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Numerical Inversion of the Laplace Transform Using a Continuous
Euler Transformation

EBRPRERFTHARFR KHHAR (Takuya Ooura)

Research Institute for Mathematical Sciences, Kyoto University

1 Introduction

The Laplace transform of function g(t) is defined by

G(s) = / ¥ emotg(t) dt (1.1)

0

and its inversion is given by

1 y+ico
g(t) = ———/ e G(s)ds, v>o, (1.2)
2

271 Jy—ioo

where o is the abscissa of convergence for (1.1). It is known that numerical evaluation of the
integral (1.2) is difficult [2]. The integral (1.2) is a Fourier type integral:

et [ .
g(t) = -2—;/ e G(y +iz) dz (L.3)

with a slowly convergent integrand. Accordingly its computation accompanies a serious difficulty
[1]. Recently, the author proposed a continuous Euler transformation that accelerates the con-
vergence of the integral of such type and we showed that the continuous Euler transformation is
efficient in computing the Fourier transforms of slowly decaying function by using FFT [5].

In this paper, we apply the continuous Euler transformation to the numerical evaluation of the
integral (1.3) and propose a new method to compute numerical inversion of the Laplace transform
using the continuous Euler transformation and FFT.

2 Continuous Euler transformation

An alternating series

S =S (-1 fm) = 3 6™ f(n) (2.1

n=0 n=0

is a discrete approximation to a Fourier type integral

I= /0 ¢ f () da (2.2)

with a mesh size 1. So we may expect that a continuous version of the Euler transformation, if
any, will accelerate the convergence of integrals of Fourier type.
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2.1 Definition of the Conventional Euler Transformation

The Euler transformation truncated at the N-th term of an alternating series

5= (-1)"f(n) (2.3)
n=0
is defined by
W _XS N Y, 1(N
SEu.ler = Z an )(~1)mf(m) ) wsn ) = Z '2_N‘<n> ) (24)
m=0 n=m-+1
(V) (N)

where wy, * are the weights of the linear sequence transformation [7]. The weights ws, ' happen
to be the probability of the binomial distribution.
2.2 Definition of the Continuous Euler Transformation

We define the continuous Euler transformation for the integral
I= / % f()dz, w>0 (2.5)
0

by
L R o0
1 =/0 w(z; p,q) f(z)e' " dz , w(z;p,q) = // $(t) dt. (2.6)

z/p—q
Where ¢(t) is a prescribed function satisfying

[ swa=1, lm ét)=0 (27)

and p and ¢ are constants depending on L and w.

2.3 Convergence of the Continuous Euler Transformation

In this section, We take the following w

2= 7 Lt = Late(asp - |
w(w,p,q)—L/p_q \/7_re dt-—2erfc(:z:/p q) (2.8)

and choose L = 2pq. We then have the following.
Theorem 1 We assume that f(2) is regular in a domain |arg(z + 1/2)] < § with 0 < § < 7/2,
that |f(z)] < M in the domain, and that

ngr;oxl})llg}glf(R —1/2+iRtan8)| = 0.

Then, for arbitrary o such that o <tand, 0 < a <1 we have

_ __ VAP (g-wap/n/(1-a®) | VTP . V2 (q-wop)a) ¢
|\I — I, |<M(ﬁme + 7 Tooe e 7. (2.9)
The proof of Theorem 1 is in [5, 3]. Now, we choose p and ¢ such that
L Vwal
vi =, _ Ywa (2.10)

P=ﬁ, qg= 2 ’
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then the error of the approximation I,(‘,L) is bounded as

vrl VL f) —waL/4
Viwarl a2 | ajwa T '

Hence, the error of L(‘,L) always decays exponentially as L — oo and the continuous Euler trans-
formation accelerates the convergence of Fourier type integrals for those f described in Theorem
1.

-1V <M ( (2.11)

2.4 Efficient Weight Function

To improve the convergence of the continuous Euler transformation, the weight function
o0
wzpg) = [ st)de (212)
z/p—q
should be taken so that
1. |®(w)| decays rapidly for large |w|

2. |#(t)| decays rapidly for large [t],

where ®(w) is the Fourier transform of ¢(t) [4]. An example of an efficient weight function is

1 ®  sinh \/ﬁz - t2

w(z;p,q) = ——~/ e
7"[0([3) z/p—q P*—t

with parameters L = 2pq, ¢ = 3, p > w™! [3]. The error of I 2 using this weight function decays

O(e~L/(2P)) as L — co. If we set p = w™!, then the error decays O(e~“%/2) and the coefficient of
the exponent is twice as great as the coefficient of (2.11).

(2.13)

3 Numerical Inversion of the Laplace Transform

3.1 Method using the Continuous Euler Transformation and FFT

We first apply the continuous Euler transformation to (1.3), and obtain

@90 = [ wllelpa)e Gl + i) de. (3.1)

We next approximate it by the discrete summation with mesh size h to obtain

hett X :
&N’h)(t)'—‘"ie,? Y w(inkl;p,q)e ™ G(y + inh), (32)
n=—~N_

where Ny = |Ly/h| (|z] denotes the largest integer < z).
To keep the precision of the continuous Euler transformation, we should make p,q depend

on Ly and w. Here we fix the parameters p,q with a view to using FFT. For Ly = Nh/2—h
L_ = Nh/2 and t = 2xk/(Nh), (3.2) becomes

omk, he N2 ;
(N h) = . . 2mink /N
9 (G5) = 50 n=§_N:/2w(|nh|, p,9)G(7 + inh)e , (3.3)

which can be computed by FFT.
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3.2 Error Estimation

The approximation g&N’h) includes the following errors

A. Error of the continuous Euler transformation: g(t) — g,(,,L) (t)
B. Error of the discrete approximation: gg') ) - g,(,,N’h)(t) .

By Theorem 1, the error committed by by A is

M (ﬁpe(q”tﬂp/z)zf(l—az) ﬁp + \/Ee(Q“taP)Q) e'yt—q"’ ,

lo(t) — 67 ()] < (3.4)

n V21 = a2 4 to

where w(z;p,q) = Lerfc(z/p — q) and L = Nh/2 = 2pq.
The error due to B is an error of the discrete Fourier transform. We can estimate this error by
an extension of the theorem on the discrete Fourier transform [6, chapter 3.3] and obtain

A~

ML dié ML 2
(L) (4} — g\N:h) e SEE vt | DD vt
lgw”(t) = g0 V()] < 5 —p+ S —eT + S—e (3.5)
_exp(yt—dit—2nd/h)  exp(yt+d_t—2nd_/h) (3.6)
1 -—exp(—~2nd;/h) 1 —exp(-2nd_/h) '’ )

where G(y + i2) is regular in the domain —~d_ < Im z < d4, M is an upper bound of |G(y + iz)|
in the domain, and £ is an upper bound of |G(y + ¢z)| on the contour of integration C and C-.

Im 2
A
_ Cd+ ‘ld+
< 1
c. c,
- ° . - e ° TN +— Re z
—~N_h ~2h -h h 2h Nih
, Ca- | -id_ R

Fig. 1: Contour of Integration

3.3 Numerical Example
The following functions are used for test:

Gi(s) = ==, 9lt) = h(1) (37)
1
CGals) = sexp(l/(s + V1 £ 82)) (3:8)
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The result using the weight function

wi(z;p,) = serfe(z/p ~ ) (3.9)

is shown in Fig. 2 and the error is shown in Fig. 3.

gt Gt
) T T T 1+ ! 4
0.8f h
0}
ok ]
0.4} P I 1
) 00 P/ 5 700 26
—_1 = 1
(a) G(S) = Vi+ts (b) G(S) T sexp(1/(s+v1+s?))

Fig. 2: Approximations to the Inversion of the Laplace Transform: g(N h)(w’—"—) N =512, h=0.125

Ig-gw™A lg-gu ™"
T v ! T

1°d 100— —..,,._,,.,.,..-. |

1079 10719

— 1 — 1
(a) G(S) T Vitst (b) G(s) T sexp(1/(s+v1+32))
Fig. 3: Absolute error of the Inversion of the Laplace Transform: g(N h)(——h—) N =512, h =0.125

We chose N =512, h =0.125, vy = 1, L = Nh/2 = 2pq and computed in double precision that
has 53 bit accuracy. Truncation error of the continuous Euler transformation was set to 10712 and
the parameter ¢ is chosen so that exp(—g?) = 107!2. The broken line in Fig. 3 denotes the error
of the direct transform that does not use w(z;p,q).

By (3.5), the error bound increases exponentially for large ¢t. By (3.4), the error bound becomes

very large if ¢ — tp/2 > 0, i.e. t < 2¢/p = 3.45. This error estimation is consistent with the
numerical result.

Next, we computed the same transform using the efficient weight function

1 % ginh /B2 _t2dt
TIo(B) Jesp—q +/B% —t?
with the parameters N = 512, h = 0.125, vy = 1, L = Nh/2 = 2pq and e P =e9=10"13 The
error is shown in Fig. 4.

The error of the approximation using ws(z;p, q) is large in ¢ < 1.7 that is only half the interval
using w1(2; p, q)-

we(z;p,q) = (3.10)
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1g-g /M)
¥

10°F 10 T .

10_10_ 10*10-
0 160 P — % 1% L
| = 1
(a) G(s) = 7= - B C6) = smmy

Fig. 4: Absolute error of the Inversion of the Laplace Transform: g,(,,N’h)(-ZN’—'-,’f) using wg, N = 512,

h =0.125

3.4 Execution Time

We measured the execution time on SUN Ultra SPARC-I 200MHz machine with SUN Workshop
cc 4.2.1 compiler. Actual execution time is shown in Table 1.

Table 1: Execution Time to Transform

Function to Transform G1(s) Ga(s)
Our Method 3.3 usec./N | 52 psec./N
Hosono’s Method 33.2 p sec./N | 93.7 u sec./N

The weight function we used is wy(;p,q) with the same parameters as in section 3.3. We also
compared with Hosono’s method [2] with 30-point Euler transformation.
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