-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

A new method for iterating $\sigma$-centered forcing (Set

Title theory of the reals)

Author(s) | Brendle, Jorg

Citation O0oooboOoooo (2000), 1143: 1-7

Issue Date | 2000-04

URL http://hdl.handle.net/2433/63904

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39197289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooobgon
11430 20000 1-7 ]-

A new method for
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The purpose of this note is to describe a general iteration technique for o—centered
forcing notions. Note that o—centered forcing can be iterated using either finite or count-
able supports. The first method has the disadvantage of adding generics for large Cohen
algebras, while the second allows of a continuum of size at most Ny only. Our method,
which can be thought of as being somewhere in between finite and countable support,
avoids the second drawback and, depending on which order(s) we iterate, may avoid the
first one too. It has been motivated by similar constructions, due mainly to Shelah, in
particular by [FShS], [Sh3], and [DzSh]. Unfortunately, we do not know yet of any inter-
esting application of our method, for the one we originally had in mind did not work (see
the discussion at the end of the note). I thank Lajos Soukup and Tadatoshi Miyamoto for
comments and discussions, as well as Shizuo Kamo for organizing the stimulating meeting
during which the material in here was presented and discussed.

Let P be a p.o. Recall that P C P is said to be centered if any finite subset of P has
a lower bound in P. In case the lower bound can always be taken from P, P is directed
(and so generates a filter). P is o—centered if it can written as a union of countably many
centered subsets. It’s o—filtered (or o—directed) if it’s a union of countably many directed
subsets. Any o—centered p.o. is o-filtered, but the converse does not hold (see [Mil,
Theorem 9]). However, for Boolean algebras, the two notions are equivalent so that we
may confine ourselves to o—filtered forcing notions in what follows.

Definition Define by recursion (]P’a,(@a; a < 0) to be an iteration of o—centered forcing
with mized support if all P,’s are p.o.’s whose elements are pairs of functions (f, p) with
domain a countable subset of «, all Qa’s are P,—names for ofiltered forcing notions, say,
Fo Qy = U, Q'a,n, and the following conditions are satisfied.

i. Basic step. Py = {0}.
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ii. Successor step. Poy1 = {(f,p); (fle, pla) € P, and either a ¢ dom(f,p) or f(a) €
w and (fla,pla) ke pla) € Qajw}, and we put (g,9) < (f,p) iff (gle,gla) <
(fla, pla) and either a ¢ dom(f,p) or (gle, gla) IFq g(a) < p() as usual.

iii. Limit step. Pg = {(f,p); (fla,pla) € P, for all @ < 3 and |dom(f,p)| < ¥o}, and
we put (g,¢) < (f,p) iff (9le,qla) < (fla,pla) for all a < B and {a < B; a €
dom(f,p) and f(a) # g()} is finite.

We emphasize two main features of the iteration. First, only the second coordinate
of a condition is a name; this will give us the Nyo-cc almost for free. Second, the order
allows changes only on finitely many first coordinates of the domain; this is used to prove
properness. As a first step however, we show that our construction is an iteration in the
usual sense.

Lemma 1l P,.; =P, *Qa.

Proof. Given (f,p) € Payy, let e(f,p) = ((ffa pla),p(a)). Since (fla,pla) € Py and
IFo p(c) € Qu, we have ¢(f,p) € Po * Qq. Similarly (g,9) < (f,p) iff e(g,9) < e(f,p).
So it suffices to check e is dense. To this end, let ((f,p), ) € Po*Q,. Then (f,p) IFq

jeQ, = U, Qo Hence there are (f',p') < (f,p) and n such that (f',p') IFq ¢ € Qan-
Put f” = f'U {{a,n)} and p" = p' U {{a,q¢)} . Then clearly (f",p") € Poy1 and

(" 9") < (). | 0

The following easy lemma exhibits a crucial property of the iteration, necessary for
the proofs of both Lemmata 4 and 5. That we work with ofiltered forcing notions is
paramount for the proof.

Lemma 2 Any (f,p) and (g;q) € P; such that f and g agree on their common domain
are compatible. ’

Proof. By recursion on « produce a common extension (h,r) with h = fUg and domain
dom(f,p) U dom(g, q) as follows. Assume (h[a,r[c) has been defined. If o belongs only
to the domain of one of the conditions, say, (f,p), let h(a) = f(e) and r(a) = p(a). If it
belongs to the domain of both, let h(a) = f(a) = g(a), recall that

(hla,rla) Ik, “p(a), q(a) € Qa,h(a) and th(a) is directed”
so that there is a P,—name 7 such that
(hraa 7"[04) ”—a “r < p(a)a Q(a) and 1 € Qa,h(a)-”

This means r(a) = 7 is as required. O

Lemma 3 Let (f,p) € Ps. Then the set {(g9,q9) < (f,p); dom(g,q) = dom(f,p)} is
o—filtered. '



Proof. Given any finite F' C dom(p) and any s € w’', we form the set P/* of all conditions
(g9,9) < (f,p) with domain dom(f, p) such that

g(a):{ s(a) ifaeF

f(a) otherwise

and note that P/ is directed (possibly empty) by the previous lemma. O
Lemma 4 (CH) Any Ps has the Ny—cc.

Proof. Let {(f¢,pc); ¢ < wa} be a collection of X, many conditions of Ps. By CH and
the A-system lemma, we may assume that {dom(f¢,pc); ( < wp} forms a A-system, say
with root R. Again by CH, we may assume that there is g € w® such that f;|R = g for
all (. By Lemma 2, this means, however, that all (f¢,p;) are pairwise compatible. O

We say (g,9) <o (f,p) iff dom(g, q) 2 dom(f, p), and g(e) = f(a) and ¢(a) = p(a) for
a € dom(f,p). This easily entails (g,q) < (f,p). Note that the ordering <, is o—closed.
The proof of the following lemma by a pressing-down argument is a variation on a theme
originally invented by Shelah (see e.g. [F'ShS] or [Sh3]).

Crucial Lemma 5 Let (f,p) € P; and let 7 be a Ps—name for an ordinal. Then there is
(9,9) <o (f,p) such that {(h,r) < (g,9); dom(h,r) = dom(g, q) and (h,r) decides 7} is
predense below (g, q).

Proof. Assume not, and construct recursively sequences ((f¢,p¢); ¢ < w1), {(9¢,q¢); ¢ <
wy) of conditions such that

i. (fo,po) <o (f,P)
i (fe,pe) <o (fe,pc) for £ > ¢

(9,4c) < (fe,pc) and dom(ge,qc) = dom(fe,pe) and ge(@) = fe(a) for all o ¢
Ug<g dom(fe, pe) » '

iv. (gc,qc) decides ¥

[y
=

[rpe
[y

iil.

v. all (g¢, g¢) are pairwise incompatible.

To carry out step ¢ of the recursion, do the following. Put (f{,p;) = U£ <C( fes pg)'

((f6,p5) = (f,p) at the basic step, resp.). Note that (f{,p}) <o (f,p). Hence (f¢,p;)
is not as required in the lemma and there is (g, ¢¢) < ( fes pc) deciding ¥ and 1ncompat1—

ble with all (h,r) < (f(,p;) with dom(h,r) = dom(fc,pc) which decide 7.
Define (f¢,p¢) with domain dom(gc, g¢c) by recursion on o such that

e (9cla,gcla) < (fela,pela) <o (f¢le, p;le) and

o fe(a) = gc(a) for all o € dom(g¢) \ dom(f7).

Assume (f¢]a, pcla) has been defined as required. If o ¢ dom(g, q¢) or @ € dom(ff, pr)
there is nothing to do. So suppose o € dom(gc,q¢) \ dom(f(,p;). Then (g9cTa, gela) Ik

gc(@) € Qayg.(a). So there is a name 7 such that



hd (fC ra7pC fa) “_a T € Qa,gg(a) and

o (g9¢cla, qcla) lFo 7 = g¢(a).

Let p;(a) = 7. Then (fc[a+1,pc[a+1) is as required. Clearly (gc, g¢) and (f¢, p¢) satisfy
(i) through (v) above.

Now define F' : w; — w; such that F(¢) = min{¢ < ¢; fe(a) = g¢(a) for all a ¢
dom(fe,pe)}. By (iii) and by definition of the p.o. in the iteration, F is a regressive
function. Hence, by Fodor’s lemma, there are S C w,; stationary and & < w; such that
F(() = { for ( € S. There are £ < (p < (3, both in S, such that g, [dom(fe,pe) =
g¢, [dom(f¢, pe). By construction and by Lemma 2, this means (g¢,, g¢,) and (g¢,,q¢,) are
compatible, a contradiction. O

Corollary 6 Any P; is proper.
Proof. 'This is immediate from Lemmata 3 and 5. O

Corollary 7 (CH) Any Ps preserves cardinals and cofinalities.

We proceed to look at examples for our technique. First consider the iteration P; of
Cohen forcing C with mixed support. Recall that C = 2<“, ordered by s < t iff s D ¢.
Putting C; = {s} we get a decomposition C = U,c2<w Cs of C into countably many
trivially directed sets.

Let us now review the pseudo-product of Cohen forcing, as introduced by Fuchino,
Shelah and Soukup [FShS]. Given a cardinal k, Q. consists of partial functions f :
K X w — 2 with countable domain and such that dom(f(a,-)) = {n; f(a,n) is defined}
is finite for all . Order Q, by f < g iff f D g and {« € proj,dom(g); dom(f(a,-)) #
dom(g(c,-))} is finite where proj,dom(f) = {a; f(a,n) is defined for some n}. It is
well-known [FShS] that Q, is proper (it even satisfies Axiom A) and that it has the
(2%)*—cc so that it preserves cardinals and cofinalities under CH. Since P, consists of
functions (f, p) with countable domain such that, for @ € dom(f, p), we have f(a) € 2<¥
and (fla,pla) Ik, p(a) € Cjya) which means p(a) = f(a), and since (f,p) < (g,q) iff
p(a) < g(a) for all @ and {a@ < k; a € dom(g,q) and f(a) # g(a)} is finite, we see
immediately '

Proposition 8 P, = Q.

So we get nothing new, yet this also means our construction generalizes theirs. Note
this is similar to the connection between the usual (finite support) product of Cohen
forcing and finite support iteration in general, for the latter boils down to the former in
case of Cohen forcing. (This is far from being true for countable supports: the countable
support product of Cohen forcing collapses 2% to ¥, while the countable support iteration
of Cohen forcing is proper.)

The original motivation for considering Q. was to construct models with large contin-
uum in which the combinatorial principle & and some fragment of Martin’s axiom M A
hold simultaneously. Recall that & says there is a sequence (A, C a; a < w; is a limit
ordinal and A, is cofinal in «) such that for all uncountable A C w; there is a with
Aq C A



Theorem 9 (Fuchino, Shelah, Soukup [FShS]) IFq, &. So, if CH holds and & 1is of
uncountable cofinality, kg, “2% = k + M A(countable) + &”.

It would be interesting to know whether a similar result is true for P, when the iterands
are more complicated than mere Cohen forcing, for this might give us the consistency of &
with stronger forms of M A and large continuum. In fact, the author originally conjectured
that IFp, & holds in case Ik, “Qa is Hechler forcing ID)” but this turned out to be false.
Recall that D is the set of pairs (s, f) such that s € w<“’ f € w” and s C f, ordered by
(s, f) < (t,g) iff s Dt and f(n) > g(n) for all n. Putting D, = {(s, f); s C f € w’} we
get a decomposition D = |J, <. Ds of D into countably many directed sets.

Proposition 10 P,,,; adds an uncountable subset of w, which contains no countable
subset of the ground model.

Proof. It is easy to see that P,, ;1 is equivalent to the collection of all p = ((s? f”)

dom(p)) where dom(p) C w; + 1 is countable, s? € w<*, fp is a P,-name for a member
of w*, and I, sf C ffy’ € w*, ordered by p S g iff dom(p) D dom(q), s5 2 s? and
ply Iy “f2(n) > fi(n) for all n” for all v € dom(g), as well as sb = si for all but ﬁmtely

many v € dom(q). Let cL, be the P,;—name for the y-th Hechler generic.
Say “p € P, 4, forces vy € A” iff

e {0}U[y,7+w)U{w} C dom(p)

pl(v+n) Fyin 'y+n( i) > do(n) for all n and all i (this means in particular sf (1) >
s?(n) whenever i € dom(s?,.,), and also n € dom(sp) whenever dom(s; Pen) #0)

o plwy Ik, f2 (i) > maxng dyin (i) for all i > dom(s?, ).

Since any strengthening of a condltlon forcing v € A also forces v € A, A is indeed a
name for a subset of w;.

Claim 10.1 Ik, 41 “A is uncountable’.

Proof Fix p € Py 41, and let 7 < w; be such that dom(p) Nw; C . Without loss
0,w; € dom(p). Define a condition ¢ such that dom(g) = dom(p) U [y, +w) and

o 54 =s? fi=fr for o €dom(p) Nw

o sl =sb

e glw; Ik, f2 (i) > max{max,; dy4n(i), f2, (1)} for all i > dom(s?)
® 5=

o ql(v+n) Fyin fLn(5) > do(n) for all n and all i.

Since [y,y +w) Ndom(p) = @, the choice in the last two clauses can indeed be made, and
we see easily that ¢ < p and ¢ forces v € A. O



Claim 10.2 Given B C w, countable and p € P, there is ¢ < p such that ¢, 11 B € A.

Proof. Assume plk, 41 BC A, ie. {0}U U,esl7: 7 +w) U {wi} C dom(p) and

o pl(vy+n)lFytn ffY’Jrn(z) > dy(n) for all n, all i and all v € B, and

e plw; H—wl‘fjjl (1) > maxp<; dy4n(?) for all i > dom(s?, ) and all v € B.

Hence plw; Ik, “max,<; eB d7+n(z') exists for all 1 > dom(s?, )”. (%)
Let k = max{dom(s}),dom(s? )}. Then s’ , = () for all v € B by a previous

remark. Therefore it is easy to find ¢ < p such that ¢[(v; + k) IFy, 4% f,;’j+k(k) > j where

B = {v;; j € w} is an enumeration. Hence ¢[(7; +k + 1) Ity 141 d7j+k(k) > j for all j
which contradicts (). U

This completes the proof of the proposition. O

It is well-known (and easy to see) that after adding one Hechler real every uncountable
subset of w; still contains a countable set of the ground model. The same is true for D,,
the finite support iteration of D of length o, where @ < w; [Shl]. An elaboration of the
above argument shows for regular uncountable &: :

Proposition 11 (CH) P, forces the size of the least family F of countable subsets of
w; such that each uncountable subset of wi contains a member of F is equal to K. In
particular, if K > wy, & fails.

A natural variation of the iteration considered here strenghtens the definition of the
order relation in part (iii) to: (g,q) < (f,p) iff (gle, qla) < (fla,pla) for all @ < 3 and
{a < B; a € dom(f,p) and (f(c) # g(a) or p() # q(x))} is finite. An iteration technique
of this kind has been used several times, e.g. in [FShS] and [DzSh]. Its disadvantage is
the Ny—cc will in general only hold for iterations of orderings of size < R, and of length
< W,. Our approach avoids this problem and is in this respect similar to the much more
complicated historic iteration of [Sh3] which also sets up a novel iteration technique which
goes beyond N,.

Iterations with “mixed” support have been considered early on, e.g. in the work of
Groszek and Jech [GJ] which makes the continuum “fat” but no “taller” than R,, and
thus also restricting the value of, say, b to at most N,. It is unclear whether our method
can be used to make b larger than X, over an arbitrary model satisfying CH, without
adding Cohen reals, a problem originally considered by Judah [Mi2, Problem 16.1] and
still unsolved. The main obstacle seems to be one may not be able to guarantee the
existence of a o—centered forcing not adding Cohen reals along the iteration. In fact it is
known there may not be such a forcing (see [BiSh] and [Sh2]).
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