
Title Polynomial Time Matching Algorithms for Tree Structured
Patterns (Foundations of Computer Science)

Author(s) Shoudai, Takayoshi; Miyahara, Tetsuhiro; Uchida, Tomoyuki

Citation 数理解析研究所講究録 (2000), 1148: 164-169

Issue Date 2000-04

URL http://hdl.handle.net/2433/63996

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39197381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Polynomial Time Matching Algorithms for Tree Structured Patterns

正代隆義 (Takayoshi Shoudai)1 宮原哲浩 (Tetsuhiro Miyahara)2
内田智之 (Tomoyuki Uchida)2

1 Department of Informatics, Kyushu University 39, Kasuga 816-8580, Japan
$\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{u}\mathrm{d}\mathrm{a}\mathrm{i}\Phi \mathrm{i}$. kyushu-u. $\mathrm{a}\mathrm{c}$. jp

2 Faculty of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan
{miyahara@its,uchida@cs}. $\mathrm{h}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{S}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{a}-_{\mathrm{C}\mathrm{u}}$. $\mathrm{a}\mathrm{c}$.jp

1 Introduction

Graph-structured data occurs in many domains,
such as biomolecular database, chemical database,
the World Wide Web, or semistructured data.
Many researchers try to find hidden knowledge
from structures of such data by using data min-
ing techmiques. The formalization of expressing
graph-structured data is quite important for find-
ing useful knowledge [10].

A term graph, which is one of expressions of
graph-structured data, is a hypergraph whose hy-
peredges are regarded as variables. By express-
ing structures of data in database with term
graphs, we can design tools for discovering hid-
den knowledge or background knowledge from
graph-structured data. In Fig. 1, for example,
we can obtain each tree $T_{1},$ T_{2} and T_{3} from the
term tree t by replacing hyperedges in t with
arbitrary trees. That is, the term tree t shows
common structures between them. The first-order
language is much better suited for expressing
background knowledge and graph structures [3].
Then, inductive logic programming (ILP) systems
in knowledge discovery have been proposed [1,
2,4]. In [8], we designed and implemented the
knowledge discovery system KD-FGS for graph-
structured data, which employs Formal Graph
System (FGS,[11]) as a knowledge representation
language and a refutably inductive inference as
an ILP mechanism [9]. FGS is a kind of logic pro-
gramming system which uses term graphs instead
of terms in first-order logic. Therefore FGS can
directly deal with graphs and is suited for express-
ing background knowledge obtained from graph-
structured data. By using a term graph, we can
design tools based on a graph pattern matching
method for finding new knowledge represented by
term graphs obtained from graph-structured data.

Such tools are useful for finding association rules
over term graphs, producing decision trees hav-
ing term graphs as vertex labels, and finding the
minimum term graph by using the minimum de-
scription length principle.

In this paper, we consider a matching problem
for a term graph and a standard graph. Infor-
mally, the matching problem for a term graph
g and a graph G is to decide whether or not
there exists a graph $G’$ such that $G’$ is isomorphic
to G and $G’$ is obtained by replacing each vari-
able in g with an arbitrary graph. This problem
is important for many knowledge discovery sys-
tems over term graphs for graph-structured data.
Graphs have enough richness and flexibility to ex-
press unknown structures, but many elementary
graph problems, e.g., subgraph isomorphism and
largest common subgraph, are known to be NP-
complete [5]. Due to this fact, it is difficult to solve
the matching problem for a term graph in poly-
nomial time. Then it is hard to design and imple-
ment a discovery system finding efficiently new
knowledge from graph-structured data in prac-
tice. We consider interesting subclasses of term
graphs, called regular term trees, such that their
matching problems are solvable efficiently.

Let Σ and Λ be finite alphabets, and let X be
an alphabet. An element in $\Sigma,$ Λ and X is called a
vertex label, edge label and variable label, respec-
tively. Assume that $(\Sigma\cup\Lambda)\cap X=\emptyset$. A term graph
$g=(V, E, H)$ consists of a vertex set V , an edge
set E and a multi-set H . Each element in H is a
list of distinct vertices in V and is called a vari-
able. An item in a variable is called a port. And a
term graph g has a vertex labeling φ_{9} : $Varrow\Sigma$,
an edge labeling ψ_{g} : $Earrow\Lambda$ and a variable label-
ing λ_{g} : $Harrow X$. For a set or a list S , the number
of elements in S is denoted by $|S|$. The dimension
of a variable h is the number of vertices which are

数理解析研究所講究録
1148巻 2000年 164-169 164

11 $\mathrm{z}\mathit{2}$ 43

Fig. 1. A term tree t as a tree-like structured pattern which matches trees $T_{1},$ T_{2} and T_{3} .

g g_{1} g_{2} gu

Fig. 2. A term graph $g=(V, E, H)$ is defined by $V=\{u_{1}, u_{2}\},$ $E=\emptyset,$ $H=\{e_{1}=(u_{1}, u_{2}), e_{2}=(u_{1}, u_{\mathit{2}})\},$ $\varphi_{g}(u_{1})=s$,
$\varphi_{g}(u_{2})=t,$ $\lambda_{g}(e_{1})=x$, and $\lambda_{g}(e_{2})=y$. $g\theta$ is obtained by applying a substitution $\theta=\{x:=[g_{1}, (v_{1,2}v)],$ $y.–$
$[g_{2}, (w_{1,2}w)]\}$ to 9. A variable is represented by a box with lines to its elements and the order of its items is indicated
by the numbers at these lines.

contained in h . The $d\dot{i}n?enS\dot{i}on$ of a term graph g

is the maximum dimension over all variables in g .
The decJree of a vertex u in a term graph is the sum
of the number of edges and variables containing
u . The degree of a term graph g is the maximum
degree over all vertices in g . For example, a term
graph $g=(V, E, H)$ is shown in Fig. 2.

In [7], for a regular term tree t and a tree T such
that the dimension of each variable in t is exactly
2 and the degree of T is unbounded, we presented
a polynomial time algorithm solving the match-
ing problem for t and T . In this paper, we show
that, in general, the matching problem for a regu-
lar term tree t and a tree T is $\mathrm{N}\mathrm{P}$-complete even if
the dimension of t is only 4. But, if the dimension
of t is bounded by some constant greater than 1
and also the degree of T is bounded by some con-
stant, we can give a polynomial time algorithm
solving the matching problem. These show that
a term tree is a quite useful expression of knowl-
edge obtained from tree-like structured data. Our
algorithms lead us to develop new knowledge dis-
covery tools employing term graphs directly which
express knowledge obtained from tree-like struc-
tured data.

2 Matching Algorithms for Tree
Structured Patterns

Let g be a term graph and σ a list of distinct
vertices in g . We call the form $x:=[g, \sigma]$ a $b_{\dot{i}}nd-$

$\dot{i}ng$ for a variable label $x\in X$. Let $g_{1},$ \ldots , g_{n} be
term graphs. A $sub_{S}t\dot{i}tut\dot{i}on\theta$ is a finite collection

of bindings $\{x_{1}:=[g_{1}, \sigma_{1}], \ldots, x_{n}:=[g_{n}, \sigma_{n}]\}$,
where $x_{i}’ \mathrm{s}$ are mutually distinct variable labels
in X and each g_{i} has no variable labeled with an
element in $\{x_{1}, \ldots, x_{n}\}$. We obtain a new term
graph f by applying a substitution $\theta=\{x_{1}$ $:=$

$[g_{1}, \sigma_{1}],$
$\ldots,$

$x_{n}:=[g_{n}, \sigma_{n}]\}$ to a term graph $g=$

(V, $E,$ H) in the following way. For each binding
$x_{i}:=[g_{i}, \sigma_{i}]\in\theta(1\leq\dot{i}\leq n)$ in parallel, we attach
g_{i} to g by removing all variables $t_{1},$

$\ldots,$
t_{k} labeled

with x_{i} from H , and by identifying the m-th ver-
tex t_{j}^{m} of t_{j} and the m-th vertex σ_{i}^{m} of σ_{i} for each
$1\leq j\leq k$ and each $1\leq m\leq|t_{j}|=|\sigma_{i}|$. We re-
mark that the label of each vertex t_{j}^{m} of g is used
for the resulting term graph wflich is denoted by
$g\theta$. Namely, the label of σ_{i}^{m} is ignored in $g\theta$.

A substitution $\theta=\{x_{1}:=[g_{1}, \sigma_{1}],$
$\ldots,$

x_{n} $:=$

$[g_{n}, \sigma_{n}]\}$ is called a tree $subst_{\dot{i}}tut_{\dot{i}}on$ if all of the
g_{i} are trees. A term graph t is called a term tree
if for any tree substitution θ which contains all
variable labels in $t,$ $t\theta$ is also a tree. When one
of the vertices in t is specified as the root of the
term tree, t is called a term rooted tree. A term
tree t is said to be regular if each variable label
in t occurs exactly once [6] (e.g. Fig. 3,4). We say
that T matches t if there exists a tree substitution
θ such that $t\theta$ and T are isomorphic.

In this section, we consider the following prob-
lem for a regular term rooted tree with no 1*
$\mathrm{b}\mathrm{e}\mathrm{l}$. For a regular term rooted tree with labels
and a regular term unrooted tree with labels or
without any label, we can also construct similar
polynomial-time matching algorithms.

165

Regular term rooted tree t (the vertex
with label ‘(

a

” is the root of t).

Rooted tree T (the vertex with label
“

$\mathrm{a}^{)}$
’ is the root of T).

Fig. 3. A transformation from an instance (A, C) of $\mathrm{X}3\mathrm{C}$ to an instance (t, T) of REGULAR TERM ROOTED

TREE MATCHING. $A=\{a_{1}, a_{2}, a_{3}, a4, a_{5}, a_{6}\},$ $C=\{c_{1}, c_{2_{)}}C3, c4_{)}c5, c6\},$ $c_{1}=\{a_{1}, a_{4}, a_{6}\},$ $c2=\{a_{2}, a_{\}}, a_{4}\},$ $c_{3}=$

$\{a_{1}, a_{5}, a_{6}\},$ $c_{4}=\{a_{3)}a_{4}, a_{6}\},$ $c5=\{a_{1}, a2, a6\},$ $c6=\{a2, a4, a5\}$.

REGULAR TERM ROOTED TREE
MATCHING
Instance: A regular term rooted tree t and a
rooted tree T .
Question: Does T match t so that the root of T

corresponds to the root of t ?

First we show the following theorem.

Theorem 1. REGULAR TERM ROOTED TREE
MATCHING is NP-complete even if the dimen-
sion of an input regular term rooted tree is only
4.

Membership in NP is obvious. We transform
EXACT COVER BY 3-SETS $(\mathrm{X}3\mathrm{C})$ [5 , page 221]
to this problem (Fig. 3).

Second we explain the algorithm Matching
(Fig. 5) which is a framework for deciding whether
a rooted tree T matches a regular term rooted tree
t .

Let $t=(V_{t}, E_{\iota t}, H)$ and $T=(V\tau, E_{T})$ be a
regular term rooted tree with root r_{t} and a rooted
tree with root r_{T} , respectively. A vertex of degree
one is called a leaf if it is not the root. A path
from v_{1} to v_{i} is a sequence $v_{1},$ $v_{2},$ $\ldots,$

v_{i} of distinct
vertices such that for $1\leq j<\dot{i}$, there exists an
edge or a variable which includes v_{j} and v_{j+1} . If
there is an edge or a variable which includes v and
$v’$ such that $v’$ lies on the path from the root r_{t} to
v , then $v’$ is said to be the father of v and v is a

child of $v’$. In particular for a variable $f\iota,$ v is said
to be a child port of h if there is a vertex $v’$ such
that both v and $v’$ belong to h and v is a child of
$v’$. A descendant of v is any vertex on the path
from v to one of the leaves of the tree.

In Matching (Fig.5), a label for a vertex in T is
a set $\{v_{1}, \ldots , v_{k}, V_{1}, \ldots, V_{l}\}$ where $k\geq 0,$ $p\geq 0$,
v_{i} is a vertex in t , and V_{j} is a set of vertices in
t . Let $L_{1},$

$\ldots,$
L_{m} be a collection of labels. For

any $V’\subseteq V_{t}$, we say that $L_{1_{\mathit{1}}}\ldots$.
$,$

L_{m} covers $V’$ if
there exist distinct indices $k_{1},$

$\ldots,$
$k_{m’},$ $\ell_{1},$

\ldots , $p_{m’’}$

among 1, . . . , m and also there exist $v_{i}’\in L_{k_{\gamma}}$ and
$V_{j}’’\in L_{\ell_{j}}$ for each $1\leq i\leq m’$ and $1\leq j\leq m’’$

such that $V’\subseteq\{v_{1}’’, \ldots, v_{m}’\}\cup V_{1}’’\cup\cdots\cup V_{m’}’’,$.

In particular if there is no proper subcollectioll
of $L_{1},$

$\ldots,$
L_{m} which covers $V’$ then we say that

$L_{1},$
\ldots , L_{m} exactly covers $V’$.

Let W be a set of vertices in t . The induced
term tree of t by W is a term tree $t[W]$ $=$

$(W’, E_{t}[W’], Ht[W’])$ where $W’=\{v\in V_{t}|v$ is
in W or there is a vertex $v’$ in W such that v

is a descendant of $v’.$ }, $E_{t}[W’]=\{\{u, v\}\in Et$ $|$

$u\in W’$ and $v\in W’$ } and $H_{t}[W’]=\{(v_{1}, \ldots, v_{n})|$

$v_{i}\in W’$ and (v_{1}, \ldots, v_{n}) is the maximal sublist of
some $h\in H_{t}$ with keeping the order of items in
$h.\}$. For a single vertex $w\in V_{t}$, the induced term
tree $t[w]$ of t by w is defined as $t[\{w\}]$. A corre-
sponding induced term tree of t to $u\in V_{T}$ is an
induced term tree by $W\subseteq V_{t}$ or $w\in V_{t}$ which

166

$1\Leftarrow 2,$ $\{3\}$

$2\Leftarrow 4,5,$ $\{6\},$ $\{7,8\}$

$3\Leftarrow\{10,117\Leftarrow 9\}$

Labeling Rules R_{1}

lerm nooteo lree t The resulting labels by R_{1}

Fig. 4. An example: the labeling rule constructed from a regular term rooted tree $t=(\{1,2,3,4,5,6,7,8,9,10,11\}$,
$\{\{1,2\}, \{2,4\}, \{2,5\}, \{7,9\}\})\{(1,3), (2,6))(2,7,8))(3,10,11)\})$ with root 1 and the resulting labels of a rooted tree T

after the procedure Matching terminates.

procedure Matching(regular term rooted tree t with root r_{t} , rooted tree T with root $r\tau$);
begin

Construct the set of all labeling rules $R_{r_{t)}}$
.

Label all leaves of T with the set of all leaves of t ;
while there exists a vertex v in T

such that v is not labeled and all children of v are labeled do
Labeling$(v, R_{r}t)$;

if the label of $r\tau$ includes r_{t} then T matches t else T does not match t

end.

Fig. 5. An algorithm for deciding whether or not a rooted tree T matches a regular term rooted tree t .

matches $T\lceil u$], i.e., the subtree of T with the root
u . In particular if the induced term tree is induced
by a single vertex w , the matching between $t[w]$

and $T[u]$ has a correspondence of w to u .
First we construct the set of all labeling rules.

Basic Labeling Rules
Let v be a vertex in t which is not a leaf. Let
$v_{1},$ $v_{2},$ $\ldots,$

v_{k} be all children of v which are con-
nected to v with edges. Let $h_{1},$ $h_{2},$

$\ldots,$
h_{ℓ} be all

variables which include v , and for $\dot{i}=1,$
$\ldots,$

ℓ ,
V_{i} be the set of all children of v which are con-
nected to v with the variable h_{i} . The labeling
rule for v is defined as follows. If there is no
variable which includes v , then let the gener-
ating rule of v be $varrow v_{1},$ $\ldots,$

v_{k} , otherwise
$v\Leftarrow v_{1},$

$\ldots,$ $v_{k},$ $V_{1},$
$\ldots,$

V_{l} .

Then we obtain the following theorem.

Theorem 2. Let t be a regular term rooted tree t

of dimension p such that t includes no $var\dot{i}able$ of
dimension 1, and let T be a rooted tree of degree
d . REGULAR TERM ROOTED TREE MATCH-
ING is solvable in $O((n+N)^{2}\mathrm{T}\mathrm{M}\mathrm{I}\mathrm{s}(d^{O}(p)))$ time
where n and N are the numbers of vertices in

t and T respectively, and TMIS (s) is the time
needed to find the maximum independent set in
a graph of size s .

Corollary 1. Let t be a regular term rooted tree
of dimension p such that t includes no variable
of dimension 1, and let T be a rooted tree of
degree d . REGULAR TERM ROOTED TREE
MATCHING for the inputs t and T is solvable in
$O((n+N)^{2})$ time where n and N are the numbers
of vertices in t and T respectively.

If the dimension of each variable in t is exactly
2 and the degree of T is unbounded, the proce-
dure Matching by using the procedure (Fig.8) in-
stead of the procedure (Fig.7) solves REGULAR
TERM ROOTED TREE MATCHING in polyno-
mial time.

Theorem 3 (Miyahara, et al. [7]). If the d_{i-}

mension of each variable in t is exactly 2_{\rangle} there ex-
ists a polynomial-time algorithm for solving REG-
ULAR TERM ROOTED TREE MATCHING.

Since the maximum graph matching for a
bipartite graph B $=$ (V, $\mathcal{V}’,$ \mathcal{E}) is found in
$O(|\mathcal{E}|\sqrt{\max\{|\mathcal{V}|,|\mathcal{V}\prime|\}})$ time, by applying the pro-
cedure (Fig.8) to all labeling rules at the same

167

procedure Labeling(vertex $u\in V_{T}$, set of labeling rules $R_{r_{t}}$);
begin

$L.–\emptyset$;
Let m be the number of children of u and $L_{1},$

\ldots , L_{m} be the labels of the children,
$/*$ Step 1 $*/$

foreach $varrow v_{1)}\ldots,$ v_{m} in $R_{r_{t}}$ do
if $L_{1},$

$\ldots,$
L_{m} exactly covers $\{v_{1}, \ldots, v_{m}\}$ then $L:=L\cup\{v\}$;

$/*$ Step 2 $*/$

foreach $v\Leftarrow v_{1},$
$\ldots,$

$v_{k_{)}}V_{1},$
$\ldots,$

V_{ℓ} in $R_{\tau_{l}}$ do
if $L_{1},$

\ldots , L_{m} covers $\{V_{1}, \ldots, v_{k}\}\cup V_{1}\cup\cdots\cup V_{l}$ then $L:=L\cup\{v\})$

$/*\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}3*/$

foreach variable h in t do begin
Let $V’$ be the set of all child ports of h ,
foreach $V”\subseteq V’$ with $V”\neq\emptyset$ do begin

foreach $v\in V’-V’’$ do
if v and $V”$ satisfy either

(1) v is a leaf and $V”$ is a maximal subset such that $L_{1},$
$\ldots,$

L_{m}

covers $V”$, or
(2) v is the head of a rule $v\Leftarrow v_{1},$. . , $v_{k},$ $V_{1},$

$\ldots,$
V_{ℓ} in $R_{r\ell}$

and $V”$ is a maximal subset such that $L_{1},$
\ldots , L_{m} covers

$\{v_{1}, \ldots , v_{k}\}\cup V_{1}\cup\cdots\cup V\ell\cup V^{;\prime}$.
then $L:=L\cup\{V’’\cup\{v\}\}$;

if there is no vertex v which satisfies either (1) or (2) and $V”$ is a
maximal subset which is covered by $L_{1)}\ldots,$ L_{m}

then $L:=L\cup\{V’’\}$

end
end;
Attach L to u as the label

end;

Fig. 6. Labeling: a procedure for labeling a vertex in T with a set of vertices in t .

Input: labels $L_{1},$
$\ldots,$

L_{m} , vertices $v_{1))}\ldots v_{k}$, and sets of vertices $V_{1},$
\ldots , V_{ℓ} ;

Note that each $V_{i}(i=1, \ldots, \ell)$ is the set of all child ports of a certain variable and each label $L_{j}(j=1, . . , m)$ contalns
at most one subset of V_{i} . If the input term rooted tree t is of bounded dimension and the input rooted tree T is of bounded
degree, the size of the graph \mathcal{G} constructed below is bounded because both k and ℓ are bounded by some constants and
the size of each L_{i} is also bounded.
begin

Construct a graph $\mathcal{G}=(V, \mathcal{E})$ in the following way:
$V_{i}:=\{(v_{i}, \{j\})|v_{i}\in L_{j}(1\leq j\leq m)\}$,
Let \mathcal{E}_{i} be the complete graph constructed by V_{i} ,
$/*\mathrm{I}\mathrm{n}$ the following statement, because a subset of V_{i} appears at most once in each L_{j} , it is easy to decide

whether or not $L_{j_{1}},$
$\ldots,$

$L_{j_{m}}$, covers V_{i} . $*/$

$V_{i}’:=$ { $(V_{i},$ $\{j_{1},$
$\ldots,$

$j_{m’}\})|\{j_{1},$
\ldots , $j_{m’}\}$ is a subset of {1, $\ldots,$

$m\}$ such that $L_{j1)}\ldots$, $L_{j_{m}}$, covers $V_{\iota}.$ }.
Let $\mathcal{E}_{i}’$ be the complete graph constructed by $V_{i}’$,
$\mathcal{V}:=\cup i=1k\mathcal{V}_{i}\cup\bigcup_{i=1}^{l}vi’$,
$\mathcal{E}:=$ { $\{(X,$ $Y),$ $(X’,$ $Y’)\}|(X,$ $Y),$ $(X’,$ $Y’)\in V,$ $X\neq X’$ and $Y\cap Y’\neq\emptyset$ } $\cup\bigcup_{i=1}^{k}\mathcal{E}_{i}\cup\bigcup_{i\Leftarrow 1}^{p}\mathcal{E}’i$.

if there is an independent set of size $k+\ell$ for the graph $\mathcal{G}=(V, \mathcal{E})$ then
$L_{1},$

$\ldots,$
L_{m} covers $\{v_{1}, . . , v_{k}\}\cup V_{1}\cup\cdots\cup V_{\ell}$

end;

Fig. 7. A procedure for determining whether or not $L_{1},$
$\ldots,$

L_{m} covers $\{V_{1}, \ldots, v_{k}\}\cup V_{1}\cup\cdots\cup V_{\ell}$ (Step 2 and Step 3
(2) $)$.

168

Input: labels $L_{1},$
$\ldots,$

L_{m} , vertices $v_{1},$ $\ldots,$
v_{k} , and sets of vertices $\{v_{1}’\})\ldots,$ $\{v_{t}’\}$;

begin
Construct a bipartite graph $B=(V, V’, \mathcal{E})$ in the following way:

$V:=\{v_{1}, \ldots, v_{k}, v_{1}’, \ldots,\prime vl\},$ $V’:=\{1, \ldots, m\}$,
$\mathcal{E}_{i}:=\{\{vi_{)}i\}|v_{i}\in L_{j} (1\leq j\leq m)\}$ $(i=1, \ldots, k)$,
$\mathcal{E}_{i}’:=$ { $\{v_{i}’,$ $j\}|v_{i}’\in L_{j}$ or $\{v_{i}’\}\in L_{j}$ $(1\leq j\leq m)$ } $(i=1, \ldots, \ell)$,
\mathcal{E} $:= \bigcup_{i=}k\cup 1\mathcal{E}_{i}\cup t;i=1\mathcal{E}_{i}$.

if for the bipartite graph (V, $V’,$ \mathcal{E}), there exists a graph matching which
contains all vertices in V

then $L_{1},$
$\ldots,$

L_{m} covers $\{v_{1}, \ldots, v_{k}\}\cup\{v_{1}’\}\cup\cdots\cup\{v_{\ell}’\}$

end;

Fig. 8. A procedure for determining whether or not $L_{1},$
$\ldots,$

L_{m} covers $\{v_{1}, \ldots , v_{k}\}\cup\{v_{1}’\}\cup\cdots\cup\{v_{\ell}’\}$ (for an input regular
term rooted tree such that the dimension of each variable is exactly 2).

time, the label of u can be computed in $O(n^{2}\cdot$

$\deg(u)\sqrt{n\deg(u)})$ where $\deg(u)$ is the degree of
u . Then the total time for Matching used in The-
orem 3 is $O(\sum_{u\in V\tau}n2. \deg(u)\sqrt{n\deg(u)})$. This
does not exceed $O((n+N)^{4})$.

The complexity of REGULAR TERM ROOTED
TREE $\mathrm{P}.\mathrm{R}$O.BLEM is still open if the dimension
of an input regular term rooted tree is 3.

3 Conclusions

We have given an algorithmic foundation of dis-
covering knowledge from tree structured data.
We have presented polynomial time matching al-
gorithms for tree structured patterns. Computa-
tional experiments of comparing our matching al-
gorithm and a naive matching algorithm have
shown that our matching algorithm is efficient
and useful. We will incorporate the matching al-
gorithm in the KD-FGS system and other knowl-
edge discovery systems from tree-like structured
data.

References

1. S. D\v{z}eroski. Inductive logic programming and
knowledge discovery in databases. Advances
in Knowledges Discovery and Data Mining,
MIT Press, pages 118-152, 1996.

2. S. D\v{z}eroski, N. Jacobs, M. Molina, C. Moure,
S. Muggleton, and W. V. Laer. Detecting traf-
fic problems with ILP. Proc. ILP-98, LNAI
1446, pages 281-290, 1998.

3. L. Dehaspe and H. Toivonen. Discovery of
frequent datalog patterns. Data Mining and
Knowledge Discovery, 3:7-36, 1999.

4. L. Dehaspe, H. Toivonen, and R. King. Find-
ing frequent substructures in chemical com-
pounds. Proc. 3rd Int. Conf. on Knowl-
edge Discovery and Data Mining, pages 30-
36, 1998.

5. M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

6. S. Matsumoto, Y. Hayashi, and T. Shoudai.
Polynomial time inductive inference of regular
term tree languages from positive data. Proc.
ALT-97, LNAI 1316, pages 212-227, 1997.

7. T. Miyahara, T. Shoudai, T. Uchida,
T. Kuboyama, K. Takahashi, and H. Ueda.
Discovering new knowledge from graph data
using inductive logic programming. Proc.
ILP-99, LNAI 1634, pages 222-233, 1999.

8. T. Miyahara, T. Uchida, T. Kuboyama,
T. Yamamoto, K. Takahashi, and H. Ueda.
KD-FGS: a knowledge discovery system from
graph data using formal graph system. Proc.
PAKDD-99,. LNAI 1574, pages 438-442,
1999.

9. Y. Mukouchi and S. Arikawa. Towards a
mathematical theory of machine discovery
from facts. Theoretical Computer Science,
137:53-84, 1995.

10. H. Toivonen. On knowledge discovery in
graph-structured data. Proc. the PAKDD
Workshop on Knowledge Discovery from Ad-
vanced Databases (KDAD-99), 1999.

11. T. Uchida, T. Shoudai, and S. Miyano. Par-
allel algorithm for refutation tree problem on
formal graph systems. IEICE Transactions on
Information and Systems, E78-D(2):99-112,
1995.

169

