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ON CLASSIFICATION OF QUANTUM ENTANGLED
STATES

VIACHESLAV P BELAVKIN' AND MASANORI OHYA?

ABSTRACT. The mathematical structure of quantum entanglement
is studied and classified from the point of view of quantum com-
pound states. We show that the classical-quantum correspon-
dences such as encodings can be treated as diagonal (d-) entan-
glements. The mutual entropy of the d-compound and entangled
states lead to two different types of entropies for a given quantum
state: the von Neumann entropy, which is achieved as the supre-
mum of the information over all d-entanglements, and the dimen-
sional entropy, which is achieved at the standard entanglement, the
true quantum entanglement, coinciding with a d-entanglement only
in the case of pure marginal states. The g-capacity of a quantum
noiseless channel, defined as the supremum over all entanglements,
is given by the logarithm of the dimensionality of the input algebra.
It doubles the classical capacity, achieved as the supremum over all
d-entanglements (encodings), which is bounded by the logarithm
of the dimensionality of a maximal Abelian subalgebra.

1. INTRODUCTION

Recently, the specifically quantum correlations, called in quantum
physics entanglements, are used to study quantum information pro-
cesses, in particular, quantum computation, quantum teleportation,
quantum cryptography [1, 2, 3]. There have been mathematical stud-
ies of the entanglements in [4, 5, 6], in which the entangled state is
defined by a compound state which can not be written as a convex
combination ), 4 (n)<, ® g, with any states g, and g,. However it is
obvious that there exist several important applications with correlated
states written as separable forms above. Such correlated, or entan-
gled states have been also discussed in several contexts in quantum
probability such as quantum measurement and filtering [7, 8], quan-
tum compound state[9, 10] and lifting [11]. In this paper, we study
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probability such as quantum measurement and filtering (7, 8], quan-
tum compound state[9, 10] and lifting [11]. In this paper, we study
the mathematical structure of quantum entangled states to provide a
finer classification of quantum sates, and we discuss the informational
degree of entanglement and entangled quantum mutual entropy.

We show that the pure entangled states can be treated as general-
ized compound states, the nonseparable states of quantum compound
systems which are not representable by convex combinations of the
product states.

The mixed compound states, defined as convex combinations by or-
thogonal decompositions of their input marginal states go, have been
introduced in [9] for studying the information in a quantum channel
with the general output C*-algebra A. This o-entangled compound
state is a particular case of so called separable state of a compound
system, the convex combination of the arbitrary product states which
we call c-entangled. We shall prove that the o-entangled compound
states are most informative among c-entangled states in the sense that
the maximum of mutual information over all c-entanglements to the
quantum system (A, o) is achieved on the extreme o-entangled states,
defined by a Schatten decomposition of a given state g on A. This max-
imum coincides with von Neumann entropy S () of the state p, and it
can also be achieved as the maximum of the mutual information over all
couplings with classical probe systems described by a maximal Abelian
subalgebra A° C A. Thus the couplings described by c-entanglements
of (quantum) probe systems B to a given system .A don’t give an ad-
vantage in maximizing the mutual information in comparison with the
quantum-classical couplings, corresponding to the Abelian B = A°.
The achieved maximal information S () coincides with the classical
entropy on the Abelian subalgebra A° of a Schatten decomposition for
o, and is bounded by Inrank.A = In dim .A°, where rank.A is the rank of
the von Neumann algebra A defined as the dimensionality of a maximal
Abelian subalgebra. Due to dim A < (rank.A)? it is achieved on the
normal central p = (rank.A)_1 I only in the case of finite dimensional
A. , . -
More general than o-entangled states, the d-entangled states, are
defined as c-entangled states by orthogonal decomposition of only one
marginal state on the probe algebra B. They can give bigger mutual
entropy for a quantum noisy channel than the o-entangled state which
gains the same information as d-entangled extreme states in the case
of a deterministic channel.
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We prove that the truly (strongest) entangled states are most infor-
mative in the sense that the maximum of mutual entropy over all entan-
glements to the quantum system A is achieved on the quasi-compound
state, given by an extreme entanglement of the probe system B = A
with coinciding marginals, called standard for a given p. The standard
entangled state is o-entangled only in the case of Abelian A or pure
marginal state 9. The gained information for such extreme g-compound
state defines another type of entropy, the quasi-entropy S, (¢) which is
bigger than the von Neumann entropy S () in the case of non-Abelian
A (and mixed g.) The maximum of mutual entropy over all quantum
couplings, described by true quantum entanglements of probe systems
B to the system A is bounded by In dim.A, the logarithm of the dimen-
sionality of the von Neumann algebra A, which is achieved on a normal
tracial p in the case of finite dimensional .A. Thus the g-entropy S, (o),
which can be called the dimensional entropy, is the true quantum en-
tropy, in contrast to the von Neumann rank entropy S (g), which is
semi-classical entropy as it can be achieved as a supremum over all
couplings with the classical probe systems B. These entropies coincide
in the classical case of Abelian A when rankA4 = dim A. In the case
of non-Abelian finite-dimensional A the g-capacity C;, = IndimA is
achieved as the supremum of mutual entropy over all g-encodings (cor-
respondences), described by entanglements. It is strictly bigger then
the semi-classical capacity C' = Inrank.A of the identity channel, which
is achieved as the supremum over usual encodings, described by the
classical-quantum correspondences A° — A.

In this short paper we consider the case of a simple algebra A =
L (H) for which some results are rather obvious and given without
proofs. The proofs are given in the complete paper [12] for a more
general case of decomposable algebra A to include the classical discrete
systems as a particular quantum case, and will be published elsewhere.

2. COMPOUND STATES AND ENTANGLEMENTS

Let H denote the (separable) Hilbert space of a quantum system,
and A = L(H) be the algebra of all linear bounded operators on
H. A bounded linear functional ¢ : A —C is called a state on A if
it is positive (i.e., p(A) > 0 for any positive operator A in A) and
normalized g(I) = 1 for the identity operator I in A . A normal state
can be expressed as

(1) 0(A) =trgrT Ak =trdp, A€ A

In (1), G is another separable Hilbert space, x is a linear Hilbert-
Schmidt operator from G to H and ! is the adjoint operator of & from
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H to G. This k is called the amplitude operator, and it is called just the
amplitude if G is one dimensional space C , corresponding to the pure
state ¢ (4) = kT Ak for a k € H with k'k = ||«||? = 1, in which case «!
is the adjoint functional from H to C. Moreover the density operator p
in (1) is k&' uniquely defined as a positive trace class operator P4 € A
. Thus the predual space A, can be identified with the Banach space
T (H) of all trace class operators in H (the density operators P4 € A,,
Pg € B, of the states p, ¢ on different algebras A, B will be usually
denoted by different letters p, o corresponding to their Greek variations
0,6.)

In general, G is not one dimensional, the dimensionality dim G must
be not less than rankp, the dimensionality of the range ranp C H of
the density operator p. We shall equip it with an isometric involution
J = Jt, J? = I, having the properties of complex conjugation on G,

I NG=> XNJG, YNeCGEeG

with respect to which Jo = oJ for the positive and so self-adjoint
operator ¢ = k'k = o! on G. The latter can also be expressed as
the symmetricity property ¢ = ¢ of the state ¢ (B) = trBo given by
the real and so symmetric density operator ¢ = ¢ = ¢ on G with
respect to the complex conjugation B = JBJ and the tilda operation
(G -transponation) B = JB'J on the algebra B = L (G).

For example, G can be realized as a subspace of I2(IN) of complex
sequences N 3 n s ¢ (n) € C, with 3" [¢ (n)|> < 400 i n the diagonal
representation o = [ (n) 6™]. The involution J can be identified with
the complex conjugation C¢ (n) = ¢ (n), i.e.,

C:(= Zln n) - C¢ = Zln ) (n)

in the standard basis {|n)} C G of I>(N). In this case k=Y Kkn(n|
is given by orthogonal eigen-amplitudes k, € H, &i,k, = 0, m # n,
normalized to the eigen-values A (n) = klk, = ,u(n) of the densmy
operator p such that p = 3 k,k! is a Schatten decomposition, i.e. the
spectral decomposition of p into one-dimensional orthogonal projectors.
In any other basis the operator J is defined then by J = UTCU, where
U is the corresponding unitary transformation. One can also identify
G with H by Uk, = A(n)"/?|n) such that the operator p is real and
symmetric, JpJ = p = Jp'J in G = H with respect to the involution J
defined in H by Jk, = k,. Here U is an isometric operator H — [2 (N)
diagonalizing the operator p: UpU' = 3~ |n)A (n) (n|. The amplitude
operator k = p'/2 corresponding to B = A, o = p is called standard.
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Given the amplitude operator k, one can define not only the states
0 (p = r&)and ¢ (0 = x'x)on the algebras A = L (H) and B = L (G)
but also a pure entanglement state w on the algebra B ® A of all
bounded operators on the tensor product Hilbert space G ® H by

w (B ® A) = trg Bk Ak = try Ak Bk,

Indeed, thus defined w is uniquely extended by linearity to a normal
state on the algebra B ® A generated by all linear combinations C =
Y A\B; ® A; due to w (I ® I) = trkik = 1 and

w (C'C) = > NitrgBi Bl Al Ak
i,k
= Z Adetrg Bl kT AT Ak By, = trgxfx > 0,
i,k

where x = _; A;xB;. This state is pure on £ (G ® H) as it is given
by an amplitude ¥ € G ® H defined as

(Con'd=1'sI¢, V(eG,neH,
and it has the states ¢ and ¢ as the marginals of w:
(2) | ‘w (I ® A) = tryyAp, w(B®I) = trgBo.
As follows from the next theorem for the case F = C , any pure state
w(Be A) =9 (B A)Y, BeB,AcA

given on £ (G ® H) by an amplitude ¥ € G ® H with 919 = 1, can be
achieved by a unique entanglement of its marginal states ¢ and p.

Theorem 2.1. Let w: B® A — C be a compound state
(3) w(B®A) =trzv' (B A)v,

defined by an amplitude operator v : F — G®H on a separable Hilbert
space F i nto the tensor product Hilbert space G @ H with trviv = 1.
Then this state can be achieved as an entanglement

(4) w (B ® A) = trgBk! (I ® A) k = trrgy (I ® A) kBx!

of the states (2) with 0 = k'k and p = trrrk!, where k is an amplitude
operator G — F @ H. The entangling operator k is uniquely defined
by kU = v up to a unitary transformation U of the minimal domain
F = domv.
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Note that the entangled state (4) is written as
(5) @ (B ® A) = trgBr (A) = tryAn, (B) ,

where 7 (A) = &' (I ® A) k, bounded by ||A|| o € B, for any A € L (H),
is in the predual space B, C B of all trace-class operators in G, and
7. (B) = trzkBk!, bounded by ||B||p € A, , is in A, C A. The map
7 is the Steinspring form [18] of the general completely positive map
A — B,, written in the eigen-basis {|k)} C F of the density operator
viv as

(6) T(4) =Y |Imykl, (@A) ko (n|, A€A

while the dual operation 7, is the Kraus form [19] of the general com-
pletely positive map A — A,, given in this basis as

(7) 7 (B) = Z (n| B |m) trgknk!, = trg Bw.
n,m
It corresponds to the general form
(8) w= Z [n)(m| ® trrrnkl,
m,n

of the density operator w = vv! for the entangled state w (B ® A) =
tr(B® A)w in this basis, characterized by the weak orthogonality
property

(9) trzgp (m)' 4 (n) = u (n) &

in terms of the amplitude operators ¥ (n) = (I ® (n|) & = k.

Definition 2.1. The dual map 7, : B — A, to a completely positive
map T : A — B,, normalized as trgw (I) = 1, is called the quantum
entanglement of the state ¢ = w (I) on B to the state o = m, (I) on A.
The entanglement by :

(10) R (A) = pM24p 2 = 10 (4)
of the state ¢ = p on the algebra B = A is called standard for the
system (A, 0). : ‘

The standard entanglement defines the standard compound state
wo (B® A) = try Bp'/? Ap'/? = try Ap*/?Bp'/?

on the algebra A ® A, which is pure, given by the amplitude 9o asso-
ciated with wgq is Ko, where Ko = pl/ 2
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Example 2.1. In quantum physics the entangled states are usually
obtained by a unitary transformation U of an initial disentangled state,
described by the density operator o9 ® py ® 79 on the tensor product
Hilbert space G @ HQ® K , that is,

w(B®A)=ttU' (B AR I)U (0o ® pg ® 7o) -

In the simple case, when K = C, 79 = 1, the joint amplitude operator
v is defined on the tensor product F = G ® Hy with Hy = ranpy as
v=U(0p® po)l/ 2. The entangling operator k, describing the entan-
gled state w, is constructed as it was done in the proof of Theorem 1
by transponation of the operator vU', where U is arbitrary isometric
operator F — G ® Hy. The dynamical procedure of such entanglement
in terms of the completely positive map m, : A — B, is the subject
of Belavkin quantum filtering theory [17]. The quantum filtering dila-
tion theorem [17] proves that any entanglement © can be obtained the
unitary entanglement as the result of quantum filtering by tracing out
some degrees of freedom of a quantum environment, described by the
density operator 19 on the Hilbert space K, even in the continuous time
case.

3. C- AND D-ENTANGLEMENTS AND ENCODINGS

The compound states play the role of joint input-output probability
measures in classical information channels, and can be pure in quan-
tum case even if the marginal states are mixed. The pure compound
states achieved by an entanglement of mixed input and output states
exhibit new, non-classical type of correlations which are responsible
for the EPR type paradoxes in the interpretation of quantum theory.
The mixed compound states on B ® A which are given as the convex
combinations

W=Z§n®9nﬂ(n)’ Iu(n) > 0, Zﬂ(n) =1

of tensor products of pure or mixed normalized states g, € A,, ¢, € B.
as in classical case, do not exhibit such paradoxical behavior, and are
usually considered as the proper candidates for the input-output states
in the communication channels. Such separable compound states are
achieved by c-entanglements, the convex combinations of the primitive
entanglements B — trg Bw,, given by the density operators w, = 0, ®
pn of the product states w, = ¢, ® on:

(11) 7 (B) = 3 puitrgBows (n),
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A compound state of this sort was introduced by Ohya [9, 13] in or-
der to define the quantum mutual entropy expressing the amount of
information transmitted from an input quantum system to an output
quantum system through a quantum channel, using a Schatten decom-
position o = Y, gnu(n), 0, = |n)(n| of the input density operator o.
It corresponds to a particular, diagonal type

(12) m(A) = In)sh (I ® A) kn(n]

of the entangling map (6) in an eigen-basis {|n)} € G of the density
operator o, and is discussed in this section.

Let us consider a finite or infinite input system indexed by the natural
numbers n € N. The associated space G C 2 (N) is the Hilbert space
of the input system described by a quantum projection-valued measure
n — |n)(n| on N, given an orthogonal partition of unity I = Y |n)(n]
€ B of the finite or infinite dimensional input Hilbert space G. Each
input pure state, identified with the one-dimensional density operator
|n)(n| € B corresponding to the elementary symbol n € N, defines
the elementary output state g, on A. If the elementary states g,
are pure, they are described by output amplitudes 7, € H satisfying
M = 1 = trp,, where p, = 1,1} are the corresponding output one-
dimensional density operators. If these amplitudes are non-orthogonal
nh. # 0T, they cannot be identified with the input amplitudes |n).

The elementary joint input-output states are given by the density
operators |n)(n| ® p, in G ® H. Their mixtures

(13) w=7_ u(n)n){n| ® pn,

define the compound states on B® A, given by the quantum correspon-
dences n — |n)(n| with the probabilities u (n). Here we note that the
quantum correspondence is described by a classical-quantum channel,
and the general d-compound state for a quantum-quantum channel in
quantum communication can be obtained in this way due to the orthog-
onality of the decomposition (13), corresponding to the orthogonality
of the Schatten decomposition o = )" |n)u (n) (n| for o = tryw.

The comparison of the general compound state (8) with (13) sug-
gests that the quantum correspondences are described as the diagonal
entanglements

(14 7 (B) = Y 1 (n) {nl Bln)pn,
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They are dual to the orthogonal decompositions (12):

m(A4) = Zu(n)ln 1 Ann (n| = Zln)n(n)*An(n)(l

wheren (n) = p(n ( )2 . ‘These are the enta,nglements with the stronger
orthogonality

(15) Y(m)y(n)' = p(n)sy,
for the amplitude operators 9 (n) : F — H of the decomposition of the
amplitude operator v =Y __|n) ® ¥ (n) in comparison with the orthog-
onality (9). The orthogonality (15) can be achieved in the following
manner: Take in (6) &, = |n) ® n(n) with (m|n) = d7* so that

k5, (I ® A) K = . (n) 0l A7y
for any A € A. Then the strong orthogonality condition (15) is fulfilled
by the amplitude operators ¥ (n) = n(n) (n| = &,, and

n—Zu n)|n){n| = o, k&' = Zn = p.

It corresponds to the amplitude operator for the compound state (13)
of the form ~

(16) v=> In®y(®)7T,

where U is arbitrary unitary operator from F onto G , i.e. v is unitary
equivalent to the diagonal amplitude operator

k=Y In)n|@n(n)

on F =G into G ® H. Thus, we have proved the following theorem in
the case of pure output states p, = 7,7...

Theorem 3.1. Let 7 be the operator (13), defining a d-compound
state of the form

(17) - w(BRA) = Z(n|Bln Verz, Wl A (n)

Then it corresponds to the entanglement by the orthogonal decomposz-
tion (12) mapping the algebra A into a diagonal subalgebra of B.

Note that (18) defines the general form of a positive map on A with
values in the simultaneously diagonal trace-class operators in A.

Definition 3.1. A convex combination (11) of the primitive CP maps
PnSn 18 called c-entanglement, and is called d-entanglement, or quantum



encoding if it has the diagonal form (14) on B. The d-entanglement is
called o-entanglement and compound state is called o-compound if all
density operators p, are orthogonal: ppmpn = Pnpm for all m and n.

Note that due to the commutativity of the operators B ® I with
I ® A on G ® H, one can treat the correspondences as the nondemo-
lition measurements [8] in B with respect to \A. So, the compound
state is the state prepared for such measurements on the input G. It
coincides with the mixture of the states, corresponding to those after
the measurement without reading the sent message. The set of all d-
entanglements corresponding to a given Schatten decomposition of the
input state o on B is obviously convex with the extreme points given
by the pure output states p, on A, corresponding to a not necessarily
orthogonal decompositions p =Y p(n) into one-dimensional density
operators p (n) = p(n) py.

The Schatten decompositions p = )" A (n) p, correspond to the ex-
treme d-entanglements, p, = n,n}, p(n) = X(n), characterized by
orthogonality pmp, = 0, m # n . They form a convex set of d-
entanglements with mixed commuting p, for each Schatten decom-
position of p. The orthogonal d-entanglements were used in [16] to
construct a particular type of Accardi’s transitional expectations [15]
and to define the entropy in a quantum dynamical system via such
transitional expectations. v , _

The established structure of the general g-compound states suggests
also the general form

@, (B, 00) =tz X' (B®po) X =trg (BRI) Y (I® po) V!

of transitional expectations @, : B x A2 — A,, describing the entan-
glements m, = ®, (o) of the states ¢ = 7 (I) to o = m, (I) for each
initial state gy € A2 with the density operator po € A° C L (Ho) by
e (B) = trer (B ® I) &t, where k = XT (I ® po)*/?. It is given by an
entangling transition operator X : F @ H — G ® Hy, which is defined
by a transitional amplitude operator ¥ : Ho® F — G ® H up to a
unitary operator U in F as

C®m)' X Ut®n) =(ne®Je)' Y (J(&n).

The dual map & : A — B, ® A° is obviously normal and completely
positive,

(18) P(A=XIRAX ecB, @A, VAc A,
with trg® (I) = I°, and is called filtering map with the output states
¢ =try,®(I) (I ® po)
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in the theory of CP flows [17] over A = A°. The operators Y normal-
ized as trzY1Y = I° describe A-valued g-compound states

E(B®A) =tizY (BRA)Y =trg (BoI) 2 (4),
defined as the normal completely positive maps B ® A — A° with
E(I®I)=1I°.
If the A-valued compound state has the diagonal form given by the
orthogonal decomposition

(19) ®(A) = Y In)trz¥ (n)' AV (n) (n],

corresponding to Y = ) |n) ® ¥ (n), where ¥ (n) : Hy ® F — H, it
is achieved by the d-transitional expectations '

®. (B, o) = Y _(n|BIn)¥ (n) (0o ® ) ¥ (n)".

The d-transitional expectations correspond to the instruments [20] of
the dynamical theory of quantum measurements. The elementary fil-
ters

1
p(n)

define posterior states g, = y©, on A for quantum nondemolition
measurements in B, which are called indirect if the corresponding den-
sity operators p, are non-orthogonal. They describe the posterior states
with orthogonal

Pn’—"I’n(P()@I) \I/L, ‘I/n=lI/(n)/M(n)1/2
for all py iff U (n)' ¥ (n) = ™M (n).

On (A4) = tr U (n) AU (n),  p(n) = tr¥ (n) (o @ I) T (n)

4. QUANTUM ENTROPY VIA ENTANGLEMENTS

As it was shown in the previous section, the diagonal entanglements
describe the classical-quantum encodings » : B — A,, i.e. correspon-
dences of classical symbols to quantum, in general not orthogonal and
pure, states. As we have seen in contrast to the classical case, not ev-
ery entanglement can be achieved in this way. The general entangled
states w are described by the density operators w = vv' of the form (8)
which are not necessarily block-diagonal in the eigen-representation of
the density operator o, and they cannot be achieved even by a more
general c-entanglement (11). Such nonseparable entangled states are
called in [13] the quasicompound (g-compound) states, so we can call
also the quantum nonseparable correspondences the quasi-encodings
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(g-encodings) in contrast to the d-correspondences, described by the
diagonal entanglements.

As we shall prove in this section, the most informative for a quantum
system (\A, p) is the standard entanglement 7y = o of the probe system
(B°,50) = (A, o), described in (10). The other extreme cases of the self-
dual input entanglements

™ (4) =) p(m)"" Ap(n)"* =7 (4),

are the pure c-entanglements, given by the decompositions p = > p(n)

205

into pure states p (n) = N0} u (n). We shall see that these c-entanglements,

corresponding to the separable states
(20) w=Y 7 @ nuniie (),
n

are in general less informative then the pure d-entanglements, given in
an orthonormal basis {n;,} C H by

° (A) =Y nenh Anamitu (n) # 75 (A).

Now, let us consider the entangled mutual entropy and quantum
entropies of states by means of the above three types of compound
states. To define the quantum mutual entropy, we need the relative
entropy [21, 22, 23] of the compound state tw with respect to a reference
state ¢ on the algebra A ® B. It is defined by the density operators
w,p € B® A of these states as

(21) S (w,p) =trw(lnw —Ing).

It has a positive value S (w, ) € [0, 00| if the states are equally nor-
malized, say (as usually) trw = 1 = tr¢, and it can be finite only if the
state w is absolutely continuous with respect to the reference state ¢,
i.e. iff w (F) = 0 for the maximal null-orthoprojector E¢ = 0.

The mutual entropy 145 (w) of a compound state w achieved by an
entanglement 7, : B — A, with the marginals

s(B)=w(B®I)=trgBo, p(A) =w(I®A) =tryAp
is defined as the relative entropy (21) with respect to the product state
p=s®0[9:
(22) Inp(w)=trw(lnw—-In(c®I)-In(I®p)).

Here the operator w is uniquely defined by the entanglement m, as its
density in (7), or the G-transposed to the operator w in

m(A) =k (I ® A) k = tryAD.



This quantity describes an information gain in a quantum system (A, g)
via an entanglement m, of another system (B, ) . It is naturally treated
as a measure of the strength of an entanglement, having zero value only
for completely disentangled states, corresponding to w = ¢ ® p.

The following proposition follows from the monotonicity property
[24, 14]

(23) w = K,wp, ¢ = Kypp = S (w, ) < S (wo, o) -

of the general relative entropy on a von Neuman algebra M with re-
spect to the predual K, to any normal completely positive unital map

K: M— M°.

Proposition 4.1. it Let nJ : B° — A, be an entanglement 77 of a
state ¢o = 7° (I) on a discrete decomposable algebra B° C L (Gy) to the
state o = 7 (I) on A, and 7, = 7K be an entanglement defined as the
composition with a normal completely positive unital map K : B — B°.
Then I4p(w) < Ispe (wp) , where w,w, are the compound states
achieved by 77 , m, respectively. In particular, for any c-entanglement
7. t0 (A, <) there exists a not less informative d-entanglement 79 = 3¢
with an Abelian B°, and the standard entanglement 7y (A) = p'/2Ap'/?
of ¢o = p on B° = A is the maximal one in this sense.

Note that any extreme d-entanglement

n(B) =Y (n|Bln)ppu(n), B € B°,
with p = 3" pou(n) decomposed into pure normalized states p; =
Na7i, is maximal among all c-entanglements in the sense I4 5 (o)
I (w). This is because trp, In p9, = 0, and therefore the information
gain

Y

I (@ ZM n)trp, (Inp, —Inp).

with a fixed m, (1 ) = p achieves its supremum —tryplnp at any such
extreme d-entanglement 7°. Thus the supremum of the information
gain (22) over all c-entanglements to the system (A, p) is the von Neu-
mann entropy

(24) Sa(0) = —tryplnp.

It is achieved on any extreme w2, for example given by the maximal
Abelian subalgebra B° C A, with the measure y = )\ corresponding
to a Schatten decomposition p = Y nn3tA(n), ndinS = ™. The
maximal value In rankA of the von Neumann entropy is deﬁned by the
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dimensionality rank A = dim B° of the maximal Abelian subalgebra of
the decomposable algebra A, i.e. by dimH.

Definition 4.1. The mazimal mutual entropy

(25) Hu(o) = S(l;)p Isg(w) = Lapo (w0),
e (I)=p

achieved on B° = A by the standard g-entanglement m° (A) = p/2 Ap!/?
for a fized state g9 (A) = tryAp , is called g-entropy of the state o. The
differences

Hps (w) = Hp () — La8 ()

Spja (@) = Sp () — Las (@)

are respectively called the q-conditional entropy on B with respect to A
and the degree of disentanglement for the compound state w.

Obviously, Hpj4 (w) is positive in contrast to the disentanglement
Spja (w), having the positive maximal value Spj4 (@) = Sp (s) in the
case w = ¢ ® p of complete disentanglement, but which can achieve
also a negative value '

(26) i }Ill)fzp Spa (@) = Sa(s) — Ha(e) =trplnp

for the entangled states as the following theorem states. Obviously
Sa(0) = Hu(p) if the algebra A is completely decomposable, i.e.
Abelian, and the maximal value In rankA of S4(g) can be written
as Indim A in this case. The disentanglement Spj4 (@) coinciding with
the conditional entropy Hpj4 (w), is always positive in this case, as well
as in the case of Abelian B when also Spj4 (w) = Hpja (w).

Theorem 4.2. The g-entropy for the simple algebra A = L (H) is
given by the formula

(27) Hy (o) = —2tryplnp = 254 (p),

It is positive, H4(0) € [0,00], and if A is finite dimensional, it is
bounded, with the mazimal value H 4 (¢°) = Indim A which is achieved
on the tracial p° = (dim M)~ I, where diim A = (dim H)® .
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5. QUANTUM CHANNEL AND ITS Q-CAPACITY

Let Hy be a Hilbert space describing a quantum input system and
~'H describe its output Hilbert space. A quantum channel is an affine
operation sending each input state defined on Hy to an output state
defined on H such that the mixtures of states are preserved. A deter-
ministic quantum channel is given by a linear isometry Y: Hy — H
with YTY = I° (I° is the identify operator in Hy) such that each input
state vector 7 € Ho, ||n|| = 1 is transmitted into an output state vector
Yn € H, ||[Yn|| = 1. The orthogonal mixtures py = Y, u(n)pS of
the pure input states pS = nSn2' are sent into the orthogonal mixtures
p =, i (n) pn of the corresponding pure states p, = Yp2Y*.

A noisy quantum channel sends pure input states g, into mixed ones
0 = A* (go) given by the dual A* to a normal completely positive unital
map A : A — Ay,

A(A) =trrY1AY, AcA

where Y is a linear operator from Ho ® F, to H with trg, YY = I°,
and F, is a separable Hilbert space of quantum noise in the channel.
Each input mixed state gy on A° C L (Hp) is transmitted into an
output state o = goA given by the density operator

A* (po) =Y (p0®I+) Y't € A*

for each density operator py € A2, where I* is the identity operator in
F+. Without loss of generality we can assume that the input algebra
A° is the smallest decomposable algebra, generated by the range A (A)
of the given map A.

The input entanglements s¢ : B — A described as normal CP maps
with s¢ (I) = go, define the quantum correspondences (g-encodings) of
probe systems (B,<), ¢ = »* (I), to (A° g). As it was proven in the
previous section, the most informative is the standard entanglement s =
72, at least in the case of the trivial channel A = I. This extreme input
g-entanglement

m° (A°) = p(l)/on (1)/2 =72 (A°), A°e A,
corresponding to the choice (B,s) = (A° go), defines the following
density operator
(28)  w=(10®A), (W), w =199
of the input-output compound state wyA on A° ® A. It is given by

the amplitude ¥, € ngz defined as 150 = p(l,/ 2 The other extreme cases
of the self -dual input entanglements, the pure c-entanglements cor-
responding to (20), can be less informative then the d-entanglements,
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given by the decompositions py = ) po (n) into pure states py (n) =
nanii (n). They define the density operators

(29) w=(®A),ws), wg=>_ 717 @nanbuo(n),

of the A° ® A-compound state wjA, which are known as the Ohya
compound states wjA [9] in the case

po(n) =momatdo (n),  molne = &7,

of orthogonality of the density operators py (n) normalized to the eigen-
values A (n) of p. They are described by the input-output density
operators

(30)  w=(I8A), W), wi=> nmtenmii(n),

coinciding with (28) in the case of Abelian A°. These input-output
compound states w are achieved by compositions A = 7°A, describing
the entanglements A\* of the extreme probe system (B°,¢) = (A°, o)
to the output (A, ) of the channel.

If K: B — B° is a normal completely positive unital map

K(B) =trz X'BX, Be€B,

where X is a bounded operator F_ ® Gy — G with trz XX = I°, the
compositions » = 7 K, m, = A, are the entanglements of the probe
system (B, <) to the channel input (A°, go) and to the output (A, o) via
this channel. The state ¢ = ¢K is given by

Ki(00) =X (I" ®09) X' € B,

for each density operator og € Bg, where I~ is the identity operator
in F7_. The resulting entangl ement m, = A\,K defines the compound
state w = wo (K® A) on B® A with

wo (B° ® A°) = trB°n° (A°) = tru) (B° ® A°) vp.

on B°®.A°. Here vy : Fo — Go®H is the amplitude operator, uniquely
defined by the input compound state wy € B, ® A up to a unitary op
erator U° on Fy, and the effect of the input entanglement s and the
output channel A can be written in terms of the amplitude operator of
the state w as

v=(XQY)(I"®vItH)U

up to a unitary operator U in F = F_ ® Fy ® F,. Thus the density
operator w = vv! of the input-output compound state w is given by
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wo (K ® A) with the density
(31) (KQA), (W) =(X®Y)wo (X @Y)T,

where wy = vovg.

Let K be the convex set of normal completely positive maps s :
B — A normalized as trx(I) = 1, and K be the convex subset
{3 € Kq:5¢(I) = 0o} Each x € K can be decomposed as 7K, where
7° = 7° is the standard entanglement on (A°, go), and K is a normal
unital CP map B — A°. Further let K. be the convex set of the
maps s, dual to the input maps of the form (11), described by the
combinations

(32) %(B) =) <(B)po(n

of the primitive maps sz, : B — ¢, (B) po (n), and K; be the subset of
the diagonal decompositions

(33) ~ #(B)=) _(nlBln)p ().

As in the first case K2 and Kg denote the convex subsets corresponding
to a fixed »(I) = gy, and each » € K7 can be represented as m K,
where 70 is a d-entanglement, which can be always be made pure by a
proper ch01ce of the CP map K : B — A°. Furthermore let K, (K¢) be
the subset of all decompositions (32) with orthogonal po (n) (and fixed

> npPo(n) = po):

po (m) po (n) =0, m # n.
Each » € K can be also represented as 7K, where 7] is a diagonal
pure o-entanglement B — A°.

Now, let us maximize the entangled mutual entropy for a given quan-
tum channel A and a fixed input state gy by means of the above four
types of compound states. The mutual entropy (22) was defined in the
previous section by the density operators of the compound state w on
B® A, and the product state ¢ = ¢ ® o of the marginals ¢, p for w. In
each case

w=w0(K®A)a Q0=(p0(K®A)>
where K is a CP map B - B , Ty is one of the corresponding extreme
compound states wj, w; = wy, w, on A°®.A°, and py = go ® go. The
density operator w = (K ® A), (wp) is written in (31), and ¢ = o ® p
can be written as

¢ =) ®N(),
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where A\, = A, 7.

Proposition 5.1. The entangled mutual entropies achieve the follow-
ing mazimal values

(34) su)g Iig(w) = I, (00, A) := Ig 40 (w;’A) ,
exs ‘
Ic (Q()a A) = Su)IC) IA,B (’ID) = sup IA,A° (CU;A) = Id (QO) A) ’
exg wg :
(35) su’? Iag (@) =1,(00,A) :=sup I4 40 (wiA),
€K w3

where w? are the corresponding extremal input entangled states on A°®
A° with marginals p9. They are ordered as

(36) Iq (QO) A) Z Ic (QO;A) = Id (QO) A) 2 Io (QO,A)

We shall denote the maximal informations I, (9o, A) = I (Qo? A) sim-
ply as I (go, A).

Definition 5.1. The supremums
Cq (A) = sup L5 (w) = sup I; (0o, A),
o » 2o

(37) sup Iup(w) =C(A) = sup1 (eo, A).

€Kc
Co (A) = sup IA,B (w) = sup Io (QOa A) 3
€K, [24]

are called the g-, c- or d-, and o-capacities fespectibely for the quantum
channel defined by a normal unital CP map A : A — A°.
Obviously the capacities (37) satisfy the inequalities
Co(A) < C(A) < Gy (A).

Theorem 5.2. Let A(A) = Y'AY be a unital CP map A — A°
describing a quantum deterministic channel. Then

I (QO) A) - Io (QO’ A) = S(QO) 9 Iq (QO: A) = Sq (90) ’
where Sy (00) = Hao (00), and thus in this case

C(A) =C,(A) =InrankA®, C,(A) =Indim A°
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