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A Time-dependent Numerical Algorithm
for the Helmholtz Equation

Daisuke Koyama *
$[\downarrow \mathrm{j}\backslash \ltimes r_{\sim^{\mathit{4}}}\mathfrak{s})$

Department of Computer Science
The University of Electro-Communications

Chofu, Tokyo 182-8585, Japan

1 Introduction
We consider the controllability method, which is proposed by $\mathrm{B}\mathrm{r}\mathrm{i}_{\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{a}}\mathrm{u}-\mathrm{G}\mathrm{l}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{S}\mathrm{k}\mathrm{i}$ -P\’eriaux
[2], for computing numerical solutions of the exterior problem for the Helmholtz equation.
In the controllability method, we need to introduce an artificial boundary in order to
reduce the computational domain to a bounded domain, and need to solve, in the bounded
computational domain, the wave equation and an elliptic problem iteratively. We first
introduce a new artificial boundary condition (ABC) for the wave equation, which is
suitable for the controllability method. Our ABC is constructed by using the Dirichlet-
to-Neumann $(\mathrm{D}\mathrm{t}\mathrm{N})$ operator associated with the Helmholtz equation. We next discuss
uniqueness for semi-discrete solution of the controllability method in the case when the
artificial boundary is a circle. Then we need spectral properties of the $\mathrm{D}\mathrm{t}\mathrm{N}$ operator,
which are deduced from some properties of the Hankel functions. We finally present
nurnerical examples, which show that numerical solutions obtained by using our ABC are
more accurate than those obtained by using another well-known ABC, and that by using
our ABC, accurate numerical solutions are obtained whether the artificial boundary is
large or small. These numerical results suggest that by.., using our ABC and by taking a
small artificial boundary, we can reduce the computational costs.

We consider the exterior problem for the Helmholtz equation:

$\{$

$-\triangle U-k^{2}U$ $=$ $0$ in $\Omega$ ,
$U$ $=$ $G$ on $\gamma$ ,

$\lim_{rarrow+\infty}r^{\frac{1}{2}}(\frac{\partial U}{\partial r}-ikU\mathrm{I}$ $=$ $0$ (outgoing radiation condition).
(1)

Here $k$ is a positive constant and $\Omega$ is an unbounded domain of $R^{2}$ with boundary $\gamma$ . We
assume that $\mathcal{O}=R^{2}\backslash \overline{\Omega}$ is a bounded open set. Further $G$ is a function on $\gamma$ and $r=|x|$

for $x\in R^{2}$ . When computing numerical solutions of (1) by using the controllability
method, we choose the artificial boundary as follows: $\Gamma_{a}=\{x\in R^{2}||x|=a\}$ , where $a$ is
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a positive number such that $\overline{O}\subset\{x\in R^{2}||x|<a\}$ . Then the bounded computational
domain becomes as follows: $\Omega_{a}=\{x\in\Omega||x|<a\}$ . In the controllability method, we
solve, in the bounded domain $\Omega_{a}$ , the wave equation with an ABC. We propose a new
ABC for the wave equation as follows:

$\frac{\partial u}{\partial n}+\frac{\partial u}{\partial t}=-Su-iku$ on $\Gamma_{a}$ , (2)

where $n$ is the unit normal vector on $\Gamma_{a}$ being toward infinity and $S$ is the Dirichlet-to-
Neumann $(\mathrm{D}\mathrm{t}\mathrm{N})$ operator for the Helmholtz equation with the outgoing radiation condi-
tion (see Section 2). Bristeau et al. use the following ABC mainly:

$\frac{\partial u}{\partial n}+\frac{\partial u}{\partial t}=0$ on $\Gamma_{a}$ , (3)

and do not mention our ABC (2).
Further we discuss the uniqueness for the solution of the semi-discrete problern of the

following problem: find $u=\{u_{0}, u_{1}\}\in E_{\mathit{9}}$ such that

$\{$

$u_{tt}-\triangle u$ $=$ $0$ in $\Omega_{a}\cross(0, T)$ ,
$u$ $=$ $g$ on $\gamma\cross(0, T)$ ,

$\frac{\partial u}{\partial n}+\frac{\partial u}{\partial t}$ $=$ -Su–iku on $\Gamma_{a}\cross(0, T)$ ,

$u(x, 0)$ $=$ $u_{0}(x)$ , $u_{t}(x, 0)=u_{1}(x)$ in $\Omega_{a}$ ,
$u(x, T)$ $=$ $u_{0}(x)$ , $u_{t}(x, T)=u_{1}(x)$ in $\Omega_{a}$ ,

(4)

where $T=2\pi/k,$ $g(x, t)=G(x)e-ikt,$ $E_{g}=l/_{g}^{r}\cross L^{2}(\Omega_{a})$ , and

$V_{g}=\{v\in H^{1}(\Omega_{a})|v=g(\mathrm{O})$ on $\gamma\}$ .

Bardos-Rauch [1] discuss uniqueness for the solution of the problem (4) in the case
when the ABC is replaced by the ABC (3). However, their analysis is not sufficient to
prove the uniqueness for the solution of (4), which is yet to be proved.

2 The $\mathrm{D}\mathrm{t}\mathrm{N}$ operator for the Helmholtz equation
The $\mathrm{D}\mathrm{t}\mathrm{N}$ operator $S$ can be analytically represented as follows (see Grote-Keller [3]):

$SU(a, \theta)=\sum_{n=-\infty}^{\infty}-k\frac{H_{n}^{(1)’}(ka)}{H_{n}^{(1)}(ka)}U_{n}(a)Y_{n}(\theta)$ , (5)

where $r,$
$\theta$ are the polar coordinates, $H_{n}^{(1)}$ are the cylindrical Hankel functions of the

first kind of order $n,$ $Y_{n}$ are the spherical harmonics defined by $Y_{n}(\theta)=e^{in\theta}/\sqrt{2\pi}$, and
$U_{n}(a)= \int_{0}^{2\pi}U(a, \theta)Y_{n}(\theta)d\theta$ .
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3Uniqueness for the semi-discrete solution
We discretize the problem (4) by finite element method, and show that the obtained
semi-discrete problem has a unique solution under hypothesises described below. For this
purpose, we choose a finite dimensional subspace $W_{h}$ of $H^{1}(\Omega_{a})$ , and define $V_{h}=\{v_{h}\in$

$W_{h}|v_{h}=0$ on $\gamma$ }. Let $\phi_{1},$ $\phi_{2},$
$\ldots$ , $\phi_{N}$ be a base of $V_{h}$ , and $\phi_{1},$ $\phi_{2},$

$\ldots,$
$\phi_{N},$ $\phi_{N+1},$

$\ldots,$
$\phi_{N’}$

a base of $W_{h}$ . Then we may assume that $\phi_{1},$ $\phi_{2},$
$\ldots$ , $\phi_{N’}$ are real-valued functions. The

semi-discrete problem of the problem (4) can be written as follows: find $\{\xi_{0}, \eta_{0}\}\in$

$C^{N}\mathrm{x}C^{N}$ such that

$\{$

$B \frac{d^{2}\xi}{dt^{2}}(t)+C\frac{d\xi}{dt}(t)+(A+S+ikC)\xi(t)=e^{-ikt}f$ in $(0, T)$ ,
$\xi(0)=\xi_{0}$ , $\xi_{t}(0)=\eta_{0}$ ,
$\xi(T)=\xi_{0}$ , $\xi_{t}(T)=\eta_{0}$ ,

(6)

where $B,$ $C,$ $A$ , and $S$ are matrices defined as follows:

$B$ $=$ $((\phi\downarrow, \phi_{j}))_{1\leq j,l\leq}N$ , $(u, v)= \int_{\Omega_{a}}u\overline{v}dx$ ,

$C$ $=$ $(\langle\phi_{l}, \phi_{j}\rangle)_{1\leq j,l\leq}N$ ’
$\langle u, v\rangle=\int_{\Gamma_{a}}u\overline{v}d\gamma$ ,

$A$ $=$ $(a(\phi_{l}, \phi_{j}))_{1\leq j,l\leq}N$ ’
$a(u, v)=I_{\Omega_{a}}^{\nabla}u\cdot\nabla\overline{v}dx$ ,

$S$ $=$ $(s(\phi_{l}, \phi_{j}))_{1\leq j,l\leq}N$ ’
$s(u, v)= \int_{\Gamma_{a}}Su\overline{v}d\gamma$,

and $f$ is a vector defined as follows:

$f$ $=$ $(f_{j})_{1\leq j\leq N}$ ,

$f_{j}$ $=$ $\sum_{l=N+1}^{N}[\prime k^{2}(\phi l, \phi_{j})+ik\langle\phi_{l}, \phi_{j}\rangle-a(\phi_{l}, \phi_{j})-S(\phi_{l}, \phi_{j})-ik\langle\phi_{l}, \phi_{j}\rangle]G_{j}$ .

Here the non-homogeneous Dirichlet data $G$ is approximated by the following function:
$G_{h}=\Sigma_{jj}^{N’}=N+1jG\phi|_{\gamma}$ , where $G_{j}\in C$ $(j=N+1, \ldots , N’)$ .

Now we define a square matrix $A$ of order $2N$ as follows:

$A=$,

where $I$ is the unit matrix of order $N$ . To show that the problem (6) has a unique solution,
we use the following proposition:

Proposition 1 The problem (6) has a unique solution if and only if
$ikl\not\in\sigma(A)$ for all $l\in Z$ , (7)

where $\sigma(A)$ is the $\mathit{8}et$ of all eigenvalues of the matrix $A$ .

We show that the problem (6) has a unique solution under two hypothesises described
below.
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Hypothesis 1 For a positive $\lambda$ and $u_{h}\in V_{h}$ , if we have

$a(u_{h}, v_{h})=\lambda(u_{h}, v_{h})$ for all $v_{h}\in V_{h}$ ,

and if we have $u_{h}=0$ on $\Gamma_{a}$ , then we have $u_{h}=0$ in $\Omega_{a}$ .

Hypothesis 1 can be interpreted as follows. The discrete problems of the two $\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{I}\mathrm{l}\mathrm{v}\mathrm{a}1_{\mathrm{U}\mathrm{e}}$

problems:

$\{$

$-\triangle u$ $=$ $\lambda u$ in $\Omega_{a}$ ,
$u$ $=$ $0$ on $\gamma$ ,

$\frac{\partial u}{\partial n}$ $=$ $0$ on $\Gamma_{a}$

and

$\{$

$-\triangle u$ $=$ $\lambda u$ in $\Omega_{a}$ ,
$u$ $=$ $0$ on $\gamma$ ,
$u$ $=$ $0$ on $\Gamma_{a}$

have no same eigenpair.

Hypothesis 2 For the wave number $k$ , we take the radius $a$ of the artificial boundary
such that

${\rm Im} \{\frac{H_{0}^{(1)^{J}}(ka)}{H_{0}^{(1)}(ka)}\}<2$ .

To explain Hypothesis 2, we here state the following lemma:

Lemma 1 ${\rm Im} \{\frac{H_{0}^{(1)’}(_{X})}{H_{0}^{(1)}(x)}\}$ is a decreasing function on $(0, \infty)$ , and further

${\rm Im} \{\frac{H_{0}^{(1)’}(X)}{H_{0}^{(1)}(_{X)}}\}$ $arrow$ 1 $(xarrow+\infty)$ ,

${\rm Im} \{\frac{H_{0}^{(1)’}(X)}{H_{0}^{(1)}(x)}\}$ $arrow$ $+\infty$ $(xarrow+0)$ .

By Lemma 1, there exists only one $\alpha>0$ such that

${\rm Im} \{\frac{H_{0^{1}}^{()^{l}}(\alpha)}{H_{0}^{(1)}(\alpha)}\}=2$.

If the radius $a$ of the artificial boundary is taken to satisfy $a>\alpha/k$ , then Hypothesis 2 is
satisfied. Here we note that $\alpha\approx 0.088426$ .

Theorem 1 The problem (6) has a unique solution under Hypothesises 1 and 2.

To prove Theorem 1, we use the following two lemmas:
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Lemma 2 For all $x>0$ and for all $\nu\in R$ , we have

${\rm Re} \{\frac{H_{\nu}^{(1)’}(x)}{H_{\nu}^{(1)}(_{X)}}\}<0$.

Lemma 3 For all $x>0$ and for all $\nu,$ $\nu’\in R$ satisfying $|\nu|>|\nu’|$ , we have

$0<{\rm Im} \{\frac{H_{\nu}^{(1)’}(x)}{H_{\nu}^{(1)}(_{X)}}\}<{\rm Im}\{\frac{H_{\nu^{\prime(x}}^{(1)’})}{H_{\nu}^{(1)}(_{X)}},\}$ .

Proof of Theorem 1: Because of Proposition 1, our task is now to show that (7)
holds. The proof is by contradiction. Assume that $ikl\in\sigma(A)(l\in Z)$ . Then there is
$\xi(\neq \mathit{0})\in C^{N}$ such that

$A=ikl$ .

Then we have
$-(kl)^{2}B\xi+iklC\xi+(A+S+ikC)\xi=\mathit{0}$ . (8)

Now we write $\xi=[\xi_{1}, \xi_{2}, \ldots , \xi_{N}]^{T}$ and set $u_{h}= \sum_{j=1}^{N}\xi_{j}\phi_{j}$ . Then (8) is written as follows:
for all $v_{h}\in V_{h}$ ,

$-(kl)^{2}(u_{h}, v_{h})+ikl\langle u_{h}, v_{h}\rangle+a(u_{h}, v_{h})+s(u_{h}, v_{h})+ik\langle u_{h}, v_{h}\rangle=0$. (9)

Here if we take $v_{h}=u_{h}$ in (9), then we obtain

$-(kl)^{2}(u_{h}, u_{h})+ikl\langle u_{h}, u_{h}\rangle+a(u_{h}, u_{h})+s(u_{h}, u_{h})+ik\langle u_{h}, u_{h}\rangle=0$.

The real part of this identity is:

$a(u_{h}, u_{h})-(kl)^{2}(uh, u_{h})- \frac{k}{a}\sum_{\infty n=-}^{\infty}{\rm Re}\{\frac{H_{n}^{(1)’}(ka)}{H_{n}^{(1)}(ka)}\}|\langle u_{h},$ $\frac{e^{in\theta}}{\sqrt{2\pi}}\rangle|^{2}=0$, (10)

and the imaginary part is:

$\frac{k}{a}\sum_{n=-\infty}^{\infty}[l+1-{\rm Im}\{\frac{H_{n}^{(1)^{l}}(ka)}{H_{n}^{(1)}(ka)}\}]|\langle u_{h},$ $\frac{e^{in\theta}}{\sqrt{2\pi}}\rangle|^{2}=0$. (11)

We here consider three different cases.
Case 1: When $l\leq-1$ . By Lemma 3,

$l+1-{\rm Im} \{\frac{H_{n}^{(1)’}(ka)}{H_{n}^{(1)}(ka)}\}<0$ for all $n\in Z$ ,

and hence, by (11),

$\langle u_{h},$ $\frac{e^{in\theta}}{\sqrt{2\pi}}\rangle=0$ for all $n\in Z$ .

This implies
$u_{h}=0$ on $\Gamma_{a}$ . (12)
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From this identity and (9), we get

$a(u_{h}, v_{h})=(kl)^{2}(u_{h}, v_{h})$ for all $v_{h}\in \mathrm{I}_{h}^{\prime^{r}}$ . (13)

From (12), (13), and Hypothesis 1, we have $u_{h}=0$ on $\Omega_{a}$ , i.e., $\xi=\mathit{0}$ . This contradicts
the assumption that $\xi\neq \mathit{0}$ . Therefore we can see $ikl\not\in\sigma(A)$ .

Case 2: When $l=0$ . By (10), we obtain

$a(u_{h}, u_{h})- \frac{k}{a}\sum_{\infty n=-}\mathrm{R}\infty \mathrm{e}\{\frac{H_{n}^{(1)’}(ka)}{H_{n}^{(1)}(ka)}\}|\langle u_{h},$
$\frac{e^{in\theta}}{\sqrt{2\pi}}\rangle|^{2}=0$ .

From this identity and Lemma 2, it follows that $u_{h}=0$ in $\Omega_{a}$ . Therefore $\mathrm{O}\not\in\sigma(A)$ .
Case 3: When $l\geq 1$ . By Lemma 3 and Hypothesis 2, we have

$l+1-{\rm Im} \{\frac{H_{n}^{(1)’}(ka)}{H_{n}^{(1)}(ka)}\}>2-{\rm Im}\{\frac{H_{0}^{(1}()’ka)}{H_{0}^{(1)}(ka)}\}>0$ for all $n\in Z$ .

By the same argument as Case 1, we can conclude that $ikl\not\in\sigma(A)$ . $\blacksquare$

4 Numerical examples

4.1 Scattering by a disk
We compare the accuracy of numerical solutions obtained by using our ABC (2) and the
ABC (3) via numerical experiments. We consider a test problem, where the obstacle
$O=\{x\in R^{2}||x|<1\}$ , the wave number $k=1$ , and the Dirichlet data $G$ is chosen as
the exact solution $U$ becomes as follows: $U(r, \theta)=H_{1}^{(1)}(r)\cos\theta$ . We locate the artificial
boundary $\Gamma_{a}$ at $r=2$ . We use the conforming finite element method using piecewise
linear elements. The triangulation has 2176 vertices and 4096 triangles. The length $h$ of
each side of every triangle satisfies $\lambda/129<h<\lambda/54$ , where $\lambda$ is the wave length, i.e.,
$\lambda=2\pi/k$ . To solve the wave equation numerically, we use explicit second order finite
difference centered scheme with the step size $\triangle t=T/200$ , where $T=2\pi/k$ . When we
use our ABC, we have to truncate the infinite series of (5) at a finite value $N$ . We denote
the truncated $\mathrm{D}\mathrm{t}\mathrm{N}$ operator by $S^{N}$ . In this test problem, we choose $N=1$ , and then we
note that $u=U(r, \theta)e^{-ikt}$ satisfies

$\frac{\partial u}{\partial n}+\frac{\partial u}{\partial t}=-s^{1}u-iku$ on $\Gamma_{a}$ .

We show contour lines of the real part of the exact solution and the numerical solution
obtained by the ABC (3) in Figure 1, where solid lines display the numerical solution, and
dotted lines the exact solution. We can see that the numerical solution is very different
from the exact solution. We show the exact solution and the numerical solution obtained
by our ABC in Figure 2, where the numerical solution is exactly coincident with the exact
solution. From these figures we can see that numerical solutions obtained by our ABC
are more accurate than those obtained by the ABC (3).
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Figure 1: Contour lines of the real part of the exact solution and of the real part of the
numerical solution obtained by using the ABC (3).

4.2 Scattering by a $\Pi$-shaped open resonator
We compute scattering of an incident plane wave $\exp[ik(X1\cos\alpha+x2\sin\alpha)]$ by an obstacle,
where $\alpha$ is an incident angle. The wave number $k=8\pi$ and then the wave length $\lambda=0.25$ .
The obstacle is a $\Pi$-shaped open resonator. The size of its interior rectangle is $4\lambda\cross\lambda$ ,
and the thickness of the wall is $\lambda/5$ . The incident angle $\alpha=30^{\mathrm{O}}$ . First we choose the
radius of the artificial boundary $a=3\lambda$ . Then the $\mathrm{D}\mathrm{t}\mathrm{N}$ operator is truncated at $N=135$ ,
and the triangulation has 42648 vertices and 83808 triangles. The length $h$ of each side
of every triangle satisfies $\lambda/51<h<\lambda/20$ . We numerically solve the wave equation by
the explicit second order finite difference centered scheme with the step size $\triangle t=T/100$ .
Next we choose the radius of the artificial boundary $a=4\lambda$ . Then the $\mathrm{D}\mathrm{t}\mathrm{N}$ operator
is truncated at $N=150$ , and the triangulation has 77808 vertices and 153888 triangles.
The conditions of the mesh size $h$ and the time step size $\triangle t$ are the same as above. In
Figure 3, we display the contour lines of the real part of the numerical solutions in the
cases when $a=3\lambda$ and when $a=4\lambda$ . Figure 3 shows good coincidence of those numerical
solutions, and suggests that if we use our ABC, we can get accurate numerical solutions
without enlarging radius of the artificial boundary.
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Figure 2: Contour lines of the real part of the exact solution and of the real part of the
numerical solution obtained by using our ABC (2).

Figure 3: Contour lines of the real part of the numerical solutions in the cases when
$a–3\lambda$ and when $a=4\lambda$ .
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