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Facial structure of convex sets and some applications

bEEEERFENIR /N2 EAN (Naoto Komuro)

§1 INTRODUCTION

Let Q be a measure space and let S(§2) be the space of all measurable
functions f on Q such that f(t) < co (a.e.t € ). An operator F': X D
D(F) — S(9) is called a convex operator if D(F) is a convex set in a
real vector space X, and for each z, y € D(F) and 0 < a < 1,

F((1-a)z +ay)(t) < (1-a)F(z)t) + aFy){t)  (aet € Q).

On the other hand, a function f: X X  — RU {00} is called a convex
integrand if for each t € Q the function f(-,¢) is convex on R?. The
convex integrand theory is well known and there are many applications.
(See [7] for example.) We say that a convex integrand f represents a
convex operator F' if

F(z)(t) fora.e.te z € D(F)
o iwn={

00 z ¢ D(F)
In two of the author’s previous paper [3, 4], many applications of inte-
grand representations of convex operators were demonstrated. However,
the existense of integrand representation is nontrivial, and it is known
only in some special cases. When X is the d-dimensional Euclidian s-
pace R?, the represenstion theorem has been proved in [3]. In this note,
we apply the theory of the faces of convex sets, and give a new method
of the proof which is expected to have an advantage in extending the
reperesentation theorem to infinite dimensional cases.

§2 FACES OF CONVEX SETS

Let R? be the d-dimensional Euclidean space. When z, y € R? are
distinct points, then the set [z,y] = {(1 —t)z +ty | 0 <t < 1} is called
the closed segment between = and y. Half open segments (z,y], [z,y)
and open segments (z,y) are defined analogously. Through this section,
we fix a nonempty closed convex set D in R%. A convex subset C of D is

called a face of D if
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92 z,y €D - .
? {(w,y)ﬂC;é@} implies [z, y] C C.

By §(D), we denote the set of all faces of D. For C € F(D), dimC
is defined to be the dimension of aff C (the affine hull of C). It is clear
that z € D is an extreme point of D if and only if {z} is a 0-dimensional
face of D. For preparation, we will state some fundamental properties of
faces in the following propositions whose proofs are given in [1].

Proposition 1. If Cy € §(D), (A € A), then NyxcaCx € F(D), and also
there erists a smallest face of D containing UxeaCx. Hence (F(D), Q)
forms a complete lattice.

Propositon 2. Let C; be a face of D and suppose that Cy C Cy. Then
C2 € F(D) if and only if Cy € F(C1).

o
For a convex set C in R%, C denotes the relative interior of C, which
means the interior of C' with respect to the relative topology of aff C.
It is easy to see that every face of D is a closed set. Indeed, if = is a

point of the closure of a face C' and zg € 8’, the cbnvexity of C yields
[zo,2) C C C C. Since C is a face of D, z must be in C.
Proposition 3. If C1,C; € §(D), and C1 & Cy, then C1 N Cy = 0.

Proposition 4. Let x be a point of D and let C be a face of D. Then
C 1s the smallest face of D containing z if and only if x € C.

Proposition 5. Let C; be a face of D and let x be a relative boundary
point of Cy. If Coy is the smallest face of D containing x, then Cy is
contained by the relative boundary of Cj.

From these propositons we obtain the following decomposition of a
convex set by its faces.

Proposition 6. For a closed convex set D in RY,

D =U{Cy | C\ € 3(D)}
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and the union is disjoint.

We say that a collection {Cxa}rea C F(D) is normal if A € A and
Cy C C, € §(D) imply p € A. Now we define

A={A= ALEJACA | {Cx}rea is normal}.

o (o]
Since {D} is normal and D € 2, 2 is at least nonempty. It is easy to
see that if each Ay (A € A) is a member of %, then so are AUAA)‘ and
€

)\ﬂAA,\, and therefore (2, C) is a complete lattice.
€
Lemma 1. If A € ¥, then A is a conver set.
(o)
proof. We write A = AEJAC » and let =,y be arbitrary points of A. Then

(o]
there exist A and p such that x € C and y € 5u- Let z be an arbi-
trary point of the open segment (z,y), and let C, be the smallest face
containing z. Since C, is a face, we have [z,y] C C,. By Proposition 4,
C, is the smallest face containing z, and it follows that C, C C,. Since

the collection {C’A} AcA 1s normal, we obtain C C A. ThlS means that
z € A, and thus A is convex.

§3 REPRESENTATION OF CONVEX OPERATORS

In this section, we prove a representation theorem of convex operators.
Let D(F) be a convex set in R% and let F': D(F) — S(f2) be a convex
operator. We can assume without loosing generality that the interor of
D(F) is nonempty. Through this section, D denotes the closure of D(F).
First we state the main theorem.

Theorem 1. Every convez operator F : R? D D(F) — S(Q) has at
least a representation. That is, there exists a convex integrand f : R% x
Q — RU {oo} such that (1) holds.

For D = D(F), we define 2 as in §2. For A € ¥, a convex integrand
f:AxQ — RU{oo} is said to represent F' on A, if

_ [ F(z)(t) foraeteQ r € AND(F)
f(x’t)—{oo x € A\ D(F).
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Definition. For a convex operator F', we define
A= {(A4,f)| A, and f represents F on A}.

Moreover, for (A1, f1), (A2, f2) € A, we write (A1, f1) < (Ag, f2) when
A1 C Ay and [y is an extension of fi to As.

Lemma 2. (é[, <) is inductively ordered.

proof. Let {(Ax, fa)}rea be a totally ordered subset of 2. Then A =
AUAA » 1s an element of 2. Moreover we can define a convex 1ntegrand f

on A x Q) satisfying f = f\ on Ay X for every A € A. Clearly, (A f) e 2
and it is an upper bound of {(A4x, f1) }aea-

Lemma 3. For A € 2 such that A # D, we define G4 = {C €
S(D) | CnNA=0}. Then (84,C) is inductively ordered.

proof. Let {Ci}reca be a totally ordered subset of G4. If we put C =
/\LEJAC’A, then C is a convex set and C N A # (. Moreover C € §(D).

Indeed, if we assume (z,y) N C # 0, then there exists A € A such that
(z,y) N Cx # 0. Hence it follows that [z,y] C C\ C C. Thus C € G4
and it is an upper bound of {Cy}aea.-

Lemma 4. Let A be an element of A, and assume that A # D. Then
there exists C € & 4 such that AUC € .

proof. By Lemma 3 and Zorn’s lemma, & 4 has at least a maximal element
[e] [¢]
C. It is sufficient to show that AUC € . Put A = )\UAC x, and take
€

C:1 € F(D), such that Cy D C. Since C is a maximal element of G4, we
have C; ¢ G4 and hence C1 N A # (. Therefore we can choose A € A

such that 8’ A NC; # 0. It follows from Proposition 3 that, C) C C;
holds. Since the collection {Cx}xea is normal, C; C A C AU C. This
shows that the collection {Cy}rca U{C} is also normal, and AUC € .

Lemma 5. 2l is not empty. In other words, there exists A € A such that
F has a representation f on A.

The proof can be done by constructing a convex integrand f which

o} .
represents F' on D. The method of construction is an analogy of that in

[4].
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Lemma 6. Suppose that (A, f) € A and A+ D. Let C € G4 is a face
such that AUC € A as in Lemma 4. Then f has an extension fi defined
on (AUC) x Q such that (AUC, f1) € L.

The proof of this lemma is an analogy of one provide in a previous
paper by the author [3].

proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn’s lemma, 2 has
at least a maximal element (Ap, fo). Moreover, Lemma 6 shows that
Ap = D, and this means that fy represents £ on D. Defining fo = oo on
D¢ x Q, we complete the construction of a representation of F'.

§4 NORMAL REPRESENTATIONS

A convex integrand f : R% x  — RU {oo} is said to be normal if f(-,t)
is lower semicontinuous for every ¢ € {2 and there exists a coutable family
of measurable functions &, :  — R? (n=1,2,---) such that

(1) for each n, f(&,(t),t) is measurable in ¢t € Q,

(2) for each t € Q, {&,(¢)}52, is dense in D(f(-,1)),
where D(f(+,t)) = {z € R?| f(z,t) < oo}. If a convex integrand f is
normal, then f(£(t),t) is measurable in ¢ € { whenever £ : § — R? is
measurable. A convex operator F' is said to have a normal representa-
tion if there exists a normal convex integrand which represents F'. We
will find some conditions under which a convex operator has a normal
representation. By the conjugate of a convex integrand f, we mean the
convex integrand f* : R¢ x Q — R U {oo} defined by

fr&t) = sup{< z,&> —f(z,t)}.

zeRd

Also the biconjugate f** : R% x O — RU oo is given by

f**(il?,t) = Sup{< 33,6 > “f*(gat)}

£€Rd

If a convex integrand f is normal, then so are f* and f**. We note that
if a convex integrand f represents a convex operator F' then D(f(-,t))
does not depend on t € (2 .
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Lemma 7. Let f : R¥xQ —» RU{o0} be a representation of some onvex

operator. Then f is normal if and only if f(-,t) is lower semicontinuous,
in other words, f** = f on R% x Q.

proof. Let D = D(f(-,t)) and take a conuntable subset {an} of D. If
we put &,(t) = a, for allt € Q and n = 1,2,---, then the family {£,}
satisfies the definition of nomality.

Remark. If a convex integrand f satisfiies
(1) for each = € R?, f(z,-) is measurable, and
(2) D(-,t)) does not depend on t € Q,

the conclusion of Lemma 7 is also valid.

Let L(R%, S(£2)) denotes the space of all linear mapping from R? to S(2).
We identify L(R?, S(2)) with the set S(Q)¢ = {€ = (&1, ,&) | & €
§(Q),i = 1,---d} by corresponding S(Q)?¢ 3 (&1,---,£q) to the mapping
0 : R3S (21, ,2q) —< z,& >= 216+, ,+x4€q € S(2). The
conjugate operator F* : L(R%, S(Q)) D D(F*) — S(Q) of F is defined
by

F &)=\ (<a,¢>—F2)

z€D(F*)

where \/ means the lattice supremumin the space S(Q2), and D(F™*) is
the set of all £ € S(Q)¢ such that the supremum F* exists. The bi-
conjugate operator F** is defined on the space L(L(R%,5(f)),S(2)) =
L(S(Q)%,5(2)), and we regard S(Q)% and R? as the subspaces of this
by corresponding 7 € S(Q)% and z € R? to < n,- > and < z,- >€
L(S(2)¢,5(Q)) respectively. For z € R? and n € S(Q), F** is defined by

Fo@a)= \/ (<a,€&>-F ),

§eD(F~)

Fom) = \/ (<n,&>-F(€).

§eD(F*)
They are only defined on the domain D(F**) where these suprema exist.

Theoem 2. Let F : R? D D(F) — S(Q) be a convexr operator and let
f:R*x Q— RU{oo} be a representation of F. Then the convez inte-
grand f* and f** are normal representations of F* and F** respectively.

Moreover for £ € D(F*) and n € D(F**),
(F7()(@) = (&), 1)
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(F () (t) = f(n(t),1)
holds for almost every t € (1.

This theorem is due to the following lemma.

Lemma 8. Let F : R?* D D(F) — S(Q) be a convez operator, and let
f:R?x Q — R4U {oo} be a representation of F. Let U be a convex
subset of D(F) and suppose that infzcy f(x,t) > —oo for almost every
t € Q. Then A\, oy F(z) € S(Q) exists and

(N\F@)@) = inf f(z,1).

zeU
proof. Let E be a countable dense set in U. Then we have
inf t) =i
inf f(,t) = inf f(z,?)
for a.e.t € Q. Hence inf,cy f(z,t) is measurable in ¢ and

(N F@)#) < (N F2)(®)

zelU zeFE
= inf f(z,t)

zeF

= inf f(z,t)

zeU
=(/\ F(2))®)
‘ zeU
for a.e.t € 2, and the lemma is proved.
proof of Theorem 2. By Lemma 8 we have
(F*E)B) =\ (<&z>—F(a)()
z€D(F)

= sup (<{(t),z > —f(z,1))
z€D(F)

= f*(&(t),t) (a.et € ),

for every ¢ € D(F*) C S(2)¢. The latter statement can be obtained by
analogy.
Combining Lemma 7 and Theorem 2, we obtain the following result.

Theorem 3. A convex operator F : R? D D(F) — S(Q) satisfies

for every x € D(F), if and only if F has a normal representation.
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