 考える.

本論文では次の二種類の量子回路を扱う.

- CN ゲートで構成される量子回路,と
- 任意の正整数 s に対し, s ビット PS ゲート と CN ゲートで構成される量子回路.

この二種類の量子回路に対する補助ビットを用いた並列化に関する従来研究として Moore と Nils-son [6] の結果がある.

命題 1 CN ゲートで構成され, n ビット変換 U を実現する n 入力量子回路が与えられたとき,

²ここで,補助ビットの入力時の状態が |0) と定義したが,入 力時の状態を |0) または |1) と定義しても,同様に計算が行な える.また,入力時の状態が既知でない補助ビットによる量子 回路の効率化が可能であることも知られている [2] $O(n^2)$ 補助ビットを用いて変換 U は深さ $O(\log n)$ の CN ゲートで構成される量子回路で実現できる.

命題 2 t 個の s ビット PS ゲート $G_1, G_2, ..., G_t$ と CN ゲートで構成され, n ビット変換 U を実現す る n 入力量子回路が与えられとき, $O(stn+n^2)$ 補 助ビットを用いて変換 U は深さ $O(\log n + \log t)$ の t 個の s ビット PS ゲート $G_1, G_2, ..., G_t$ と CN ゲートで構成される量子回路で実現できる.

本論文では、この二種類の量子回路のそれぞれに ついて、使用できる補助ビットの数が任意に固定さ れた場合の並列化手法を示し、その特殊な場合とし て、各命題で用いる補助ビットの数を 1/log n 倍に しても同じ深さにできることも示す.

3 CN ゲートで構成される量子回路

この節では, *CN* ゲートで構成される量子回路の 並列化に関する結果を示す.結果を示す前に, *CN* ゲートで構成される量子回路の性質について考える. まず, *CN* ゲートで構成される量子回路が実現す る変換について考える.式(1)から, *CN* ゲートを 任意の状態に適用することは,ある量子ビット(す なわち,目標ビット)を別のある量子ビット(す なわち,目標ビット)を別のある量子ビット(す なわち,目標ビット)との排他的論理和にすることであ る. $U \in CN$ ゲートで構成される $n \lambda$ 力量子回路が 実現する任意の n ビット変換とすると, U は次の条 件を満たす.任意の $X = (x_1, x_2, ..., x_n) \in \{0, 1\}^n$ に対し,集合に対する排他的論理和において線形独 立となる集合 $S_1, S_2, ..., S_n \subseteq \{1, 2, ..., n\}$ が存 在し,

$$\mathcal{U}|X\rangle = |F_{\mathcal{U}}(X)\rangle$$

となる.ただし,

$$F_{\mathcal{U}}(X) = \left(\bigoplus_{j \in S_1} x_j, \bigoplus_{j \in S_2} x_j, \dots, \bigoplus_{j \in S_n} x_j\right)$$

である. また, S_1, S_2, \ldots, S_n が集合に対する排他的 論理和において線形独立となることを示す. n 量子 ビットの任意の状態を一般性を失うことなく |X) とすると, $X = F_{I}(X)$ と表現でき, このとき $S_v = \{v\} (1 \le v \le n)$ となり、集合に対する排 他的論理和において線形独立となる.ここで, I は $2^n \times 2^n$ 単位行列である. また, ある $v \geq w$ $(1 \le w \le n)$ に対し, 第 v ビットを制御ビットと し, 第 w ビットを目標ビットとする一つの CN ゲートで構成される n 入力一層の量子回路が実現 する変換を U'とする.そして、この一層の量子回 路の入力 n 量子ビットの状態を $|F_{\mathcal{U}}(X)\rangle$ とし,こ のときの S_1, \ldots, S_n を集合に対する排他的論理和 において線形独立であるとすると、この一層の量 子回路の出力の状態は $|F_{U'U}(X)\rangle$ となり、このと き $S_1, S_2, \ldots, S_{w-1}, S_w \oplus S_v, S_{w+1}, \ldots, S_n$ となる. これらは集合に対する排他的論理和において線形独

立となる. ここで, ⊕ は集合に対する排他的論理 和を表す.

次に, CN ゲートで構成される任意の量子回路 が実現する変換 U の逆変換 U^{\dagger} を実現する量子回 路を考える. CN ゲートが実現する変換 U_{CN} は自 分自身の逆変換, すなわち, $U_{CN}U_{CN} = I$ である ことから, 与えられた量子回路の入力側を左, 出力 側を右とすると, 左右を反転させて得られた量子回 路は変換 U^{\dagger} を実現する. よって, 変換 U^{\dagger} は与え られた量子回路と同じ複雑さの CN ゲートで構成 される量子回路で実現できる.

そして, CN ゲートで構成される量子回路の 並列化で用いる変換を定義する. 任意の正整数 n と m に対し, CN(n,m) を (n + m) ビット変換 の集合とし, (n + m) ビット変換 U が次の条件 を満たすとき, U \in CN(n,m) とする. ある集 合 $S_1, S_2, \ldots, S_m \subseteq \{1, 2, \ldots, n\}$ が存在し, 任 意の $X = (x_1, x_2, \ldots, x_n) \in \{0, 1\}^n$ と $Y = (y_1, y_2, \ldots, y_m) \in \{0, 1\}^m$ に対し,

$$\mathcal{U}|X,Y\rangle = |X,Y \oplus F_{\mathcal{U}}(X)\rangle$$

となる.

以下で,変換 $U \in CN(n,m)$ を実現する量子回路を示す.まず,補助ビットが使用できない場合について,以下の補題を示す.

補題 3 任意の正整数 $n \ge m$ に対し,補助ビット を使用しないで (n+m) ビット変換 $U \in CN(n,m)$ は深さ $\max\{n,m\}$ の CN ゲートで構成される量 子回路で実現できる.

証明. 入力 n+m 量子ビットの状態を一般性を失うことなく $|X,Y\rangle$ とする.ただし, $X \in \{0,1\}^n$, $Y \in \{0,1\}^m$ である.また, $U \in |X,Y\rangle$ に適用して得られる状態を

 $\mathcal{U}|X,Y\rangle = |X,Y \oplus F_{\mathcal{U}}(X)\rangle$

とする.

並列に min $\{n, m\}$ 個の CN ゲートが配置する ことができるので,深さ max $\{n, m\}$ で nm 個の CN ゲートが配置できる.ここで,各 CN ゲート は可換であり, $U_{CN}U_{CN} = I$ となるので,nm 個 の異なる CN ゲートが配置できる.この配置にお いて,任意の $v(1 \le v \le m)$ と $w(1 \le w \le n)$ に 対し, $w \in S_v$ となるときのみ,第 w ビットを制 御ビットとし,第 n+vビットを目標ビットとする CN ゲートを配置する.すると,第 n+vビット に $\bigoplus_{j \in S_v} x_j$ が計算される.

次に,任意の正整数 p に対し, (p-1)n 補助ビットが使用できる場合について,以下の補題を示す.

補題 4 任意の正整数 $p, n \ge m$ に対し, (p-1)n 補助ビットを用いて (n + pm) ビット変換 $U \in CN(n, pm)$ は 深さ max $\{n, m\} + 2\log p$ の CN ゲートで構成される量子回路で実現できる. 証明. 入力 n + pm 量子ビットの状態を一般 性を失うことなく $|X, Y_1, Y_2, ..., Y_p\rangle$ とする. ただ し, $X \in \{0, 1\}^n$, $Y_1, Y_2, ..., Y_p \in \{0, 1\}^m$ である. 任意の $U \in CN(n, pm)$ に対して $V_1, V_2, ..., V_p \in CN(n, m)$ が存在し,

 $\mathcal{U}|X, Y_1, Y_2, \dots, Y_p\rangle = |X, Y_1 \oplus F_{\mathcal{V}_1}(X), Y_2 \oplus F_{\mathcal{V}_2}(X), \dots, Y_p \oplus F_{\mathcal{V}_p}(X)\rangle$

を満たす.

まず, (p-1)n 補助ビットを入力と見なし,

 $|X, 0^n, \ldots, 0^n, Y_1, Y_2, \ldots, Y_p\rangle$

とし, p-1 個 $|X\rangle$ のコピーを深さ $\log p$ で補助ビットに生成する. これは一量子ビットの状態 $\sum_{x \in \{0,1\}} |x\rangle$ に対し, p-1 個 $|x\rangle$ のコピーを深さ $\log p$ で補助ビットに生成できるので, $|X\rangle$ の各量 子ビットの状態を p-1 個コピーすることで実現で きる. すると,

 $|X, X, \ldots, X, Y_1, Y_2, \ldots, Y_p\rangle$

となる.元の $|X\rangle$ と合せて p 個の $|X\rangle$ がある.次 に,並列に $|X\rangle$ の一つのコピーと $|Y_j\rangle$ $(1 \le j \le p)$ に対して V_j を適用して得られる状態は

 $|X, X, \ldots, X, Y_1 \oplus F_{\mathcal{V}_1}(X), Y_2 \oplus F_{\mathcal{V}_2}(X), \ldots, Y_p \oplus F_{\mathcal{V}_p}(X)\rangle$

となる.ここで,各 \mathcal{V}_{j} は補題3より深さ高々 max $\{n,m\}$ で実現できる. $|X\rangle$ のコピーの逆変換 を適用し,深さ log p で (p-1)n 補助ビットを $|0\rangle$ に戻すと,

 $|X,0^n,\ldots,0^n,Y_1\oplus F_{\mathcal{V}_1}(X),Y_2\oplus F_{\mathcal{V}_2}(X),\ldots,Y_p\oplus F_{\mathcal{V}_p}(X)\rangle$

となり, U を適用して得られる状態と同じになる.

また,任意の正整数 q に対し, (q-1)m 補助ビットが使用できる場合について,以下の補題を示す.

補題 5 任意の正整数 $q, n \geq m$ に対し, (q - 1)m 補助ビットを用いて (qn + m) ビット変換 $U \in CN(qn,m)$ は深さ $2\max\{n,m\} + 2\log q$ の CN ゲートで構成される量子回路で実現できる.

証明. 入力 qn+m 量子ビットの状態を一般性を 失うことなく $|X_1, X_2, ..., X_q, Y\rangle$ とする. ただし, $X_1, X_2, ..., X_q \in \{0, 1\}^n$, $Y \in \{0, 1\}^m$ である. 任 意の $U \in CN(qn, m)$ に対して $W_1, W_2, ..., W_q \in CN(n, m)$ が存在し,

$$F_{\mathcal{U}}(X_1, X_2, \dots, X_q) = F_{\mathcal{W}_1}(X_1) \oplus F_{\mathcal{W}_2}(X_2) \oplus \dots \oplus F_{\mathcal{W}_q}(X_q)$$

を満たす. まず, (q-1)m 補助ビットを入力と見なし,

 $|X_1, X_2, \ldots, X_q, Y, 0^m, \ldots, 0^m\rangle$

とし、並列に各 W_k $(1 \le k \le q)$ を実現する. $|X_1\rangle$ と $|Y\rangle$ に対して W_1 を適用し、 $2 \le l \le q$ に対し, $|X_l\rangle$ と m 個の補助ビットに W_l を適用する. する と、得られる状態は

 $|X_1, X_2, \ldots, X_q, Y \oplus F_{\mathcal{W}_1}(X_1), F_{\mathcal{W}_2}(X_2), \ldots, F_{\mathcal{W}_q}(X_q)\rangle$

となる.ここで、各 W_k は補題 3 より深 さ高々max{n,m} で実現できる.次に $|Y \oplus F_{W_1}(X_1)\rangle$ に $|F_{W_2}(X_2)\rangle, \dots, |F_{W_q}(X_q)\rangle$ を用いて $|Y \oplus F_{\mathcal{U}}(X_1, \dots, X_q)\rangle$ を深さ $\log q$ で実現する. 最後に使用した (q-1)m 補助ビットを深さ高々 max{n,m} + $\log q$ で $|0\rangle$ に戻すと,

 $|X_1, X_2, \ldots, X_q, Y \oplus F_{\mathcal{U}}(X_1, \ldots, X_q), 0^m, \ldots, 0^m \rangle$

となり, U を適用して得られる状態と同じになる.

上の三つの補題から,任意の正整数 r に対し, r 補助ビットが使用できる場合について,以下の補題を示す.

補題 6 任意の正整数 $r, n \ge m$ に対し, r 補助 ビットを用いて (n+m) ビット変換 $U \in CN(n,m)$ は深さ $O(nm/(r+1) + \log(r+1))$ の CN ゲート で構成される量子回路で実現できる.

証明. $p = \lfloor r/2n \rfloor$, $q = \lfloor r/2m \rfloor$ とし, n = (q+1)n', m = (p+1)m'とすると, 補題4より, pn 補助ビットを用いてUは深さ高々 max{n,m'}+ $2\log(p+1)$ で実現できる. 補題4で用いるp+1個の $V_j \in CN(n,m')$ ($1 \le j \le p+1$) に対し, 補題5より, 各 V_j はqm'補助ビットを用いて深 さ高々 $2\max\{n',m'\} + 2\log(q+1)$ で実現できる. よって, pn + qm補助ビットを用いてUは深さ 高々 $2\max\{n',m'\} + 2\log(p+1) + 2\log(q+1) = O(nm/(r+1) + \log(r+1))$ で実現できる.

そして, *CN* ゲートで構成される任意の量子回路に対し,補助ビットが使用できない場合について,以下の補題を示す.

補題 7 CN ゲートで構成され, n ビット変換 U を 実現する n 入力量子回路が与えられたとき, 補助 ビットを使用しないで変換 U は深さ高々 3n+3 の CN ゲートで構成される量子回路で実現できる.

証明. Uの逆変換を実現する量子回路を構成 するを考える.入力 n 量子ビットの状態を一般性 を失うことなく $|X\rangle$ ($X \in \{0,1\}^n$)とし,集合に 対する排他的論理和において線形独立となる集合 $S_1, S_2, \ldots, S_n \subseteq \{1, 2, \ldots, n\}$ が存在し,

 $\mathcal{U}|X\rangle = |F_{\mathcal{U}}(X)\rangle$

となるとする. また, n ビット変換 U'を

 $\mathcal{U}'\mathcal{U}|X\rangle = |X'\rangle$

となる変換とする. ここで, ベクトル X' はベク トル X の成分を置換したベクトルである. U'を 実現する CN ゲートで構成される量子回路を示す. まず,ある $v \ge w$ $(1 \le v, w \le n)$ に対し,各 v' $(1 \le v' \le n, v' \ne v)$ において $w \in S_v$ かつ $w \in S_{v'}$ となるときは $S_{v'}$ を S_v との集合に対する排他的論 理和にする. すなわち, 第 v ビットを制御ビット とし, 第 v' ビットを目標ビットとする CN ゲー トを配置する.すると,vに対してのみ $w \in S_v$ と なり、以降、 S_v を各 $S_{v'}$ との集合に対する排他的 論理和にしたとしても,必ず $w \in S_v$ となる.こ こで、 S_1, \ldots, S_n は常に集合に対する排他的論理 和において線形独立であることから, S_1, \ldots, S_n の 要素数は常に一以上である.この操作をすべての S_1, \ldots, S_n に対して実行すると, S_1, \ldots, S_n の要 素数は一となる. つまり, $F_{\mathcal{U}'\mathcal{U}}(X) = X'$ となる. ここで、任意の S_v の操作において、最悪の場合、 n-1回集合に対する排他的論理和を実行する.す なわち, n-1 個の CN ゲートを配置する. この とき,二回集合に対する排他的論理和を実行する と、次の操作を開始することができる、よって、各 S_1, \ldots, S_n の操作で高々n-1個のCNゲートが 配置され,各操作で最初に配置される CN ゲート と次の操作で最初に配置される CN ゲートは深さ が2 ずれるので、U'は深さ高々 3n-3 で実現で きる.

そして,量子ビットの任意の置換は補助ビットを 使用しないで深さ高々 6 の CN ゲートで構成さ れる量子回路で実現できることが示されている [6]. これを用いて $|X'\rangle$ を置換すると $|X\rangle$ となる.よっ て,U の逆変換は補助ビットを使用しないで深さ 高々 3n + 3 の CN ゲートで構成される量子回路 で実現できる.

最後に, *CN* ゲートで構成される量子回路の並列化に関する結果を示す.任意の正整数 *r* に対し, *r* 補助ビットが使用できる場合について,以下の定 理を示す.

定理 8 CN ゲートで構成され, $n ext{ } ext{$

証明. 与えられた量子回路の入力 n 量子ビット の状態を一般性を失うことなく $|X\rangle$ ($X \in \{0,1\}^n$) とする.また,集合に対する排他的論理和において 線形独立となる集合 $S_1, S_2, \ldots, S_n \subseteq \{1, 2, \ldots, n\}$ が存在し,

$$\mathcal{U}|X\rangle = |F_{\mathcal{U}}(X)\rangle$$

とする.r < nのとき,補題7より補助ビットを 使用しないで深さO(n)で実現できる.

 $r \ge n$ のとき,変換 $\mathcal{V}, \mathcal{V}' \in \mathcal{CN}(n, n)$ を

 $|\mathcal{V}|X,Y\rangle = |X,Y \oplus F_{\mathcal{U}}(X)\rangle$

となるとする. ただし, $Y = (y_1, y_2, ..., y_n) \in \{0, 1\}^n$ である. まず, n 補助ビットを入力と見な し, $|X, 0^n\rangle$ とし, V を適用して得られる状態は $|X, F_u(X)\rangle$ となる. 次に, $|X\rangle$ と $|F_u(X)\rangle$ を深 さ 3 で置換する. これは二量子ビットの状態の置 換が三つの CN ゲートで実現できるので, $|X\rangle$ と $|F_u(X)\rangle$ の各量子ビット毎の状態の置換で実現で きる. すると, $|F_u(X), X\rangle$ となる. そして, V' を 適用して得られる状態は

$$|F_{\mathcal{U}}(X), X \oplus X\rangle = |F_{\mathcal{U}}(X), 0^n\rangle$$

となり、 $U \in |X\rangle$ へ適用して得られる状態と同じに なる.残りの補助ビットを $V \in V'$ の並列化のため に使用すると、 $V \succeq V'$ は補題 6 よりr-n補助ビッ トを用いて深さ $O(n^2/(r-n+1) + \log(r-n+1))$ で実現できる.よって、Uは深さ $O(n^2/r + \log r)$ で実現できる.

定理8より,以下の系が成り立つ.

系 9 CN ゲートで構成され, n ビット変換 Uを実現する n 入力量子回路が与えられたとき, $O(n^2/\log n)$ 補助ビットを用いて変換 U は深さ $O(\log n)$ の CN ゲートで構成される量子回路で 実現できる.

4 *PS* ゲートと *CN* ゲート で構成される量子回路

この節では, PS ゲートと CN ゲートで構成される量子回路の並列化に関する結果を示す.

まず,任意の正整数 $t \ge s$ に対し, t 個の $s \lor v$ ト PSゲート $G_1, G_2, \ldots, G_t \ge CN$ ゲートで構成 される n 入力量子回路が実現する変換について考 える.与えられた量子回路を各 PSゲートの前と 後へ分割することで与えられた量子回路が実現する $n \lor v$ ト変換は

 $C_t \mathcal{P}_t C_{t-1} \cdots \mathcal{P}_1 C_0$

と表現できる. ただし, $C_v (0 \le v \le t)$ は CN ゲートで構成される量子回路が実現する $n \lor v$ ト変換 であり, $\mathcal{P}_w (1 \le w \le t)$ は PS ゲート G_w で構成 される一層の量子回路が実現する $n \lor v$ ト PS 変 換である. さらに,

 $\mathcal{C}_t \cdots \mathcal{C}_0 \mathcal{D}_t \cdots \mathcal{D}_1$

と変形できる.ここで、 $\mathcal{D}_w = (\mathcal{C}_w \cdots \mathcal{C}_0)^{\dagger} \mathcal{P}_w (\mathcal{C}_w \cdots \mathcal{C}_0)$ である.このnビット変換 $\mathcal{D}_t \cdots \mathcal{D}_1$ について、以下の補題を示す.

補題 10 t 個の n ビット PS 変換 $\mathcal{D}_1, \ldots, \mathcal{D}_t$ が与 えられたとき, ただし, $\mathcal{D}_w = (\mathcal{C}_w \cdots \mathcal{C}_0)^{\dagger} \mathcal{P}_w (\mathcal{C}_w \cdots \mathcal{C}_0)$ $(1 \le w \le t)$ である. st 補助ビットを用いて 変換 $\mathcal{D}_t \cdots \mathcal{D}_1$ は t 個の s ビット PS ゲート $G_1, G_2, ..., G_t$ と CN ゲートで構成される深さ $O(\log t)$ の量子回路で実現できる.

証明. 入力 n 量子ビットの状態を $|\psi\rangle = \sum_{X \in \{0,1\}^n} \alpha_X |X\rangle$ とし, 各 G_w の入力 s 量子ビットの状態を $\sum_{X \in \{0,1\}^s} \alpha_X |X\rangle$ としたとき, G_w の出力の状態が

$$\sum_{X\in\{0,1\}^s} \alpha_X e^{i\delta_X} |X\rangle$$

となるとする. また, 各 \mathcal{D}_w の $\mathcal{C}_w \cdots \mathcal{C}_0 \in |\psi\rangle$ 適用して得られる状態を一般性を失うことなく

$$\sum_{X \in \{0,1\}^n} \alpha_X | Z_w(X), Z'_w(X) \rangle$$

とする. ここで, $|Z_w(X)\rangle$ $(Z_w(X) \in \{0,1\}^s)$ は G_w の入力 s 量子ビットの状態であり, $Z'_w(X) \in \{0,1\}^{n-s}$ である. すると, \mathcal{P}_w を適用して得られ る状態は

$$\sum_{X \in \{0,1\}^n} \alpha_X e^{i\delta_{Z_w(X)}} |Z_w(X), Z'_w(X)\rangle$$

となり、 $(C_w \cdots C_1)^{\dagger}$ を適用して得られる状態は

$$\sum_{X\in\{0,1\}^n}\alpha_X e^{i\delta_{Z_w(X)}}|X\rangle$$

となる. そして, 任意の $X \in \{0,1\}^n, Y_w \in \{0,1\}^s$ に 対し, $U \in \mathcal{CN}(n, st)$ を

$$\mathcal{U}|X, Y_1, \dots, Y_t\rangle = |X, Y_1 \oplus Z_1(X), Y_2 \oplus Z_2(X), \dots, Y_t \oplus Z_t(X)\rangle$$

となる変換とする.

まず, st 補助ビットを入力と見なし,

$$\sum_{X \in \{0,1\}^n} \alpha_X | X, 0^s, \dots, 0^s \rangle$$

とし, Uを適用して得られる状態は

$$\sum_{X \in \{0,1\}^n} \alpha_X | X, Z_1(X), \dots, Z_t(X) \rangle$$

となる.次に,各 $|Z_w(X)\rangle$ を G_w へ入力し,その 出力の状態に U^{\dagger} を適用して使用した補助ビットを $|0\rangle$ に戻すと,得られる状態は

$$\sum_{X \in \{0,1\}^n} \alpha_X e^{i(\delta_{Z_1(X)} + \dots + \delta_{Z_t(X)})} | X, 0^s, \dots, 0^s \rangle$$

となり、 $D_t \cdots D_1 \in |\psi\rangle$ に適用して得られる状態 と同じになる.

そして, *PS* ゲートと *CN* ゲートで構成される量 子回路について以下の定理を示す. 定理 11 t 個の s ビット PS ゲート $G_1, G_2, ..., G_t$ と CN ゲートで構成され, n ビット変換 U を実現 する n 入力量子回路が与えられとき, 任意の正整 数 r に対し, r 補助ビットを用いて変換 U は r < nのとき深さ O(tn), $r \ge n$ のとき 深さ $O((stn + n^2)/r + (st \log r)/k + \log r)$ の t 個の s ビット PSゲート $G_1, G_2, ..., G_t$ と CN ゲートで構成される 量子回路で実現できる.

証明. 上で述べたように, U は

$$\mathcal{U} = \mathcal{C}_t \mathcal{P}_t \mathcal{C}_{t-1} \cdots \mathcal{P}_1 \mathcal{C}_0$$

と表現できる.

r < n のとき,各 C_v ($0 \le v \le t$)の深さがO(n)より大きい場合,補題 7 より, C_v は補助ビットを使 用しないで深さO(n)で実現できる.よって,r補 助ビットを用いて深さO(tn)で実現できる.

さらに、ひは

$$\mathcal{U} = \mathcal{C}_t \cdots \mathcal{C}_0 \mathcal{D}_t \cdots \mathcal{D}_1$$

と変形できる. $r \ge n$ のとき, $D_t \cdots D_1$ につい て, $k = \lceil r/2 \rceil$ とすると, 補題 10 より k 補助ビッ トを用いて $\lfloor k/s \rfloor$ 個の D_w が並列化できる. よっ て, この操作を逐次的に $\lceil st/k \rceil$ 回繰り返すことで $D_t \cdots D_1$ を実現できる. ここで, 残りの r - k 補 助ビットを補題 10 で用いる CN(n,k) の並列化に 使用すると, 補題 6 より深さ $O(kn/(r - k + 1) + \log(r - k + 1))$ で実現できるので, $D_t \cdots D_1$ は 深さ $O(stn/r + (st\log r)/r)$ で実現できる. また, $C_t \cdots C_0$ について, 定理 8 より深さ $O(n^2/r + \log r)$ で実現できる. 以上より, U はr 補助ビットを用 いて深さ $O((stn + n^2)/r + (st\log r)/r + \log r)$ で 実現できる.

ここで, 定理 11 で構成される量子回路に含まれて いる *PS* ゲートは与えられた量子回路に含まれて いる t 個の s ビット *PS* ゲート G_1, \ldots, G_t のみで ある.また, 定理 11 より,以下の系が成り立つ.

系 12 t 個の s ビット PS ゲート G_1, G_2, \ldots, G_t と CN ゲートで構成され, n ビット変換 U を実現 する n 入力量子回路が与えられとき, $O((stn + n^2)/\log n)$ 補助ビットを用いて変換 U は深さ $O(\log n + \log t)$ の t 個の s ビット PS ゲート G_1, G_2, \ldots, G_t と CN ゲートで構成される量子回 路で実現できる.

5 おわりに

本論文では, CN ゲートで構成される n 入力量子 回路と t 個の s ビット PS ゲート G_1, G_2, \ldots, G_t と CN ゲートで構成される n 入力量子回路につい て, 使用できる補助ビットの数が任意に固定された 場合の並列化手法を示した.また, その特殊な場合 として, 使用する補助ビットの数が従来研究 [6] の $1/\log n$ 倍にしても,従来研究 [6] と同じ深さに並 列化できることも示した.また,Walsh-Hadamard ゲートと *CN* ゲートで構成される量子回路につい て,補助ビットを用いた並列化手法が知られてい る [1].

また, Barenco ら [2] は任意のユニタリ変換がす べてのービット量子ゲートと CN ゲートで構成さ れる量子回路で実現できることを示した.本論文で 扱っている CN ゲートと PS ゲートにあと Walsh-Hadamard ゲートを一般化したービット量子ゲー トを加えると任意のユニタリ変換を実現する量子回 路が構成できる.今後の課題として,この種類の量 子回路について並列化手法を示すことがある.

References

- [1] 安倍 秀明, 宋 少秋, "制約付き量子回路におけ る補助ビットを用いた並列化について", 数理 解析研究所共同研究集会「代数系, 形式言語お よび計算理論」, 2000 年 3 月.
- [2] A. Barenco, C.H. Bennett, R. Cleve, D.P. Di-Vincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, "Elementary gates for quantum computation", Phys. Rev A (52), pp.3457-3467, 1995.
- [3] E. Bernstein and U.V. Vazirani, "Quantum complexity theory", SIAM J. Comput., vol. 26, no. 5, pp.1411-1473, 1997.
- [4] D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer", Proc. Roy. Soc. London Ser. A 400, pp.96-117, 1985.
- [5] D. Deutsch, "Quantum computational networks", Proc. Roy. Soc. London Ser. A 425, pp.73-90, 1989.
- [6] C. Moore and M. Nilsson, "Parallel quantum computation and quantum codes", manuscript, 1998 (available at lanl e-print quant-ph/9808027).
- [7] A. Yao, "Quantum circuit complexity", in Proc. 34th Annual IEEE Symp. on Foundations of Computer Science, pp.352–361, 1993.