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Facial structure of convex sets and some applications

北海道教育大学旭川校 小室直人 (Naoto Komuro)

\S 1 INTRODUCTION

Let $\Omega$ be a measure space and let $S(\Omega)$ be the space of all measurable
functions $f$ on $\Omega$ such that $f(t)<\infty$ $(a.e.t\in\Omega)$ . An operator $F:X\supset$

$D(F)arrow S(\Omega)$ is called a convex operator if $D(F)$ is a convex set in a
real vector space $X$ , and for each $x,$ $y\in D(F)$ and $0<\alpha<1$ ,

$F((1-\alpha)x+\alpha y)(t)\leq(1-\alpha)F(x)(t)+\alpha F(y)(t)$ $(a.e.t\in\Omega)$ .

On the other hand, a function $f$ : $X\cross\Omegaarrow \mathbb{R}\cup\{\infty\}$ is called a convex
integrand if for each $t\in\Omega$ the function $f(\cdot, t)$ is convex on 1R $d$ . The
convex integrand theory is well known and there are many applications.
(See [7] for example.) We say that a convex integrand $f$ represents a
convex operator $F$ if

(1) $f(x, t)=\{\infty F(x)(t)$
for $\mathrm{a}.\mathrm{e}.t\in\Omega$

$x\not\in D(F)X\in D(F)$

In two of the author’s previous paper $[3, 4]$ , many applications of inte-
grand representations of convex operators were demonstrated. However,
the existense of integrand representation is nontrivial, and it is known
only in some special cases. When $X$ is the $d$-dimensional Euclidian s-
pace $\mathbb{R}^{d}$ , the represenstion theorem has been proved in [3]. In this note,
we apply the theory of the faces of convex sets, and give a new method
of the proof which is expected to have an advantage in extending the
reperesentation theorem to infinite dimensional cases.

\S 2 FACES OF CONVEX SETS

Let $\mathbb{R}^{d}$ be the $\mathrm{d}$-dimensional Euclidean space. When $x,$
$y\in \mathbb{R}^{d}$ are

distinct points, then the set $[x, y]=\{(1-t)x+ty|0\leq t\leq 1\}$ is called
the closed segment between $x$ and $y$ . Half open segments $(x, y],$ $[x, y)$

and open segments $(x, y)$ are defined analogously. Through this section,
we fix a nonempty closed convex set $D$ in $\mathbb{R}^{d}$ . A convex subset $C$ of $D$ is
called a face of $D$ if
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(2) $\{_{(x,y)\cap C}X,y\in D\}\neq\emptyset$ implies $[x, y]\subset C$ .

By $\mathfrak{F}(D)$ , we denote the set of all faces of $D$ . For $C\in \mathfrak{F}(D),$ $\dim C$

is defined to be the dimension of aff $C$ (the affine hull of $C$). It is clear
that $x\in D$ is an extreme point of $D$ if and only if $\{x\}$ is a O-dimensional
face of $D$ . For preparation, we will state some fundamental properties of
faces in the following propositions whose proofs are given in [1].

Proposition 1. If $C_{\lambda}\in \mathfrak{F}(D),$ $(\lambda\in\Lambda),$ then $\bigcap_{\lambda\in\Lambda}C_{\lambda}\in \mathfrak{F}(D)$ , and also
there exists a smallest face of $D$ containing $\bigcup_{\lambda\in\Lambda}C_{\lambda}$ . Hence $(S.(D), \subset)$

forms a complete lattice.

Propositon 2. Let $C_{1}$ be a face of $D$ and suppose that $C_{2}\subset C_{1}$ . Then
$C_{2}\in S(D)$ if and only if $C_{2}\in \mathfrak{F}(c_{1})$ .

For a convex set $C$ in $\mathbb{R}^{d},$

$C\circ$ denotes the relative interior of $C$ , which
means the interior of $C$ with respect to the relative topology of aff $C$ .
It is easy to see that every face of $D$ is a closed set. Indeed, if $x$ is a
point of the closure of a face $C$ and $x_{0}\in C\circ,$ the $\mathrm{c}\dot{\mathrm{o}}$nvexity of C. yields
$[x_{0}, x)\subset C\circ\subset C$ . Since $C$ is a face of $D,$ $x$ must be in $C$ .

Proposition 3. If $C_{1},$ $C_{2}\in S(D)$ , and $C_{1}\subsetneqq C_{2_{f}}$ then $C_{1}\cap C_{2}\circ=\emptyset$ .

Proposition 4. Let $x$ be a point of $D$ and let $C$ be a face of D. Then
$C$ is the smallest $\dot{f}$ace of $D$ containing $x$ if and only if $x\in C\circ$ .

Proposition 5. Let $C_{1}$ be a face of $D$ and let $x$ be a relative boundary
point of $C_{1}$ . If $C_{2}$ is the smallest face of $D$ containing $x$ , then $C_{2}$ is
contained by the relative boundary of $C_{1}$ .

From these propositons we obtain the following decomposition of a
convex set by its faces.

Proposition 6. For a closed convex set $D$ in $\mathbb{R}^{d}f$

$D=\cup\{c_{\lambda}\mathrm{O}|C_{\lambda}\in S(D)\}$
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and the union is disjoint.

We say that a collection $\{C_{\lambda}\}_{\lambda\in\Lambda}\subset \mathfrak{F}(D)$ is normal if $\lambda\in$ A and
$C_{\lambda}\subset C_{\mu}\in S(D)$ imply $\mu\in\Lambda$ . Now we define

$\mathfrak{U}=$ { $A= \bigcup_{\Lambda\lambda\in}C_{\lambda}\circ|\{C_{\lambda}\}_{\lambda\in\Lambda}$ is normal}.

Since $\{D\}\circ$ is normal and $D\circ\in \mathfrak{U},$
$\mathfrak{U}$ is at least nonempty. It is easy to

see that if each $A_{\lambda}$ (A $\in\Lambda$ ) is a member of $\mathfrak{U}$ , then so are $\bigcup_{\lambda\in\Lambda}A_{\lambda}$ and

$\bigcap_{\lambda\in\Lambda}A_{\lambda}$ , and therefore $(\mathfrak{U}, \subset)$ is a complete lattice.

Lemma 1. If $A\in \mathfrak{U}$ , then $A$ is a convex set.

proof. We write $A= \bigcup_{\lambda\in\Lambda}C_{\lambda}\circ$ and let $x,$ $y$ be arbitrary points of $A$ . Then

there exist $\lambda$ and $\mu$ such that $x\in C_{\lambda}\circ$ and $y\in C_{\mu}\circ$ . Let $z$ be an arbi-
trary point of the open segment $(x, y)$ , and let $C_{\nu}$ be the smallest face
containing $z$ . Since $C_{\nu}$ is a face, we have $[x, y]\subset C_{\nu}$ . By Proposition 4,
$C_{\lambda}$ is the smallest face containing $x$ , and it follows that $C_{\lambda}\subset C_{\nu}$ . Since

the collection $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is normal, we obtain $C_{\nu}\circ\subset A$ . This means that
$z\in A$ , and thus ’A is convex.

\S 3 REPRESENTATION OF CONVEX OPERATORS

In this section, we prove a representation theorem of convex operators.
Let $D(F)$ be a convex set in $\mathbb{R}^{d}$ and let $F:D(F)arrow S(\Omega)$ be a convex
operator. We can assume without loosing generality that the interor of
$D(F)$ is nonempty. Through this section, $D$ denotes the closure of $D(F)$ .
First we state the main theorem.

Theorem 1. Every convex operator $F$ : $\mathbb{R}^{d}\supset D(F)arrow S(\Omega)$ has at
least a representation. That is, there exists a convex integrand $f$ : $\mathbb{R}^{d}\cross$

$\Omegaarrow \mathbb{R}\cup\{\infty\}$ such that (1) holds.

For $D=\overline{D(F)}$ , we define $\mathfrak{U}$ as in \S 2. For $A\in \mathfrak{U}$ , a convex integrand
$f$ : $A\cross\Omegaarrow \mathbb{R}\cup\{\infty\}$ is said to represent $F$ on $A$ , if

$f(x, t)=\{F(x)(t)\infty$
for $\mathrm{a}.\mathrm{e}.t\in\Omega$

$xx\in\in AA\mathrm{n}D(F\backslash D(F))$

.
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Definition. For a convex operator $F$ , we define
$\tilde{\mathfrak{U}}=$ { $(A,$ $f)|A\in \mathfrak{U}$ , and $f$ represents $F$ on $A$}.

Moreover, for $(A_{1}, f_{1}),$ $(A_{2}, f_{2})\in\tilde{\mathfrak{U}}$ , we write $(A_{1}, f_{1})\leq(A_{2}, f_{2})$ when
$A_{1}\subset A_{2}$ and $f_{2}$ is an extension of $f_{1}$ to $A_{2}$ .

Lemma 2. $(\tilde{\mathfrak{U}}, \leq)$ is inductively ordered.

proof. Let $\{(A_{\lambda}, f_{\lambda})\}\lambda\in\Lambda$ be a totally ordered subset of $\tilde{\mathfrak{U}}$ . Then $A=$

$\bigcup_{\lambda\in\Lambda}A_{\lambda}$ is an element of $\mathfrak{U}$ . Moreover we can define a convex integrand $f$

on $A\cross\Omega$ satisfying $f=f_{\lambda}$ on $A_{\lambda}\cross\Omega$ for every $\lambda\in\Lambda$ . Clearly, $(A, f)\in\tilde{\mathfrak{U}}$

and it is an upper bound of $\{(A_{\lambda}, f_{\lambda})\}\lambda\in\Lambda$ .

Lemma 3. For $A\in \mathfrak{U}$ such that $A\neq D$ , we define $\mathfrak{S}_{A}=\{C\in$

$S(D)|C\cap A=\emptyset\}$ . Then $(\mathfrak{S}_{A}, \subset)$ is inductively ordered.

proof. Let $\{C_{\lambda}\}_{\lambda\in\Lambda}$ be a totally ordered subset of $\mathfrak{S}_{A}$ . If we put $C=$

$\bigcup_{\lambda\in\Lambda}C_{\lambda}$ , then $C$ is a convex set and $C\cap A\neq\emptyset$ . Moreover $C\in S(D)$ .

Indeed, if we assume $(x, y)\cap C\neq\emptyset$ , then there exists $\lambda\in$ A such that
$(x, y)\cap C_{\lambda}\neq\emptyset$ . Hence it follows that $[x, y]\subset C_{\lambda}\subset C$ . Thus $C\in \mathfrak{S}_{A}$

and it is an upper bound of $\{C_{\lambda}\}_{\lambda\in\Lambda}$ .

Lemma 4. Let $A$ be an element of $\mathfrak{U}_{f}$ and assume that $A\neq D.$ Then
$0$

there exists $C\in \mathfrak{S}_{A}$ such that $A\cup C\in \mathfrak{U}$ .

proof. By Lemma 3 and Zorn’s lemma, $\mathfrak{S}_{A}$ has at least a maximal element
$C$ . It is sufficient to show that $A\cup C\circ\in \mathfrak{U}$ . Put $A= \bigcup_{\lambda\in\Lambda}C_{\lambda}\circ$ , and take

$C_{1}\in S(D)$ , such that $C_{1}\supset C$ . Since $C$ is a maximal element of $\mathfrak{S}_{A}$ , we
have $C_{1}\not\in\circ \mathfrak{S}_{A}$ and hence $C_{1}\cap A\neq\emptyset$ . Therefore we can choose $\lambda\in$ A

such that $C_{\lambda}\cap C_{1}\neq\emptyset$ . It follows from Proposition 3 that, $C_{\lambda}\subset C_{1}$

holds. Since the collection $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is normal, $C_{1}\circ\subset A\subset A\cup C\circ$ . $\mathrm{T}\mathrm{h},\mathrm{i}\mathrm{s}$

shows that the collection $\{C_{\lambda}\}_{\lambda\in\Lambda}\cup\{C\}$ is also normal, and $A\cup C\circ\in \mathfrak{U}$ .

Lemma 5. $\tilde{\mathfrak{U}}$ is not empty. In other words, there exists $A\in \mathfrak{U}$ such that
$F$ has a representation $f$ on $A$ .

The proof can be done by constructing a convex integrand $f$ which

represents $F$ on $D\circ$ . The method of construction is an analogy of that in
[4].
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Lemma 6. Suppose that $(A, f)\in\tilde{\mathfrak{U}}$ and $A\neq D$ . Let $C\in \mathfrak{S}_{A}$ is a face
$0$

such that $A\cup C\in \mathfrak{U}$ as in Lemma 4. Then $f$ has an extension $f_{1}$ defined
on $(A\cup C)\circ\cross\Omega$ such that $(A\cup C\circ, f_{1})\in\tilde{\mathfrak{U}}$ .

The proof of this lemma is an analogy of one provide in a previous
paper by the author [3].

proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn’s lemma, $\tilde{\mathfrak{U}}$ has
at least a maximal element $(A_{0}, f_{0})$ . Moreover, Lemma 6 shows that
$A_{0}=D$ , and this means that $f_{0}$ represents $F$ on $D$ . Defining $f_{0}=\infty$ on
$D^{c}\cross\Omega$ , we complete the construction of a representation of $F$ .

\S 4 NORMAL REPRESENTATIONS

A convex integrand $f$ : $\mathbb{R}^{d}\cross\Omegaarrow \mathbb{R}\cup\{\infty\}$ is said to be normal if $f(\cdot, t)$

is lower semicontinuous for every $t\in\Omega$ and there exists a coutable family
of measurable functions $\xi_{n}$ : $\Omegaarrow \mathbb{R}^{d}(n=1,2, \cdots)$ such that

(1) for each $n,$ $f(\xi_{n}(t), t)$ is measurable in $t\in\Omega$ ,
(2) for each $t\in\Omega,$ $\{\xi_{n}(t)\}_{n1}^{\infty}=$ is dense in $D(f(\cdot, t))$ ,

where $D(f(\cdot, t))=\{x\in \mathbb{R}^{d}|f(x, t)<\infty\}$ . If a convex integrand $f$ is
normal, then $f(\xi(t), t)$ is measurable in $t\in\Omega$ whenever $\xi$ : $\Omegaarrow \mathbb{R}^{d}$ is
measurable. A convex operator $F$ is said to have a normal representa-
tion if there exists a normal convex integrand which represents $F$ . We
will find some conditions under which a convex operator has a normal
representation. By the conjugate of a convex integrand $f$ , we mean the
convex integrand $f^{*}$ : $\mathbb{R}^{d}\cross\Omegaarrow \mathbb{R}\cup\{\infty\}$ defined by

$f^{*}( \xi, t)=\sup_{x\in \mathbb{R}^{d}}\{<x, \xi>-f(x, t)\}$
.

Also the biconjugate $f^{**}$ : $\mathbb{R}^{d}\cross\Omegaarrow \mathbb{R}\cup\infty$ is given by

$f^{**}(X, t)= \sup_{\in\xi \mathbb{R}^{d}}\{<x, \xi>-f^{*}(\xi, t)\}$
.

lf a convex integrand $f$ is normal, then so are $f^{*}$ and $f^{**}$ We note that
if a convex integrand $f$ represents a convex operator $F$ then $D(f(\cdot, t))$

does not depend on $t\in\Omega$
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Lemma 7. Let $f$ : $\mathbb{R}^{d}\cross\Omegaarrow \mathbb{R}\cup\{\infty\}$ be a representation of some onvex
operator. Then $f$ is normal if and only if $f(\cdot, t)$ is lower semicontinuous,
in other words, $f^{**}=f$ on $\mathbb{R}^{d}\cross\Omega$ .

proof. Let $D=D(f(\cdot, t))$ and take a conuntable subset $\{a_{n}\}$ of $D$ . If
we put $\xi_{n}(t)=a_{n}$ for all $t\in\Omega$ and $n=1,2,$ $\cdots$ , then the $\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{y}..\{\xi n\}$

satisfies the definition of nomality.

Remark. If a convex integrand $f$ satisfiies
(1) for each $x\in \mathbb{R}^{d},$ $f(x, \cdot)$ is measurable, and
(2) $D(\cdot, t))$ does not depend on $t\in\Omega$ ,

the conclusion of Lemma 7 is also valid.

Let $L(\mathbb{R}^{d}, S(\Omega))$ denotes the space of all linear mapping from $\mathbb{R}^{d}$ to $S(\Omega)$ .
We identify $L(\mathbb{R}^{d}, S(\Omega))$ with the set $S(\Omega)^{d}=\{\xi=(\xi_{1}, \cdots , \xi_{d})|\xi_{i}\in$

\S (\Omega ), $i=1,$ $\cdots d\}$ by corresponding $S(\Omega)^{d}\ni(\xi_{1}, \cdots , \xi_{d})$ to the mapping
$\varphi$ : $\mathbb{R}^{d}\ni$ $(x_{1}, \cdots , x_{d})arrow<x,$ $\xi>=x_{1}\xi_{1}+,$ $\cdots$

$,$

$+x_{d}\xi_{d}\in S(\Omega)$ . The
conjugate operator $F^{*}$ : $L(\mathbb{R}^{d}, S(\Omega))\supset D(F^{*})arrow S(\Omega)$ of $F$ is defined
by

$F^{*}(\xi)=(<xx\in D(F*)’\xi>-F(x))$

where $\vee$ means the lattice supremumin the space $S(\Omega)$ , and $D(F^{*})$ is
the set of all $\xi\in S(\Omega)^{d}$ such that the supremum $F^{*}$ exists. The bi-
conjugate operator $F^{**}$ is defined on the space $L(L(\mathbb{R}^{d}, S(\Omega)),$ $S(\Omega))=$

$L(S(\Omega)^{d}, s(\Omega))$ , and we regard $S(\Omega)^{d}$ and $\mathbb{R}^{d}$ as the subspaces of this
by corresponding $\eta\in S(\Omega)^{d}$ and $x\in \mathbb{R}^{d,}$ to $<\eta,$ $\cdot>$ and $<x,$ $\cdot>\in$

$L(S(\Omega)^{d}, s(\Omega))$ respectively. For $x\in \mathbb{R}^{d}$ and $\eta\in S(\Omega),$ $F^{**}$ is defined by

$F^{**}(x)=(<x,$
$\xi>\xi\in D(F*)-F^{*}(\xi))$

,

$F^{**}(\eta)=\vee(<\eta,$
$\xi\xi\in D(F^{*})>-F^{*}(\xi))$

.

They are only defined on the domain $D(F^{**})$ where these suprema exist.

Theoem 2. Let $F$ : $\mathbb{R}^{d}\supset D(F)arrow S(\Omega)$ be a convex operator and let
$f$ : $\mathbb{R}^{d}\cross\Omegaarrow \mathbb{R}\cup\{\infty\}$ be a representation of F. Then the convex inte-
grand $f^{*}$ and $f^{**}$ are normal representations of $F^{*}$ and $F^{**}$ respectively.
Moreover for $\xi\in D(F^{*})$ and $\eta\in D(F^{**})f$

$(F^{*}(\xi))(t)=f^{*}(\xi(t), t)$
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$(F^{**}(\eta))(t)=f^{**}(\eta(t), t)$

holds for almost every $t\in\Omega$ .

This theorem is due to the following lemma.

Lemma 8. Let $F$ : $\mathbb{R}^{d}\supset D(F)arrow S(\Omega)$ be a convex operator, and let
$f$ : $\mathbb{R}^{d}\cross\Omegaarrow \mathbb{R}^{d}\cup\{\infty\}$ be a representation of F. Let $U$ be a convex
subset of $D(F)$ and suppose that $\inf_{x\in U}f(X, t)>-\infty$ for almost every
$t\in\Omega.$ Then $\bigwedge_{x\in U}F(X)\in S(\Omega)$ exists and

$( \wedge F(X))(t)x\in U=\inf_{x\in U}f(X, t)$
.

proof. Let $E$ be a countable dense set in $U$ . Then we have

$\inf_{x\in U}f(x, t)=\inf_{x\in E}f(x, t)$

for $a.e.t\in\Omega$ . Hence $\inf_{x\in U}f(X, t)$ is measurable in $t$ and

$(\wedge F(X))(t)x\in U\leq(\wedge F(X))(t)x\in E$

$= \inf_{x\in E}f(X, t)$

$= \inf_{x\in U}f(X, t)$

$=(\wedge F(X))(t)x\in U$

for $a.e.t\in\Omega$ , and the lemma is proved.

proof of Theorem 2. By Lemma 8 we have

$(F^{*}(\xi))(t)=$ $\vee$ $(<\xi, x>-F(x))(t)$

$x\in D(F)$

$=$ $\sup(<\xi(t), x>-f(x, t))$
$x\in D(F)$

$=f^{*}(\xi(t), t)$ $(a.e.t\in\Omega)$ ,

for every $\xi\in D(F^{*})\subset S(\Omega)^{d}$ . The latter statement can be obtained by
analogy.

Combining Lemma 7 and Theorem 2, we obtain the following result.

Theorem 3. A convex operator $F:\mathbb{R}^{d}\supset D(F)arrow S(\Omega)$ satisfies
$F^{**}(x)=F(x)$

for every $x\in D(F)$ , if and only if $F$ has a normal representation.
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