

Tryoto oniversity research information repository	
Title	ON SPECTRAL PROPERTIES OF LOG-HYPONORMAL OPERATORS (Operator Inequalities and Related Area)
Author(s)	Cho, Muneo; Hwang, In Sung; Lee, Jun Ik
Citation	数理解析研究所講究録 (2000), 1144: 77-84
Issue Date	2000-04
URL	http://hdl.handle.net/2433/63914
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

ON SPECTRAL PROPERTIES OF LOG-HYPONORMAL OPERATORS

神奈川大学工学部 長 宗雄 (Muneo Chō) 成均館大学(韓国)In Sung Hwang 成均館大学(韓国)Jun Ik Lee

Abstract

In this paper we consider spectral mapping theorem about two kinds of functional transformations for log-hyponormal operators and the continuity of the spectrum for log-hyponormal operators.

Introduction.

Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ denote the set of all bounded linear operators on \mathcal{H} . For $A \in B(\mathcal{H})$, we denote the spectrum, the point spectrum, the residual spectrum and the approximate point spectrum of A by $\sigma(A)$, $\sigma_p(A)$, $\sigma_r(A)$ and $\sigma_a(A)$, respectively. For the study of spectral theory of operators, spectral mapping theorems are important. In this paper we consider spectral mapping theorems about two kinds of functional transformations for log-hyponormal operators. It is familiar that if A is normal then for every polynormial $f(\lambda, \lambda^*)$ one has $\sigma(f(A)) = f(\sigma(A)) = \{f(\lambda, \lambda^*); \lambda \in \sigma(A)\}$. In particular, we called the equality $\sigma(\operatorname{Re}(A)) = \operatorname{Re}(\sigma(A))$ with the polynomial $f(\lambda + \lambda^*) := \frac{1}{2}(\lambda + \lambda^*) = \operatorname{Re}(\lambda)$ for any operator A the projective property.

The projective property for semi-normal operators was shown by C. Putnam [11] and the projective property for Toeplitz operators was shown by S. Berberian [2]. We will show the subprojective property for p-hyponormal or log-hyponormal operators. On the other hand, in [14], D Xia studied the following functional transformation $\varphi_{\{\xi,\psi\}}(T) = \xi(U)\psi(|T|)$ for a semi-hyponormal operator T = U|T|. And in [6], M. Itoh extended this result to p-hyponormal operators. Recently, M. Chō and B. P. Duggal [4] gave an elementary proof of

Itoh's result for invertible operator cases and generalized this result. We will extend this result for log-hyponormal operator.

On the other hand, in [8] it was shown that the spectrum σ is continuous on the set of p-hyponormal operators. We also show that this is still true for log-hyponormal operators.

An operator A is called p-hyponormal if $(A^*A)^p - (AA^*)^p \ge 0$ for some $p \in (0, \infty)$. If p = 1, A is hyponormal and if $p = \frac{1}{2}$, A is semi-hyponormal. By the consequence of Löwener's inequality [10] if A is p-hyponormal for some $p \in (0, \infty)$, then A is also q-hyponormal for every $q \in (0, p]$. Thus we assume, without loss of generality, that $p \in (0, \frac{1}{2})$. Let $\mathcal{H}(p)$ denote the class of p-hyponormal operators . An operator T is called log-hyponormal if T is invertible and satisfies log $(T^*T) \ge \log (TT^*)$. Since $\log : (0, \infty) \longrightarrow (-\infty, \infty)$ is monotone function, every invertible p-hyponormal operator is log-hyponormal. But there exists a log-hyponormal operator which is not p-hyponormal (cf. [12, Example 12]).

An operator $A \in B(\mathcal{H})$ has a unique polar decomposition A = U|A|, where $|A| = (AA^*)^{\frac{1}{2}}$ and U is a partial isometry with the initial space the closure of the range of |A| and the final space the closure of the range of A. In particular, if A = U|A| is log-hyponormal, then the operator U is unitary. Associated with A there is a related operator $\tilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$, we call it the Aluthge transform of A. Aluthge transform has been used as a useful tool for study of p-hyponormal operators.

The followings are basic properties for \tilde{A} .

- (i) If A = U|A| be p-hyponormal $(0 , then the operator <math>\tilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$ is $(p + \frac{1}{2})$ hyponormal (cf. [1, Theorem 2]).
- (ii) If $A \in B(\mathcal{H})$ be a log-hyponormal operator with a polar decomposition A = U|A|, then $\tilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$ is semi-hyponormal (cf. [12, Theorem 4]).

Form the fact above, the second Aluthge transform of a p-hyponormal operator or log-hyponormal operator is hyponormal.

THEOREM A For every $A \in B(\mathcal{H})$ and its Aluthge transform $\tilde{T} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$, it holds that

$$\omega(A) = \omega(\tilde{A})$$

where $\omega = \sigma, \sigma_a$ or σ_p .

Proof. It is known from [9, Theorem 1.3].

1. Functional transformations for log-hyponormal operators.

First, we will show the "subprojective" property for the spectra of p-hyponormal operators and log-hyponormal operators. For a operator T, a point z is in the normal approximate point spectrum $\sigma_{na}(T)$ of T if there exists a sequence $\{x_n\}$ of unit vectors such that

$$(T-z)x_n \to 0$$
 and $(T-z)^*x_n \to 0$ as $n \to \infty$.

We begin with the following lemma. Proof is easy. So we omit it.

LEMMA 1.1. If
$$T \in B(\mathcal{H})$$
 and $\sigma_a(T) = \sigma_{na}(T)$, then
$$\operatorname{Re} (\sigma(T)) \subset \sigma(\operatorname{Re} T) \quad and \quad \operatorname{Im} (\sigma(T)) \subset \sigma(\operatorname{Im} T). \tag{1.1.1}$$

Corollary 1.2. Let T be p-hyponormal or log-hyponormal. Then (1.1.1) holds.

Proof. Since $\sigma_a(T) = \sigma_{na}(T)$ for a p-hyponormal or a log-hyponormal operator T. This follows from Lemma 1.1

THEOREM 1.3. Let T = U|T| = H + iK be p-hyponormal or log-hyponormal and \hat{T} be the second Aluthge transform of T. Let $\hat{T} = \hat{H} + i\hat{K}$ be the Cartesian decomposition of \hat{T} . Then

$$\sigma(\hat{H}) \subset \sigma(H)$$
 and $\sigma(\hat{K}) \subset \sigma(K)$.

Proof. By Theorem A,

$$\sigma(T) = \sigma(\hat{T}) \Longrightarrow \operatorname{Re} (\sigma(T)) = \operatorname{Re} (\sigma(\hat{T})), \quad \operatorname{Im} (\sigma(T)) = \operatorname{Im} (\sigma(\hat{T})).$$

Since \hat{T} is hyponormal, Re $(\sigma(\hat{T}) = \sigma(\text{Re }\hat{T}))$ and Im $(\sigma(\hat{T}) = \sigma(\text{Im }\hat{T}))$. Thus

$$\sigma(\operatorname{Re} \hat{T}) \subset \sigma(\operatorname{Re} T)$$
 and $\sigma(\operatorname{Im} \hat{T}) \subset \sigma(\operatorname{Im} T)$.

COROLLARY 1.4. Let T be log-hyponormal. If T has a compact real (imaginary) part, then T is normal.

Proof. Since, by Theorem 1.3, $meas(\sigma(\hat{H})) = 0$, \hat{T} is normal. And since T is normal if and only if \hat{T} is normal. Thus T is normal.

Let E be a bouded closed subset of all real numbers \mathbf{R} , and $\mathbf{M}(\mathbf{E}) = \{\psi : \psi \text{ is a bounded real Baire function on E}\}$. Let $\mathbf{M}_0(\mathbf{E}) = \{\psi \in \mathbf{M}(\mathbf{E}) : \psi(x) \geq 0 \text{ for all } x \in \mathbf{E} \text{ and } \psi(0) = 0\}$. Let $\mathcal{J}(\mathbf{E}) = \{\psi : \psi \text{ is a strictly monotone increasing continuous function on E} and <math>\mathcal{J}_0(\mathbf{E}) = \mathbf{M}_0(\mathbf{E}) \cap \mathcal{J}(\mathbf{E})$. Let $\mathcal{S}(\mathbf{E}) = \{\psi \in \mathbf{M}(\mathbf{E}) : K_{\psi} \geq 0\}$, where K_{ψ} is the singular integral operator defined on $L^2(\mathbf{E})$ by

$$(K_{\psi}f)(x) = \mathrm{s} - \lim_{\epsilon \to 0+} rac{1}{2\pi} \int_{\mathrm{E}} rac{\psi(x) - \psi(y)}{x - (y + i\epsilon)} f(y) dy.$$

If E is a closed subset of the unit circle **T**, let $M_0(E) = \{\xi : \xi \text{ is a complex Baire} \}$ function on $E \to T$, $\mathcal{J}_0(E) = \{\xi : \xi \text{ is a direction preserving homomorphism on } E\}$ and $\mathcal{S}_0(E) = \{\xi : \xi \in M_0(E) \text{ and } K_{\xi} \geq 0\}$, where K_{ξ} is the singular integral operator defined on $L^2(E)$ by

$$(K_{\xi}f)(e^{i\theta}) = s - \lim_{\epsilon \to 0+} \frac{1}{2\pi} \int_{\mathcal{E}} \frac{1 - \xi(e^{i\theta})\overline{\xi(e^{i\eta})}}{1 - e^{i\theta}e^{-i\eta}(1 - \epsilon)} f(e^{i\eta}) d\eta.$$

For functions f and g, we denote the functional transformation $F_{[f,g]}(T) = f(U)\exp(g(\log |T|))$ for a log-hyponormal operator T = U|T| and $F_{[f,g]}(re^{i\theta}) = f(e^{i\theta})\exp(g(\log r))$ in the complex plane.

LEMMA 1.5. Let $T \in B(\mathcal{H})$ be a semi-hyponormal operator with operator decomposition T = U|T|. Then $Ue^{|T|}$ is log-hyponormal and

$$\sigma_a(Ue^{|T|}) = \{e^r e^{i\theta} : re^{i\theta} \in \sigma_a(T)\};$$

$$\sigma_r(Ue^{|T|}) = \{e^r e^{i\theta} : re^{i\theta} \in \sigma_r(T)\};$$

$$\sigma(Ue^{|T|}) = \{e^r e^{i\theta} : re^{i\theta} \in \sigma(T)\}.$$

Proof. Proof is from [13, Lemmas 5 and 6].

THEOREM 1.6. Let T = U|T| be log-hyponormal and $\log |T| \geq 0$. Suppose that $f \in \mathcal{J}_0(\sigma(U)) \cap \mathcal{S}_0(\sigma(U))$ and $g \in \mathcal{J}_0(\sigma(\log |T|)) \cap \mathcal{S}_0(\sigma(\log |T|))$ if $\sigma(U) \neq \mathbf{T}$ and $g \in \mathcal{J}_0([0, \|\log |T|\|]) \cap \mathcal{S}_0([0, \|\log |T|\|])$ if $\sigma(U) = \mathbf{T}$. Then $F_{[f,g]}(T)$ is log-hyponormal and $F_{[f,g]}(\sigma_w(T)) = \sigma_w(F_{[f,g]}(T))$, where $\sigma_w = \sigma, \sigma_a$ or σ_r .

Proof. Let T = U|T| be log-hyponormal, then $S = U \log |T|$ is semi-hyponormal and $\sigma_w(S) = \{(\log r)e^{i\theta} : re^{i\theta} \in \sigma_w(T)\}$. From Theorem VI, 3.1 of [14], $f(U)g(\log |T|)$ is also semi-hyponormal. Thus $\sigma_w(f(U)g(\log |T|)) = \{f(e^{i\theta})g(\log r) : (\log r)e^{i\theta} \in \sigma_w(U \log |T|)\}$. Moreover, from Lemma 1.5 we can see that

$$F_{[f,g]}(T) = f(U)\exp(g(\log |T|))$$

is log-hyponormal. Thus

$$\sigma_{w}(F_{[f,g]}(T)) = \sigma_{w}(f(U)\exp(g(\log|T|))$$

$$= \{e^{g(\log r)}f(e^{i\theta}): f(e^{i\theta})g(\log r) \in \sigma_{w}(f(U)g(\log|T|), (\log r)e^{i\theta} \in \sigma_{w}(U\log|T|)\}$$

$$= \{e^{g(\log r)}f(e^{i\theta}): (\log r)e^{i\theta} \in \sigma_{w}(U\log|T|), re^{i\theta} \in \sigma_{w}(T)\}$$

$$= \{e^{g(\log r)}f(e^{i\theta}): re^{i\theta} \in \sigma_{w}(T)\}$$

$$= F_{[f,g]}(\sigma_{w}(T)).$$

2. Continuity of σ on the set of all log-hyponormal operators.

In [8], it was shown that the spectrum σ is continuous on the set of all p-hyponormal operators. In this section we show that this is still true for log-hyponormal operators. To do this we recall that $T \in B(\mathcal{H})$ is said to be bounded below if there exists k > 0 for which $||x|| \leq k||Tx||$ for each $x \in \mathcal{H}$. For $A \in B(\mathcal{H})$, $\gamma(A)$ denote the reduced minimum modulus, $\gamma(A) = \inf_{x \in \mathcal{H}} \frac{||Ax||}{\operatorname{dist}(x, KerA)}$, where $\frac{0}{0}$ is defined to be ∞ . Before proving the main theorem we establish the following:

LEMMA 2.1. Let T = U|T| and $T_n = U_n|T_n| \in B(\mathcal{H})$ for $n \in \mathbb{Z}^+$. If T is bounded below and T_n converges to T, then U_n converges to U.

Proof. Since T is bounded below, we have that if $\gamma(\cdot)$ denote the reduced minimum modulus, then $\gamma(T) = \alpha > 0$ and T is a continuity point of γ (cf. [7, Theorem 4.3]). Hence, without loss of generality, we may assume that $\gamma(T_n) > \varepsilon/2$ for all n. Since the set of bounded below operators is an open set, it follows that for sufficiently large n, T_n 's are bounded below and hence |T| and $|T_n|$ are invertible (cf. [5, Theorem 8.6.4]). Let $y \in \mathcal{H}$ and ||y|| = 1. Then there exist x and x_n in \mathcal{H} $(n \in Z^+)$ such that y = |T|x and $y = |T_n|x_n$. Since $\gamma(S)$ is the supremum of all real number γ such that $\gamma||x|| \leq ||Sx||$, we have

$$||x|| \le \frac{1}{\gamma(|T|)} || |T|x|| = \frac{1}{\gamma(T)} ||y|| = \frac{1}{\gamma(T)} < 2/\alpha.$$

Similarly, $||x_n|| < 2/\alpha$ for all $n \in \mathbb{Z}^+$. Therefore

$$||U_n y - Uy|| = ||U_n|T_n|x_n - U|T|x|| \le ||U_n|T_n|x_n - U_n|T_n|x|| + ||U_n|T_n|x - U|T|x||.$$

But

$$||U_n|T_n|x - U|T|x|| \le ||T_n - T|||x|| < \frac{2||T_n - T||}{\alpha} \longrightarrow 0 \text{ as } n \to \infty.$$

We now claim that $||x_n - x|| \to 0$ as $n \to \infty$. If it is not so, then there exist $\delta > 0$ and a sequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $||x_{n_k} - x|| > \delta$ for all k. Hence

$$|||T|(x_{n_k} - x)|| = |||T|x_{n_k} - |T_{n_k}|x_{n_k}|| \le |||T| - |T_{n_k}|||||x_{n_k}|| < \frac{2}{\alpha}||T| - |T_{n_k}||| \to 0$$

as $n \to \infty$. This implies that |T| is not bounded below. It is a contradiction. Therefore, we have

$$||U_n|T_n|x_n - U_n|T_n|x|| \le ||T_n|| ||x_n - x|| \to 0$$
 as $n \to \infty$.

Now we have:

Theorem 2.2. The spectrum σ is continuous on the set of all log-hyponormal operators.

Proof. Suppose that T = U|T| and $T_n = U_n|T_n|$ for $n \in \mathbb{Z}^+$ are loghyponormal operators such that T_n converges to T. Since T is invertible it follows from Lemma 2.1 that U_n converges to U, so that

$$\tilde{T}_n = |T_n|^{\frac{1}{2}} U_n |T_n|^{\frac{1}{2}} \longrightarrow \tilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}} \quad \text{as} \quad n \to \infty.$$

Since $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ is semi-hyponormal and the spectrum is continuous on the set of all p-hyponormal operators, we have

$$\sigma(T_n) = \sigma(\tilde{T}_n) \longrightarrow \sigma(\tilde{T}) = \sigma(T).$$

For an operator $A \in B(\mathcal{H})$, z is in the approximate defect spectrum $\sigma_{\delta}(A)$ if there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that $\lim_{n\to\infty} \|(A-z)^*x_n\| = 0$. Then we have

THEOREM 2.3. Let T be a log-hyponormal operator. Then

$$\sigma(T) = \sigma_{\delta}(T).$$

Proof. By Lemma 3 of [13], we have

$$\sigma_a(T) \subset \sigma_\delta(T)$$
.

Therefore,

$$\sigma(T) = \sigma_{\delta}(T).$$

We conclude with:

COROLLARY 2.4. The approximate defect spectrum σ_{δ} is continuous on the set of all log-hyponormal operators.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integr. Eqat. Oper. Th. 13(1990), 307-315.
- [2] S. K. Berberian, Conditions on an operator implying $Re(\sigma(T)) = \sigma(Re\ T)$, Trans. Amer. Math. Soc. 154(1971).
- [3] M. Chō and T. Huruya, p-hyponormal operators for 0 , Commentationes Math. 33(1993), 23-29.
- [4] M. Chō and B.P. Duggal, p-hyponormal operators functional trasformations and spectra, Sci. Math. 2 (1999), 141-144.
- [5] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [6] M. Itoh, Spectral mapping theorem for p-hyponormal operators, Acta Sci. Math.(Szeged) 62(1996), 523-535
- [7] I. S. Hwang and W. Y. Lee, The Bounded below-ness of 2×2 upper triangular operator matrices, (preprint 1999).
- [8] I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of phyponormal operator, Math. Z. (to appear)
- [9] I. B. Jung, E. I. Ko and C. Pearcy, Operators and their Aluthge transforms, (preprint 1998)

- [10] K. Löwer, Über monotone matrix function, Math. Z. 38(1983), 507-514.
- [11] C. R. Putnam, On the spectra of semi-normal operators, Trans. Amer. Math. Soc. 154(1971).
- [12] K. Tanahashi, On Log-hyponormal operators, Integr. Equat. Oper. Th. 34 (1999), 364-372.
- [13] K. Tanahashi, *Putnam's Inequality for log-hyponormal operators*, Integr. Equat. Oper. Th. to appear.
- [14] D. Xia, Spectral theory of hyponormal operator, Brikhäuser, Basel,1983.

Muneo Chō
Department of Mathmatics
Kanagawa University
Yokohama 221-8686, Japan
e-mail: m-cho@cc.kanagawa-u.ac.jp

I. S. Hwang and J. I. Lee
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
e-mail: iswhang@math.skku.ac.kr
jilee@math.skku.ac.kr