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' ON SPECTRAL PROPERTIES OF
' LOG-HYPONORMAL OPERATORS
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Abstract

In this papér we consider spectral mapping theorem about two kinds of func-
tional transformations for log-hyponormal operators and the continuity of the
spectrum for log-hyponormal operators.

Introduction.

Let H be a complex Hilbert space and let B(H) denote the set of all bounded
linear operators on H. For A € B(H), we denote the spectrum, the point spec-
trum, the residual spectrum and the approximate point spectrum of A by o(A),
op(A), 0+(A) and 04(A), respectively. For the study of spectral theory of op-
erators, spectral mapping theorems are important. In this paper we consider
spectral mapping theorems about two kinds of functional transformations for
log-hyponormal operators. It is familiar that if A is normal then for every
polynormial f(A, X\*) one has o(f(A4)) = f(o(4)) = {f(\ X)) € 0(4)}. In
particular, we called the equality o(Re (A)) = Re (0(A)) with the polynomial
FOVH X :=2(A+ X*) = Re ()) for any operator A the® projective” property.

The projective property for semi-normal operators was shown by C. Put-
nam [11] and the projective property for Toeplitz operators was shown by S.
Berberian [2]. We will show the subprojective property for p-hyponormal or
log-hyponormal operators. On the other hand, in [14], D Xia studied the fol-
lowing functional transformation g 41 (T') = £(U)9(|T|) for a semi-hyponormal
operator T' = U|T|. And in [6], M. Itoh extended this result to p-hyponormal
operators. Recently, M. Cho and B. P. Duggal [4] gave an elementary proof of
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Itoh’s result for invertible operator cases and generalized this result. We will
extend this result for log-hyponormal operator. ‘
On the other hand, in [8] it was shown that the spectrum o is continuous
on the set of p-hyponormal operators. We also show that this is still true for
log-hyponormal operators. ,
An operator A is called p-hyponormal if (A*A)? — (AA*)? > 0 for some
p € (0,00). If p=1, Ais hyponormal and if p = -é—, A is semi-hyponormal. By the
consequence of Lowener’s inequality [10] if A is p-hyponomal for some p € (0, c0),
then A is also ¢-hyponormal for every q € (0, p]. Thus we assume, without loss of
_generality, that p € (0, %) Let H(p) denote the class of p-hyponormal operators
An operator T is called log-hyponormal if T is invertible and satisfies log
(T*T) > log (I'T™*). Since log : (0,00) — (—00,00) is monotone function,
every invertible p-hyponormal operator is log-hyponormal. But there exists a
log-hyponormal operator which is not p-hyponormal ( cf. [12, Example 12] ).
An operator A € B(H) has a unique polar decomposition A = U|A|, where
|A] = (AA*)z and U is a partial isometry with the initial space the closure of
the range of |A| and the final space the closure of the range of A. In particular,
if A = U|A] is log-hyponormal, then the operator U is unitary. Associated with
A there is a related operator A = |A|%U | Al 3, we call it the Aluthge transform of -
A. Aluthge transform has been used as a useful tool for study of p-hyponormal
operators.

The followings are basic properties for A.

(i) If A = U|A| be p-hyponormal (0 < p < 1), then the operator A = |A|2U|A|
is (p+ 1) hyponormal ( cf. [1, Theorem 2] )

(if) If A € B(H) be a log—hyponormal operator with a polar decomposmon
A =Ul|A|, then A = |A| UlAIz is semi-hyponormal ( cf. [12, Theorem 4] ).

Form the fact above, the second Aluthge transform of a p-hyponormal oper-
ator or log-hyponormal operator is hyponormal.

THEOREM A For every A € B(H) and its Aluthge transform T = |A|%U|A[%, it
holds that 5
w(4) = w(4)

where w = 0,0, or 0p.

Proof. 1t is known from [9, Theorem 1.3].
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1. Functional transformations for log-hyponormal operators.

First, we will show the “subprojective” property for the spectra of p-hyponormal
operators and log-hyponormal operators. For a operator T', a point z is in the
normal approximate point spectrum o,,(T") of T if there exists a sequence {z,}
of unit vectors such that

— 2)Tp — an —2) Ly — as n — 00.
(T = 2)zn =0 and (T —2)*zn — 0

We begin with the following lemma. Proof is easy. So we omit it.

LEMMA 1.1. If T € B(H) and 04(T) = 0na(T), then

Re (o(T)) C U(Re T) and Im (o(T))Co(ImT). (1.1.1)

COROLLARY 1.2. Let T be p-hyponormal or log-hyponormal. Then (1.1.1)
holds. ‘

Proof. Since 04(T") = 0nqe(T") for a p-hyponormal or a log-hyponormal oper-
ator T'. This follows from Lemma 1.1 _ - O

THEOREM 1.3. LetT =U |T| = H +iK be p- -hyponormal or log-hyponormal
and T' be the second Aluthge transform of T'. Let T = H +iK be the Cartesian
decomposition of T. Then

o(H)co(H) and o(K )cU(K)

Proof. By Theorem A,
o(T) = o(T) => Re (0(T)) = Re (o(T)), Im (o(T)) = Im (o(T)).
Since 1" is hyponormal, Re (o(T") = o(Re T) and Im (o(T") = o(Im T). Thus
cReT)Cco®eT) and o(Im7T)Co(lmT).
0

COROLLARY 1.4. LetT be log-hyponormal. If T has a compact real (imaginary)
part, then T is normal.
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Proof. Since, by Theorem 1.3, meas(c (H)) =0, T' is normal. And since T is
normal if and only if T' is normal. Thus T is normal.
O

Let E be a bouded closed subset of all real numbers R, and M(E) = {¢ :
% is a bounded real Baire function on E}. Let Mp(E) = {¢p € M(E) : ¢¥(z) >
0 for all z € E and 9(0) = 0}. Let J(E) = {% : ¢ is a strictly monotone increasing
continuous function on E} and Jy(E) = My(E) N J(E). Let S(E) = {4 € M(E) :
Ky > 0}, where Ky, is the singular integral operator defined on L?(E) by

(Kypf)(z) =s— lim — M

e—0+ 27r E z — (y + i€) )y

If E is a closed subset of the unit circle T, let Mo(E) = {£ : £ is a complex Baire
functionon E — T}, J(E) = {£ : { is a direction preserving homomorphism on E}
and So(E) = {¢€: £ € Mp(E) and K¢ > 0}, where K¢ is the singular 1ntegral op-
erator defined on L2(E) by

(Kef)(e”) =s— lim —1—/ 1 £()E(e) f(e™)dn. |

e—0+ 27 JE 1 — efe=i1(1 — ¢)

For functions f and g, we denote the functional transformation Fiy,q(T) =
f(U)exp(g(log |T|)) for a log-hyponormal operator T' = U|T| and Fj; ;(re) =
F(e®®)exp(g(logr)) in the complex plane.

LEMMA 1.5. Let T € B(H) be a semi-hyponormal operator with operator
decomposition T' = U|T|. Then Ue!T! s log-hyponormal and

oq(UeT |) = {e"e®? : re'? € 0.(T)};

or(UelTl) = {e"e? : ret € 0, (T)};
o(UelTly = {e"e® : re¥? € o(T)}.

Proof. Proof is from [13, Lemmas 5 and 6].
O

THEOREM 1.6. Let T = U|T| be log-hyponormal andlog|T| > 0. Suppose that
f € Jo(a(U)) NSo(0(V)) and g € Jo(o(log|T)) N So(o(log|T])) if o(U) # T
and g € Jo([0, 108 [T1I) N Sol[0, | og [TII]) i o(U) = T. Then Fip(T) is
log-hyponormal and Fij g (0w(T)) = 0w(Fif,g(T)), where oy = 0,04 or oy.
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Proof. Let T = U|T| be log-hyponormal then S = U log |T| is semi-hyponormal
and 0y (S) = {(logr)e? : re?® € 0,(T)}. From Theorem VI, 3.1 of [14],

F(U)g(log |T)) is also seml-hyponormal Thus 04 (f(U)g(log |T|)) = {f(e?®)g(logr) :

(logr)e® € 0, (Ulog|T|)}. Moreover, from Lemma 1.5 we can see that

Fiy,q(T) = f(U)exp(g(log |T'))
is log-hyponormal. Thus |

ou(Frg(T)) = ou(f(U)exp(g(log 7))

= {e91987) 1 (e®) : f(e?)g(logr) € 0w (f(U)g(log|T)),
(logr)e® € 0 (Ulog|T))}

= {08 (") : (logr)e” € 0u(Ulog|T), re” € 0w, (T)}

= {208 f(e¥) : re® € 0y (T)}

= Fiyg(0u(T)).

2. Continuity of o on the set of all log-hyponormal operators.

In [8], it was shown that the spectrum o is continuous on the set of all
p-hyponormal operators. In this section we show that this is still true for log-
hyponormal operators. To do this we recall that T' € B(H) is said to be bounded
below if there exists k > 0 for which ||z|| < k||T'z|| for each z € ‘H. For A € B(H),
v(A) denote the reduced minimum modulus,y(A) = in f%Hm”:—KILT—A), where g
is defined to be co. Before proving the main theorem we estabalsh the following

LEMMA 2.1. Let T = U|T| and T, = Up|Tyn| € B(H) forn € Z*. IfT is
bounded below and Ty, converges to I', then Uy, converges to U.

Proof. Since T' is bounded below, we have that if v(-) denote the reduced
minimum modulus, then ¥(T') = a > 0 and T is a continuity point of v (
cf. [7, Theorem 4.3]). Hence, without loss of generality, we may assume that
v(Ty) > €/2 for all n. Since the set of bounded below operators is an open set,
it follows that for sufficiently large n, T,,’s are bounded below and hence |T'| and
|T%| are invertible ( cf. [5, Theorem 8.6.4]). Let y € H and ||y|| = 1. Then there
exist z and z,, in H (n € Z*) such that y = |T|z and y = |T|z,. Since v(S) is
the supremum of all real number «y such that v||z|| < ||Sz||, we have

ol €~ 117le 1=~ ol = = < 2/
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Similarly, ||z,|| < 2/« for all n € Z*. Therefore
1Uny —Uyl| = |Un|Tn|zn = UIT|z|| < [Un|Tn|zn —Un|To|zl|+ |Un|Talz — U|T|z||.
But

1Un|Tnlz = UlT|z|| < T — T2l < »0 as n—oo.

2||T% — T
a

We now claim that ||z, — z|| — 0 as n — oo. If it is not so, then there exist
6 > 0 and a sequence {z,, } of {z,} such that ||z,, — | > 6 for all k. Hence

) |
TV (@ = 2)l| = NI T |20, = T |znsl| < WT = Tzl < S NT] = [T ][I = O

as n — oo. This implies that |T| is not bounded below. It is a contradiction.
Therefore, we have

1Un|Tn|2n — UnlTalzl| < |Tollllzn — 2l -0 as n— oo

Now we have :

THEOREM 2.2. The spectrum o is continuous on the set of all log-hyponormal
operators. ~

Proof.. Suppose that T' = U|T| and T, = Uyp|Ty| for n € Zt are log-
hyponormal operators such that T, converges to T. Since T is invertible it
follows from Lemma 2.1 that Uy, converges to U, so that

Tn,—_]TnléUMTnﬁ—>T=|T['21'U|Tl% as n — oo.

Since T' = |T|%U IT |% is semi-hyponormal and the spectrum is continuous on the
set of all p-hyponormal operators, we have

o(Ty) = o(T,) — o(T) = o(T).

O

For an operator A € B(H), z is in the approximate defect spectrum os(A) if
there exists a sequence {z,} of unit vectors in H such that Jim |(A—=2)*z,| = 0.

Then we have
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THEOREM 2.3. Let T be a log-hyponormal operator. Then

o(T) = os(T).

Proof. By Lemma 3 of [13], we have
04(T) C os(T).

Therefore,
o(T) = as(T).

We conclude with :

COROLLARY 2.4. The approzimate defect spectrum o5 18 continuous on the
set of all log-hyponormal operators.
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