

Tryoto diliversity research mornation repository	
Title	Facial structure of convex sets and some applications (Nonlinear Analysis and Convex Analysis)
Author(s)	Komuro, Naoto
Citation	数理解析研究所講究録 (2000), 1136: 82-89
Issue Date	2000-04
URL	http://hdl.handle.net/2433/63780
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Facial structure of convex sets and some applications

北海道教育大学旭川校 小室 直人 (Naoto Komuro)

§1 Introduction

Let Ω be a measure space and let $S(\Omega)$ be the space of all measurable functions f on Ω such that $f(t) < \infty$ $(a.e.t \in \Omega)$. An operator $F: X \supset D(F) \longrightarrow S(\Omega)$ is called a convex operator if D(F) is a convex set in a real vector space X, and for each $x, y \in D(F)$ and $0 < \alpha < 1$,

$$F((1-\alpha)x + \alpha y)(t) \le (1-\alpha)F(x)(t) + \alpha F(y)(t) \qquad (a.e.t \in \Omega).$$

On the other hand, a function $f: X \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is called a convex integrand if for each $t \in \Omega$ the function $f(\cdot,t)$ is convex on \mathbb{R}^d . The convex integrand theory is well known and there are many applications. (See [7] for example.) We say that a convex integrand f represents a convex operator F if

(1)
$$f(x,t) = \begin{cases} F(x)(t) & \text{for a.e.} t \in \Omega \\ \infty & x \notin D(F) \end{cases}$$

In two of the author's previous paper [3, 4], many applications of integrand representations of convex operators were demonstrated. However, the existense of integrand representation is nontrivial, and it is known only in some special cases. When X is the d-dimensional Euclidian space \mathbb{R}^d , the representation theorem has been proved in [3]. In this note, we apply the theory of the faces of convex sets, and give a new method of the proof which is expected to have an advantage in extending the repersentation theorem to infinite dimensional cases.

§2 Faces of convex sets

Let \mathbb{R}^d be the d-dimensional Euclidean space. When $x, y \in \mathbb{R}^d$ are distinct points, then the set $[x,y] = \{(1-t)x + ty \mid 0 \le t \le 1\}$ is called the closed segment between x and y. Half open segments (x,y], [x,y) and open segments (x,y) are defined analogously. Through this section, we fix a nonempty closed convex set D in \mathbb{R}^d . A convex subset C of D is called a face of D if

(2)
$$\left\{ \begin{array}{c} x, y \in D \\ (x, y) \cap C \neq \emptyset \end{array} \right\} \quad \text{implies } [x, y] \subset C.$$

By $\mathfrak{F}(D)$, we denote the set of all faces of D. For $C \in \mathfrak{F}(D)$, dim C is defined to be the dimension of aff C (the affine hull of C). It is clear that $x \in D$ is an extreme point of D if and only if $\{x\}$ is a 0-dimensional face of D. For preparation, we will state some fundamental properties of faces in the following propositions whose proofs are given in [1].

Proposition 1. If $C_{\lambda} \in \mathfrak{F}(D)$, $(\lambda \in \Lambda)$, then $\cap_{\lambda \in \Lambda} C_{\lambda} \in \mathfrak{F}(D)$, and also there exists a smallest face of D containing $\cup_{\lambda \in \Lambda} C_{\lambda}$. Hence $(\mathfrak{F}(D), \subset)$ forms a complete lattice.

Proposition 2. Let C_1 be a face of D and suppose that $C_2 \subset C_1$. Then $C_2 \in \mathfrak{F}(D)$ if and only if $C_2 \in \mathfrak{F}(C_1)$.

For a convex set C in \mathbb{R}^d , $\overset{\circ}{C}$ denotes the relative interior of C, which means the interior of C with respect to the relative topology of aff C. It is easy to see that every face of D is a closed set. Indeed, if x is a point of the closure of a face C and $x_0 \in \overset{\circ}{C}$, the convexity of C yields $[x_0, x) \subset \overset{\circ}{C} \subset C$. Since C is a face of D, x must be in C.

Proposition 3. If $C_1, C_2 \in \mathfrak{F}(D)$, and $C_1 \subsetneq C_2$, then $C_1 \cap \mathring{C}_2 = \emptyset$.

Proposition 4. Let x be a point of D and let C be a face of D. Then C is the smallest face of D containing x if and only if $x \in \overset{\circ}{C}$.

Proposition 5. Let C_1 be a face of D and let x be a relative boundary point of C_1 . If C_2 is the smallest face of D containing x, then C_2 is contained by the relative boundary of C_1 .

From these propositions we obtain the following decomposition of a convex set by its faces.

Proposition 6. For a closed convex set D in \mathbb{R}^d ,

$$D = \cup \{ \overset{\circ}{C}_{\lambda} \mid C_{\lambda} \in \mathfrak{F}(D) \}$$

and the union is disjoint.

We say that a collection $\{C_{\lambda}\}_{{\lambda}\in\Lambda}\subset \mathfrak{F}(D)$ is normal if ${\lambda}\in\Lambda$ and $C_{\lambda}\subset C_{\mu}\in \mathfrak{F}(D)$ imply ${\mu}\in\Lambda$. Now we define

$$\mathfrak{A} = \{ A = \bigcup_{\lambda \in \Lambda} \overset{\circ}{C}_{\lambda} \mid \{ C_{\lambda} \}_{\lambda \in \Lambda} \text{ is normal } \}.$$

Since $\{D\}$ is normal and $D \in \mathfrak{A}$, \mathfrak{A} is at least nonempty. It is easy to see that if each A_{λ} ($\lambda \in \Lambda$) is a member of \mathfrak{A} , then so are $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ and $\bigcap_{\lambda \in \Lambda} A_{\lambda}$, and therefore (\mathfrak{A}, \subset) is a complete lattice.

Lemma 1. If $A \in \mathfrak{A}$, then A is a convex set.

proof. We write $A = \bigcup_{\lambda \in \Lambda} \overset{\circ}{C}_{\lambda}$ and let x, y be arbitrary points of A. Then

there exist λ and μ such that $x \in \mathring{C}_{\lambda}$ and $y \in \mathring{C}_{\mu}$. Let z be an arbitrary point of the open segment (x,y), and let C_{ν} be the smallest face containing z. Since C_{ν} is a face, we have $[x,y] \subset C_{\nu}$. By Proposition 4, C_{λ} is the smallest face containing x, and it follows that $C_{\lambda} \subset C_{\nu}$. Since the collection $\{C_{\lambda}\}_{{\lambda} \in \Lambda}$ is normal, we obtain $\mathring{C}_{\nu} \subset A$. This means that $z \in A$, and thus A is convex.

§3 Representation of Convex Operators

In this section, we prove a representation theorem of convex operators. Let D(F) be a convex set in \mathbb{R}^d and let $F:D(F)\longrightarrow S(\Omega)$ be a convex operator. We can assume without loosing generality that the interor of D(F) is nonempty. Through this section, D denotes the closure of D(F). First we state the main theorem.

Theorem 1. Every convex operator $F: \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ has at least a representation. That is, there exists a convex integrand $f: \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ such that (1) holds.

For $D = \overline{D(F)}$, we define \mathfrak{A} as in §2. For $A \in \mathfrak{A}$, a convex integrand $f: A \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is said to represent F on A, if

$$f(x,t) = \begin{cases} F(x)(t) & \text{for a.e.} t \in \Omega \\ \infty & x \in A \cap D(F) \end{cases}$$

Definition. For a convex operator F, we define

 $\tilde{\mathfrak{A}} = \{(A, f) \mid A \in \mathfrak{A}, \text{ and } f \text{ represents } F \text{ on } A\}.$

Moreover, for (A_1, f_1) , $(A_2, f_2) \in \tilde{\mathfrak{A}}$, we write $(A_1, f_1) \leq (A_2, f_2)$ when $A_1 \subset A_2$ and f_2 is an extension of f_1 to A_2 .

Lemma 2. $(\tilde{\mathfrak{A}}, \leq)$ is inductively ordered.

proof. Let $\{(A_{\lambda}, f_{\lambda})\}_{{\lambda} \in \Lambda}$ be a totally ordered subset of $\tilde{\mathfrak{A}}$. Then $A = \bigcup_{{\lambda} \in \Lambda} A_{\lambda}$ is an element of \mathfrak{A} . Moreover we can define a convex integrand f on $A \times \Omega$ satisfying $f = f_{\lambda}$ on $A_{\lambda} \times \Omega$ for every $\lambda \in \Lambda$. Clearly, $(A, f) \in \tilde{\mathfrak{A}}$ and it is an upper bound of $\{(A_{\lambda}, f_{\lambda})\}_{{\lambda} \in \Lambda}$.

Lemma 3. For $A \in \mathfrak{A}$ such that $A \neq D$, we define $\mathfrak{S}_A = \{C \in \mathfrak{F}(D) \mid C \cap A = \emptyset\}$. Then $(\mathfrak{S}_A, \subset)$ is inductively ordered.

proof. Let $\{C_{\lambda}\}_{{\lambda}\in\Lambda}$ be a totally ordered subset of \mathfrak{S}_A . If we put $C=\bigcup_{{\lambda}\in\Lambda}C_{\lambda}$, then C is a convex set and $C\cap A\neq\emptyset$. Moreover $C\in\mathfrak{F}(D)$. Indeed, if we assume $(x,y)\cap C\neq\emptyset$, then there exists $\lambda\in\Lambda$ such that $(x,y)\cap C_{\lambda}\neq\emptyset$. Hence it follows that $[x,y]\subset C_{\lambda}\subset C$. Thus $C\in\mathfrak{S}_A$ and it is an upper bound of $\{C_{\lambda}\}_{{\lambda}\in\Lambda}$.

Lemma 4. Let A be an element of \mathfrak{A} , and assume that $A \neq D$. Then there exists $C \in \mathfrak{S}_A$ such that $A \cup \overset{\circ}{C} \in \mathfrak{A}$.

proof. By Lemma 3 and Zorn's lemma, \mathfrak{S}_A has at least a maximal element C. It is sufficient to show that $A \cup \mathring{C} \in \mathfrak{A}$. Put $A = \bigcup_{\lambda \in \Lambda} \mathring{C}_{\lambda}$, and take $C_1 \in \mathfrak{F}(D)$, such that $C_1 \supset C$. Since C is a maximal element of \mathfrak{S}_A , we have $C_1 \notin \mathfrak{S}_A$ and hence $C_1 \cap A \neq \emptyset$. Therefore we can choose $\lambda \in \Lambda$ such that $\mathring{C}_{\lambda} \cap C_1 \neq \emptyset$. It follows from Proposition 3 that, $C_{\lambda} \subset C_1$ holds. Since the collection $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is normal, $\mathring{C}_1 \subset A \subset A \cup \mathring{C}$. This shows that the collection $\{C_{\lambda}\}_{\lambda \in \Lambda} \cup \{C\}$ is also normal, and $A \cup \mathring{C} \in \mathfrak{A}$.

Lemma 5. $\tilde{\mathfrak{A}}$ is not empty. In other words, there exists $A \in \mathfrak{A}$ such that F has a representation f on A.

The proof can be done by constructing a convex integrand f which represents F on D. The method of construction is an analogy of that in [4].

Lemma 6. Suppose that $(A, f) \in \tilde{\mathfrak{A}}$ and $A \neq D$. Let $C \in \mathfrak{S}_A$ is a face such that $A \cup \overset{\circ}{C} \in \mathfrak{A}$ as in Lemma 4. Then f has an extension f_1 defined on $(A \cup \overset{\circ}{C}) \times \Omega$ such that $(A \cup \overset{\circ}{C}, f_1) \in \tilde{\mathfrak{A}}$.

The proof of this lemma is an analogy of one provide in a previous paper by the author [3].

proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn's lemma, $\tilde{\mathfrak{A}}$ has at least a maximal element (A_0, f_0) . Moreover, Lemma 6 shows that $A_0 = D$, and this means that f_0 represents F on D. Defining $f_0 = \infty$ on $D^c \times \Omega$, we complete the construction of a representation of F.

§4 NORMAL REPRESENTATIONS

A convex integrand $f: \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ is said to be normal if $f(\cdot, t)$ is lower semicontinuous for every $t \in \Omega$ and there exists a coutable family of measurable functions $\xi_n: \Omega \longrightarrow \mathbb{R}^d \ (n = 1, 2, \cdots)$ such that

- (1) for each n, $f(\xi_n(t), t)$ is measurable in $t \in \Omega$,
- (2) for each $t \in \Omega$, $\{\xi_n(t)\}_{n=1}^{\infty}$ is dense in $D(f(\cdot,t))$,

where $D(f(\cdot,t)) = \{x \in \mathbb{R}^d \mid f(x,t) < \infty\}$. If a convex integrand f is normal, then $f(\xi(t),t)$ is measurable in $t \in \Omega$ whenever $\xi : \Omega \longrightarrow \mathbb{R}^d$ is measurable. A convex operator F is said to have a normal representation if there exists a normal convex integrand which represents F. We will find some conditions under which a convex operator has a normal representation. By the conjugate of a convex integrand f, we mean the convex integrand $f^* : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ defined by

$$f^*(\xi, t) = \sup_{x \in \mathbb{R}^d} \{ \langle x, \xi \rangle - f(x, t) \}.$$

Also the biconjugate $f^{**}: \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \infty$ is given by

$$f^{**}(x,t) = \sup_{\xi \in \mathbb{R}^d} \{ \langle x, \xi \rangle - f^*(\xi, t) \}.$$

If a convex integrand f is normal, then so are f^* and f^{**} . We note that if a convex integrand f represents a convex operator F then $D(f(\cdot,t))$ does not depend on $t \in \Omega$.

Lemma 7. Let $f: \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ be a representation of some onvex operator. Then f is normal if and only if $f(\cdot,t)$ is lower semicontinuous, in other words, $f^{**} = f$ on $\mathbb{R}^d \times \Omega$.

proof. Let $D = D(f(\cdot,t))$ and take a conuntable subset $\{a_n\}$ of D. If we put $\xi_n(t) = a_n$ for all $t \in \Omega$ and $n = 1, 2, \dots$, then the family $\{\xi_n\}$ satisfies the definition of nomality.

Remark. If a convex integrand f satisfies

- (1) for each $x \in \mathbb{R}^d$, $f(x,\cdot)$ is measurable, and
- (2) $\overline{D(\cdot,t)}$ does not depend on $t \in \Omega$, the conclusion of Lemma 7 is also valid.

Let $L(\mathbb{R}^d, S(\Omega))$ denotes the space of all linear mapping from \mathbb{R}^d to $S(\Omega)$. We identify $L(\mathbb{R}^d, S(\Omega))$ with the set $S(\Omega)^d = \{\xi = (\xi_1, \dots, \xi_d) \mid \xi_i \in \S(\Omega), i = 1, \dots d\}$ by corresponding $S(\Omega)^d \ni (\xi_1, \dots, \xi_d)$ to the mapping $\varphi : \mathbb{R}^d \ni (x_1, \dots, x_d) \longrightarrow \langle x, \xi \rangle = x_1 \xi_1 + \dots + x_d \xi_d \in S(\Omega)$. The conjugate operator $F^* : L(\mathbb{R}^d, S(\Omega)) \supset D(F^*) \longrightarrow S(\Omega)$ of F is defined by

$$F^*(\xi) = \bigvee_{x \in D(F^*)} (\langle x, \xi \rangle - F(x))$$

where \bigvee means the lattice supremumin the space $S(\Omega)$, and $D(F^*)$ is the set of all $\xi \in S(\Omega)^d$ such that the supremum F^* exists. The biconjugate operator F^{**} is defined on the space $L(L(\mathbb{R}^d, S(\Omega)), S(\Omega)) = L(S(\Omega)^d, S(\Omega))$, and we regard $S(\Omega)^d$ and \mathbb{R}^d as the subspaces of this by corresponding $\eta \in S(\Omega)^d$ and $x \in \mathbb{R}^d$ to $\langle \eta, \cdot \rangle$ and $\langle x, \cdot \rangle \in L(S(\Omega)^d, S(\Omega))$ respectively. For $x \in \mathbb{R}^d$ and $\eta \in S(\Omega)$, F^{**} is defined by

$$F^{**}(x) = \bigvee_{\xi \in D(F^*)} (\langle x, \xi \rangle - F^*(\xi)),$$

$$F^{**}(\eta) = \bigvee_{\xi \in D(F^*)} (\langle \eta, \xi \rangle - F^*(\xi)).$$

They are only defined on the domain $D(F^{**})$ where these suprema exist.

Theoem 2. Let $F : \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ be a convex operator and let $f : \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R} \cup \{\infty\}$ be a representation of F. Then the convex integrand f^* and f^{**} are normal representations of F^* and F^{**} respectively. Moreover for $\xi \in D(F^*)$ and $\eta \in D(F^{**})$,

$$(F^*(\xi))(t) = f^*(\xi(t), t)$$

$$(F^{**}(\eta))(t) = f^{**}(\eta(t), t)$$

holds for almost every $t \in \Omega$.

This theorem is due to the following lemma.

Lemma 8. Let $F: \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ be a convex operator, and let $f: \mathbb{R}^d \times \Omega \longrightarrow \mathbb{R}^d \cup \{\infty\}$ be a representation of F. Let U be a convex subset of D(F) and suppose that $\inf_{x \in U} f(x,t) > -\infty$ for almost every $t \in \Omega$. Then $\bigwedge_{x \in U} F(x) \in S(\Omega)$ exists and

$$(\bigwedge_{x \in U} F(x))(t) = \inf_{x \in U} f(x, t).$$

proof. Let E be a countable dense set in U. Then we have

$$\inf_{x \in U} f(x,t) = \inf_{x \in E} f(x,t)$$

for $a.e.t \in \Omega$. Hence $\inf_{x \in U} f(x,t)$ is measurable in t and

$$(\bigwedge_{x \in U} F(x))(t) \le (\bigwedge_{x \in E} F(x))(t)$$

$$= \inf_{x \in E} f(x, t)$$

$$= \inf_{x \in U} f(x, t)$$

$$= (\bigwedge_{x \in U} F(x))(t)$$

for $a.e.t \in \Omega$, and the lemma is proved.

proof of Theorem 2. By Lemma 8 we have

$$(F^*(\xi))(t) = \bigvee_{x \in D(F)} (\langle \xi, x \rangle - F(x))(t)$$

$$= \sup_{x \in D(F)} (\langle \xi(t), x \rangle - f(x, t))$$

$$= f^*(\xi(t), t) \quad (a.e.t \in \Omega),$$

for every $\xi \in D(F^*) \subset S(\Omega)^d$. The latter statement can be obtained by analogy.

Combining Lemma 7 and Theorem 2, we obtain the following result.

Theorem 3. A convex operator $F: \mathbb{R}^d \supset D(F) \longrightarrow S(\Omega)$ satisfies

$$F^{**}(x) = F(x)$$

for every $x \in D(F)$, if and only if F has a normal representation.

REFERENCES

- 1. A. Br ϕ nsted, An Introduction to Convex Polytopes., Springer-Verlag (1983).
- 2. N. Komuro, On basic properties of convex functions and convex integrands., Hokkaido Math. J. 18 (1989), 1–30.
- 3. _____, Convex operators and convex integrands, Proc.Japan Acad. **65 A No.3** (1989), 77–80.
- 4. _____, On the integrand representation of convex operators, J. of Hokkaido Univ. of Educ. 46 (1996), 13–19.
- 5. S. S. Kutateladze, Convex operators, Russian Math. Survey 34 (1979).
- 6. R.T.Rockafellar, Convex Analysis, Princeton University Press (1970).
- 7. _____, Integral functionals, Normal integrands, and Measurable selections, Springer-Verlag Berlin (1976), 157–207.

N.Komuro

Hokkaido University of Education at Asahikawa Hokumoncho 9 chome Asahikawa 070 Japan

e-mail: komuro@ atson.asa.hokkyodai.ac.jp