

Facial structure of convex sets and some applications

北海道教育大学旭川校 小室直人 (Naoto Komuro)

$\S 1$ INTRODUCTION

Let Ω be a measure space and let $S(\Omega)$ be the space of all measurable functions f on Ω such that $f(t)<\infty$ $(a.e.t\in\Omega)$. An operator $F:X\supset$ $D(F) \longrightarrow S(\Omega)$ is called a convex operator if $D(F)$ is a convex set in a real vector space X, and for each $x, y \in D(F)$ and $0 < \alpha < 1$,

$$
F((1-\alpha)x+\alpha y)(t)\leq (1-\alpha)F(x)(t)+\alpha F(y)(t)\qquad (a.e. t\in \Omega).
$$

On the other hand, a function $f : X \times \Omega \longrightarrow \mathbb{R}\cup\{\infty\}$ is called a convex integrand if for each $t\in\Omega$ the function $f(\cdot, t)$ is convex on \mathbb{R}^d . The convex integrand theory is well known and there are many applications. (See $[7]$ for example.) We say that a convex integrand f represents a convex operator F if

(1)
$$
f(x,t) = \begin{cases} F(x)(t) & \text{for a.e.} t \in \Omega & x \in D(F) \\ \infty & x \notin D(F) \end{cases}
$$

In two of the author's previous paper $[3, 4]$, many applications of integrand representations of convex operators were demonstrated. However, the existense of integrand representation is nontrivial, and it is known only in some special cases. When X is the d-dimensional Euclidian space \mathbb{R}^{d} , the represenstion theorem has been proved in [3]. In this note, we apply the theory of the faces of convex sets, and give a new method of the proof which is expected to have an advantage in extending the reperesentation theorem to infinite dimensional cases.

§2 FACES OF CONVEX SETS

Let \mathbb{R}^{d} be the d-dimensional Euclidean space. When $x, y \in \mathbb{R}^{d}$ are distinct points, then the set $[x, y]=\{(1-t)x+ty\mid 0\leq t\leq 1\}$ is called the closed segment between x and y. Half open segments (x, y) , $[x, y)$ and open segments (x, y) are defined analogously. Through this section, we fix a nonempty closed convex set D in \mathbb{R}^{d} . A convex subset C of D is called a face of D if

(2)
$$
\begin{cases} x, y \in D \\ (x, y) \cap C \neq \emptyset \end{cases}
$$
 implies $[x, y] \subset C$.

By $\mathfrak{F}(D)$, we denote the set of all faces of D. For $C \in \mathfrak{F}(D)$, $\dim C$ is defined to be the dimension of aff C (the affine hull of C). It is clear that $x \in D$ is an extreme point of D if and only if $\{x\}$ is a 0-dimensional face of D . For preparation, we will state some fundamental properties of faces in the following propositions whose proofs are given in [1].

Proposition 1. If $C_{\lambda} \in \mathfrak{F}(D), \ (\lambda \in \Lambda)$, then $\cap_{\lambda\in\Lambda}C_{\lambda}\in \mathfrak{F}(D)$, and also there exists a smallest face of D containing $\cup_{\lambda\in\Lambda}C_{\lambda}$. Hence $(\mathfrak{F}(D), \subset)$ forms a complete lattice.

Propositon 2. Let C_{1} be a face of D and suppose that $C_{2}\subset C_{1}$. Then $C_{2}\in \mathfrak{F}(D)$ if and only if $C_{2}\in \mathfrak{F}(C_{1}).$

For a convex set C in \mathbb{R}^{d} , C denotes the relative interior of C , which means the interior of C with respect to the relative topology of aff C . It is easy to see that every face of D is a closed set. Indeed, if x is a point of the closure of a face C and $x_{0}\in\mathcal{C}$, the convexity of C yields $[x_{0}, x) \subset C \subset C.$ Since C is a face of D, x must be in C.

Proposition 3. If $C_{1}, C_{2}\in \mathfrak{F}(D),$ and $C_{1}\subsetneqq C_{2},$ then $C_{1}\cap \check{C}_{2}=\emptyset.$

Proposition 4. Let x be a point of D and let C be a face of D . Then C is the smallest face of D containing x if and only if $x\in \check C.$

Proposition 5. Let C_{1} be a face of D and let x be a relative boundary $point \,\, of \,\, C_{1}. \,\,\, If \,\, C_{2} \,\,\, is \,\, the \,\, smallest \,\, face \,\,\, of \,\, D \,\,\, containing \,\,x, \,\, then \,\, C_{2} \,\,\, is \,\,$ $contained\; by\; the\; relative\; boundary\; of\; C_{1}.$

From these propositons we obtain the following decomposition of a convex set by its faces.

Proposition 6. For a closed convex set D in \mathbb{R}^{d} ,

$$
D=\cup\{\overset{\mathtt{o}}{C}\lambda\mid C_\lambda\in\mathfrak{F}(D)\}
$$

and the union is disjoint.

We say that a collection $\{C_{\lambda}\}_{\lambda\in\Lambda}\subset \mathfrak{F}(D)$ is normal if $\lambda\in\Lambda$ and $C_{\lambda}\subset C_{\mu}\in \mathfrak{F}(D)$ imply $\mu\in\Lambda$. Now we define

$$
\mathfrak{A} = \{ A = \bigcup_{\lambda \in \Lambda} C_{\lambda} \mid \{ C_{\lambda} \}_{\lambda \in \Lambda} \text{ is normal} \}.
$$

Since $\{\stackrel{\circ}{D}\}$ is normal and $\stackrel{\circ}{D}\in \mathfrak{A}, \mathfrak{A}$ is at least nonempty. It is easy to see that if each A_{λ} ($\lambda \in \Lambda$) is a member of $\mathfrak{A},$ then so are $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ and $\bigcap_{\lambda \in \Lambda} A_{\lambda}$, and therefore (\mathfrak{A}, \subset) is a complete lattice.

 $\textbf{Lemma 1.} \ \textit{ If } A \in \mathfrak{A}, \ \textit{then } A \ \textit{ is a convex set}.$

proof. We write $A = \bigcup_{\alpha\in\Lambda} C_{\lambda}$ and let x, y be arbitrary points of A. Then there exist λ and μ such that $x\in \check{C}_{\lambda}$ and $y\in \check{C}_{\mu}$. Let z be an arbitrary point of the open segment (x, y) , and let C_{ν} be the smallest face containing z. Since C_{ν} is a face, we have $[x, y]\subset C_{\nu}$. By Proposition 4, C_{λ} is the smallest face containing x, and it follows that $C_{\lambda}\subset C_{\nu}$. Since the collection $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is normal, we obtain $\check{C}_{\nu}\subset A$. This means that $z\in A$, and thus A is convex.

§ 3 REPRESENTATION OF CONVEX OPERATORS

In this section, we prove a representation theorem of convex operators. Let $D(F)$ be a convex set in \mathbb{R}^{d} and let $F:D(F)\longrightarrow S(\Omega)$ be a convex operator. We can assume without loosing generality that the interor of $D(F)$ is nonempty. Through this section, D denotes the closure of $D(F)$. First we state the main theorem.

Theorem 1. Every convex operator $F : \mathbb{R}^{d} \supset D(F) \longrightarrow S(\Omega)$ has at least a representation. That is, there exists a convex integrand $f : \mathbb{R}^{d}\times$ $\Omega \longrightarrow \mathbb{R}\cup\{\infty\}$ such that (1) holds.

For $D=\overline{D(F)}$, we define \mathfrak{A} as in $\S 2$. For $A\in \mathfrak{A}$, a convex integrand $f : A \times \Omega \longrightarrow \mathbb{R}\cup\{\infty\}$ is said to represent F on A , if

$$
f(x,t) = \begin{cases} F(x)(t) & \text{for a.e.} t \in \Omega & x \in A \cap D(F) \\ \infty & x \in A \setminus D(F). \end{cases}
$$

 $\bf{Definition.}$ For a convex operator $F,$ we define

 $\tilde{\mathfrak{A}} = \{ (A, f)|A \in \mathfrak{A}, \text{ and } f \text{ represents } F \text{ on } A \}.$

 $Moreover, \ for \ (A_{1}, f_{1}), \ (A_{2}, f_{2})\in\mathfrak{A}, \ we \ write \ (A_{1}, f_{1})\leq(A_{2}, f_{2}) \ when$ $A_{1}\subset A_{2}$ and f_{2} is an extension of f_{1} to $A_{2}.$

Lemma 2. $(\tilde{\mathfrak{A}}, \leq)$ is inductively ordered.

proof. Let $\{(A_{\lambda}, f_{\lambda})\}_{\lambda\in\Lambda}$ be a totally ordered subset of \mathfrak{A} . Then $A=$ \cup A_{λ} is an element of \mathfrak{A} . Moreover we can define a convex integrand f on $A\times\Omega$ satisfying $f=f_{\lambda}$ on $A_{\lambda}\times\Omega$ for every $\lambda\in\Lambda$. Clearly, $(A, f)\in\mathfrak{A}$ and it is an upper bound of $\{(A_{\lambda}, f_{\lambda})\}_{\lambda \in \Lambda}$.

Lemma 3. For $A\in \mathfrak{A}$ such that $A\neq D$, we define $\mathfrak{S}_{A}=\{C\in$ $\mathfrak{F}(D)|C\cap A=\emptyset\}$. Then $(\mathfrak{S}_{A}, \subset)$ is inductively ordered.

proof. Let $\{C_{\lambda}\}_{\lambda\in\Lambda}$ be a totally ordered subset of \mathfrak{S}_{A} . If we put $C=$ $\cup\subset\Lambda$, then C is a convex set and $C\cap A\neq\emptyset$. Moreover $C\in\mathfrak{F}(D)$. Indeed, if we assume $(x, y) \cap C \neq \emptyset$, then there exists $\lambda \in \Lambda$ such that $(x, y)\cap C_{\lambda}\neq\emptyset$. Hence it follows that $[x, y]\subset C_{\lambda}\subset C$. Thus $C\in \mathfrak{S}_{A}$ and it is an upper bound of $\{C_{\lambda}\}_{\lambda\in\Lambda}$.

Lemma 4. Let A be an element of \mathfrak{A}_{i} , and assume that $A \neq D$. Then $^{\rm o}$ there exists $C \in \mathfrak{S}_{A}$ such that $A\cup C\in \mathfrak{A}$.

proof. By Lemma 3 and Zorn's lemma, \mathfrak{S}_{A} has at least a maximal element C. It is sufficient to show that $A\cup \check{C}\in \mathfrak{A}$. Put $A=\bigcup_{\alpha\in\Lambda}\check{C}_{\lambda},$ and take $C_{1} \in \mathfrak{F}(D)$, such that $C_{1} \supset C$. Since C is a maximal element of \mathfrak{S}_{A} , we have $C_{1}\notin\mathfrak{S}_{A}$ and hence $C_{1}\cap A\neq\emptyset$. Therefore we can choose $\lambda\in\Lambda$ such that $C_{\lambda}\cap C_{1}\neq\emptyset$. It follows from Proposition 3 that, $C_{\lambda}\subset C_{1}$ holds. Since the collection $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is normal, $\check{C}_{1}\subset A\subset A\cup\check{C}$. This shows that the collection $\{C_{\lambda}\}_{\lambda\in\Lambda}\cup\{C\}$ is also normal, and $A\cup \breve{C}\in \mathfrak{A}.$ **Lemma 5.** \mathfrak{A} is not empty. In other words, there exists $A \in \mathfrak{A}$ such that F has a representation f on A .

The proof can be done by constructing a convex integrand f which represents F on \overline{D} . The method of construction is an analogy of that in [4].

Lemma 6. Suppose that $(A, f) \in \mathfrak{A}$ and $A \neq D$. Let $C \in \mathfrak{S}_{A}$ is a face such that $A\cup \overset{\circ}{C}\in \mathfrak{A}$ as in Lemma 4. Then f has an extension f_{1} defined on $(A\cup \check{C})\times\Omega$ such that $(A\cup \check{C}, f_{1})\in\tilde{\mathfrak{A}}$.

The proof of this lemma is an analogy of one provide in a previous paper by the author [3].

proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn's lemma, $\tilde{\mathfrak{A}}$ has at least a maximal element (A_{0}, f_{0}) . Moreover, Lemma 6 shows that $A_{0}=D,$ and this means that f_{0} represents F on $D.$ Defining $f_{0}=\infty$ on $D^{c}\times\Omega$, we complete the construction of a representation of F.

$\S 4$ NORMAL REPRESENTATIONS

A convex integrand $f : \mathbb{R}^{d}\times\Omega \longrightarrow \mathbb{R}\cup\{\infty\}$ is said to be normal if $f(\cdot, t)$ is lower semicontinuous for every $t\in\Omega$ and there exists a coutable family of measurable functions $\xi_{n} : \Omega \longrightarrow \mathbb{R}^{d}$ $(n=1,2, \cdots)$ such that

(1) for each $n, f(\xi_{n}(t), t)$ is measurable in $t \in \Omega$,

(2) for each $t\in\Omega, \{\xi_{n}(t)\}_{n=1}^{\infty}$ is dense in $D(f(\cdot, t)),$

where $D(f(\cdot, t))=\{x\in \mathbb{R}^{d}|f(x, t)<\infty\}$. If a convex integrand f is normal, then $f(\xi(t), t)$ is measurable in $t \in \Omega$ whenever $\xi : \Omega \longrightarrow \mathbb{R}^{d}$ is measurable. A convex operator F is said to have a normal representation if there exists a normal convex integrand which represents F . We will find some conditions under which a convex operator has a normal representation. By the conjugate of a convex integrand f , we mean the convex integrand $f^{*}: \mathbb{R}^{d}\times\Omega \longrightarrow \mathbb{R}\cup\{\infty\}$ defined by

$$
f^*(\xi, t) = \sup_{x \in \mathbb{R}^d} \{ \langle x, \xi \rangle - f(x, t) \}.
$$

Also the biconjugate $f^{**}: \mathbb{R}^{d}\times\Omega \longrightarrow \mathbb{R}\cup\infty$ is given by

$$
f^{**}(x,t) = \sup_{\xi \in \mathbb{R}^d} \{ \langle x, \xi \rangle - f^*(\xi, t) \}.
$$

If a convex integrand f is normal, then so are f^{*} and f^{**} . We note that if a convex integrand f represents a convex operator F then $D(f(\cdot, t))$ does not depend on $t\in\Omega$.

Lemma 7. Let $f : \mathbb{R}^{d}\times\Omega \longrightarrow \mathbb{R}\cup\{\infty\}$ be a representation of some onvex operator. Then f is normal if and only if $f(\cdot, t)$ is lower semicontinuous, in other words, $f^{**}=f$ on $\mathbb{R}^{d}\times\Omega$.

proof. Let $D = D(f(\cdot, t))$ and take a conuntable subset $\{a_{n}\}$ of D . If we put $\xi_{n}(t)=a_{n}$ for all $t\in\Omega$ and $n=1,2,\cdots$, then the family $\{\xi_{n}\}\$ satisfies the definition of nomality.

Remark. If a convex integrand f satisfiies

(1) for each $x \in \mathbb{R}^{d}$, $f(x, \cdot)$ is measurable, and

 (2) $D(\cdot, t)$ does not depend on $t \in \Omega$,

the conclusion of Lemma 7 is also valid.

 $\mathrm{Let}\ L(\mathbb{R}^{d}, S(\Omega)) \text{ denotes the space of all linear mapping from }\mathbb{R}^{d} \text{ to } S(\Omega).$ We identify $L(\mathbb{R}^{d}, S(\Omega))$ with the set $S(\Omega)^{d}=\{\overline{\xi}=(\xi_{1}, \cdots , \xi_{d})|\xi_{i}\in$ $\S (\Omega), i=1, \cdots d\}$ by corresponding $S(\Omega)^{d}\ni(\xi_{1}, \cdots , \xi_{d})$ to the mapping $\varphi\,:\,\mathbb{R}^{d}\,\ni\,(x_{1}, \cdots, x_{d})\,\longrightarrow <\,x, \xi\,> =\,x_{1}\xi_{1}+,\cdots, +x_{d}\xi_{d}\,\in\,S(\Omega).$. The conjugate operator $F^{*} : L(\mathbb{R}^{d}, S(\Omega)) \supset D(F^{*}) \longrightarrow S(\Omega)$ of F is defined by

$$
F^*(\xi)=\bigvee_{x\in D(F^*)}(-F(x))
$$

where \bigvee means the lattice supremumin the space $S(\Omega)$, and $D(F^{*})$ is the set of all $\xi \in S(\Omega)^{d}$ such that the supremum F^{*} exists. The biconjugate operator F^{**} is defined on the space $L(L(\mathbb{R}^{d}, S(\Omega)), S(\Omega))=$ $L(S(\Omega)^{d}, S(\Omega))$, and we regard $S(\Omega)^{d}$ and \mathbb{R}^{d} as the subspaces of this by corresponding $\eta \in S(\Omega)^{d}$ and $x\in \mathbb{R}^{d}$ to $<\eta, \cdot>$ and $< x, \cdot> \in$ $L(S(\Omega)^{d}, S(\Omega))$ respectively. For $x\in \mathbb{R}^{d}$ and $\eta\in S(\Omega)$, F^{**} is defined by

$$
F^{**}(x) = \bigvee_{\xi \in D(F^*)} (-F^*(\xi)),
$$

$$
F^{**}(\eta) = \bigvee_{\xi \in D(F^*)} (<\eta, \xi > -F^*(\xi)).
$$

They are only defined on the domain $D(F^{**})$ where these suprema exist.

Theoem 2. Let $F : \mathbb{R}^{d} \supset D(F) \longrightarrow S(\Omega)$ be a convex operator and let $f:\mathbb{R}^{d}\times\Omega\longrightarrow\mathbb{R}\cup\{\infty\}$ be a representation of F. Then the convex integrand f^{*} and f^{**} are normal representations of F^{*} and F^{**} respectively. Moreover for $\xi\in D(F^{*})$ and $\eta\in D(F^{**})$,

$$
(F^*(\xi))(t) = f^*(\xi(t), t)
$$

$$
(F^{**}(\eta))(t) = f^{**}(\eta(t), t)
$$

holds for almost every $t\in\Omega.$

This theorem is due to the following lemma.

Lemma 8. Let $F : \mathbb{R}^{d} \supset D(F) \longrightarrow S(\Omega)$ be a convex operator, and let $f: \mathbb{R}^{d}\times\Omega\longrightarrow \mathbb{R}^{d}\cup\{\infty\}$ be a representation of $F.$ Let U be a convex subset of $D(F)$ and suppose that $\inf_{x\in U}f(x, t)>-\infty$ for almost every $t\in\Omega$. Then $\bigwedge_{x\in U}F(x)\in S(\Omega)$ exists and

$$
(\bigwedge_{x \in U} F(x))(t) = \inf_{x \in U} f(x, t).
$$

proof. Let E be a countable dense set in U . Then we have

$$
\inf_{x \in U} f(x,t) = \inf_{x \in E} f(x,t)
$$

for $a.e. t \in \Omega$. Hence $\inf_{x \in U} f(x, t)$ is measurable in t and

$$
(\bigwedge_{x \in U} F(x))(t) \leq (\bigwedge_{x \in E} F(x))(t)
$$

$$
= \inf_{x \in E} f(x,t)
$$

$$
= \inf_{x \in U} f(x,t)
$$

$$
= (\bigwedge_{x \in U} F(x))(t)
$$

for $a.e. t \in \Omega$, and the lemma is proved.

proof of Theorem 2. By Lemma ⁸ we have

$$
(F^*(\xi))(t) = \bigvee_{x \in D(F)} (\langle \xi, x \rangle - F(x))(t)
$$

=
$$
\sup_{x \in D(F)} (\langle \xi(t), x \rangle - f(x, t))
$$

=
$$
f^*(\xi(t), t) \quad (a.e. t \in \Omega),
$$

for every $\xi\in D(F^{*})\subset S(\Omega)^{d}$. The latter statement can be obtained by analogy.

Combining Lemma 7 and Theorem 2, we obtain the following result. **Theorem 3.** A convex operator $F:\mathbb{R}^{d}\supset D(F)\longrightarrow S(\Omega)$ satisfies $F^{**}(x)=F(x)$

for every $x \in D(F)$, if and only if F has a normal representation.

REFERENCES

- 1. A. Br ϕ nsted, An Introduction to Convex Polytopes., Springer-Verlag (1983).
- 2. N. Komuro, On basic properties of convex functions and convex integrands.,
Hokkaido Math. J. 18 (1989), 1–30.
3. _____, Convex operators and convex integrands, Proc.Japan Acad. 65 A No.3 Hokkaido Math. J. 18 (1989), 1-30.
- (1989), 77-80. 3. $\frac{1}{4}$, Convex operators and convex integrands, Proc.Japan Acad. **65 A No.3**
(1989), 77–80.
4. $\frac{1}{4}$, On the integrand representation of convex operators, J. of Hokkaido Univ.
- of Educ. 46 (1996), 13-19.
- 5. S. S. Kutateladze, Convex operators, Russian Math. Survey 34 (1979).
- 6. R.T.Rockafellar, Convex Analysis, Princeton University Press (1970).
- 7. _____, Integral functionals, Normal integrands, and Measurable selections, Springer-Verlag Berlin (1976), 157-207.

N. Komuro

Hokkaido University of Education at Asahikawa Hokumoncho 9 chome Asahikawa $\mathfrak{070}$ Japan e -mail: komuro@ atson. $as a. hokkyodai.$ $ac.jp$