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1 Introduction

Given a bounded domain €2 C R™ with smooth boundary 0N, let us consider
the initial boundary value problem ’
ou : ' »
i Au = f(u) in Qx(0,7), ulyq =0, ul,_o = uo(z) (1)
with f € C(R) standing for the - nonlinearity in consideration.
If the initial value ug € Cp(£2), which means that ug(x) is continuous

on 2 and ug = 0 on 9N, then it holds  the unique existence of the classical
solution local in time u = u(z,t) € C(Q x [0,T)) N C* (2 x (0,T)). When

only ug € C() is assumed, we still have the unique existence of the solution
local in time © = u(z,t) € C(2 x (0,T7)) N C?1(Q x (0,T)), and

lim [Ju(-,t) = uoll,, = 0

for any 1 < p < +oo. In any case, if we denote by T the maximal time for
the existence of such a solution, then T}, < +oco implies

limn {fu(, )l oo = +o0.



And we call this case the blow-up of the solution. We refer to Ladyzen-
skaya, Solonnikov, and Ural’ceva [11], Matano [12], and Henry [8] for those
fundamental facts.

The blow-up phenomena have been studied extensively; when and how
they occur, and what happens after the blow-up time. The present paper is
devoted to the first problem and we give a new criterion for the blow-up of
the solution.

As a typical nonlinearity we think of f(u) = Age* with a constant Ay > 0.
In this case if the stationary problem

—Av = f(v) in €, v=20 on 09 (2)

has a classical solution v € Co(2)NC?(£) then S, the totality of its solutions,
possesses the minimal element v. Namely, v € S and v > v on {2 for any
veds. '

In the pioneering work [6], H. Fujita proved the following. When a non-
minimal stationary solution 7 of (2) exists then we have;

1. If up <7 and up # 7, then T = +oo and lim; o0 ||u(-,t) — 2|, =0.
2. If ug > 7 and ug Z U, then either T, < 400 or

Ty = +o00 and t}jgrnm (-, t)|l, = +oo. (3)

In the above arguments, the convexity of the nonlinearity f plays a crucial
role, for this does not admit a triple of classical stationary solutions, u, v, w €
S with u < v < w and w # v # w. We call this the triple law.

The second statement above, in the case ug > 7 and vy # U, was refined
later by Lacey [9] as follows. Let 11(x) > 0 be the first eigenfunction of the
linearized operator —A — f’ (%(x)) around the non-minimal solution 7. Then
for ug with '

Uy Z T and / UgtPy > / Y
Jo Q

we have T;, < +o00. In other words, the possibility (3), usually referred to as
the blow-up in infinite time, is excluded, and also the initial value ug(x) may
even intersect T(x) as long as the above integral inequality holds.



In this paper we will show another conditions extended in different direc-
tion. Namely, we can take v* and v, in place of v and ¥, where v* and v, is
super- and sub-solution respectively. This means that

—Av* > f(v*) and — Aw, < f(v,) in

and
v* >0 > v, on Of. (4)
Let A1 > 0 be the first eigenvalue of —A. '

Theorem 1 Suppose that the nonlinearity f € CY(R) is convex,

limsup f(s)/s < Ay < liminf f(s)/s, (5)
§——00 s—+o00
and oo p
_ S
—— < +00. (6)
(s)
Suppose, furthermore, that there exists a pair of super- and sub- solutions

v* v, € C(Q) N C%Q) of (2), respectively, with
v* < v, and v # v, in Q. (7)
Then, for uy with
Ug > Uy and Ug Z U, in Q (8)
we have Ty, < +o00, and actually
%ITI%: m_gxu(-,t) = 400. (9)

Note that relations (4) and (7) imply v* = v, = 0 on 9Q, or v*,v, € Cy(Q).

2 Applications

Theorem 1 provides the following blow-up criteria which have not been no-
ticed before. Throught this section, we assume that f satisfies the assump-
tions of Theorem 1. '



Corollary 2 Let f(0) < 0. Suppose, furthermore, that the initial value
ug € Co(Q) is non-negative, C? in Q, and

~Aug < flug) and — Aug Z f(ug) in . (10)

Then we have Ty < +o00.

In fact, from condition (10) and the strong maximum principle we see
u >0, —Au< f(u) in Qx (0,T3). (11)

In particular, u(-,tg) > uo and u(-,ty) # up hold for 0 < ty < Tj,. Therefore,
by Theorem 1 with v* = 0 and v, = wo, regarding ¢, as the initial time, we
can show the conclusion.

We note that Friedman-McLeod [5] studied the blow-up set for a rather
wide class of nonlinearities, under the conditions (10) and T; < +oco. Above
Corollary 2 provides a kind of justification for it.

On the contrary, in case of f(0) > 0, it may happen that 7, = +o0 in
spite of (10). This is the case actually shown in [6] for f(u) = Age*. Namely,
if a non-minimal stationary solution 7(x) of (2) exists, then the extrapolation
of v and 7, v

Ug = HQ + (1 - 0)-’(7

with € > 1 satisfies (10), up > 0 in Q, T = +o0, and
Jim () — vl = 0.

For the nonlinearity f(u) = Ae® we have the upper bound A < +oco of A
for which the existence of a classical solution v(z) of

—Av = f(v) in €, v=0 on 0N (12)

holds. For the case A > A, [6] proved that the blow-up occurs in finite or
infinite time in

—5}-' —Au= f(u) in Qx(0,7T), Uy =0, ul,_g = uo(z), (13)

and later [9] excluded the second possibility when A lies in the spectrum.
This fact holds for some class of nonlinearities including f(u) = Ae*. This



case was later studied by Bellout (3], Lacey and Tzanetis [10], and Brezis,
Cazenave, Martel, and Ramiandrisoa [4]. Bellout [3] showed that the fact
proven by [9] holds even when A does not lie in the spectrum. On the other
hand [10] showed the blow-up of infinite time may occur when A = ). These
results are refined recently by [4]. In particular it was proven the following: If
C' convex nonlinearity f satisfies (6), f(0) > 0, and f % f(0), then X < +o00
follows. Furthermore, blow-up in finite time occurs in (13) whenever A > .
and ug > 0. Summing up these results, we see that blow-up in finite time
always occurs for f(u) = Ae* with A > X in (13). In contrast with this, the
following corollary presents a blow-up criterion for the case A < \.

Corollary 3 Suppbse that the stationary problem (2) has a non-minimal
degenerate solution T, that is,

~Ap=f'@W i 9 Yla=0 (14)

has a non-trivial solution v # 0 with sign change. Then for

o >TEep and 0<e< 1 (15)
we have T, < +00.
In fact, we have
~AW ) = —AVF el = f(7) + cf (O (16)
and | - |
f@xep) > f(@) £ef' (@)h. (17)

Hence —A(T £ ey) < f(U+ ep) holds and we can apply Theorem 1 with the
minimal solution v* = v and v, =7 + €. |

Note that in Corollary 3, initial value 1o may intersect with . Lacey [9)]
treats the similar case as above corollary. His blow-up criterion is, however,
different from ours.

Another application is the following.

Corollary 4 Suppose that the sfafzonmy problem (2) has the minimal de-
q(ﬂn(mf(’ solution v, that is,

AP =y in Q Plaa=0 (18)



has a non-trivial solution ¢ > 0. Then for
g >v  with  ug £ v ‘ (19)

we have T, < +00.

In fact, the argument to be presented at the begining of the next section
reduces condition (19) to

Ug > Vs =V + € (20)

for some 0 < € < 1. Then we obtain the conclusion with the same arguments
as above.
As a direct consequence of the corollary above, we obtain the following.

Proposition 5 In Corollary 4, v(z) is the unique solution for the stationary
problem (2).

In fact, if there exist non-minimal solution ¥ of (2) then we have some ug with
T > up > v in . Because T is a stationary solution, this implies T; = 400
for 1y > v and contradicts with Corollary 4.
The case treated in Corollary 3 or 4 occurs for f(u) = Xe*, Q@ = {z €
R™ | || < 1}, and 2 < n < 10. Sec Nagasaki and Suzuki [13], for instance.
Another application of Theorem 1 is the following.

Corollary 6 Let f(0) = 0 and f'(0) > Ay where Xy is the first eigenvalue
of —A\. Suppose, furthermore, that the initial value ug € Co(£2) N C?%(Q) 1s
non-negative. Then we have Ty < +o0.

In fact, let ¢y > 0 be the eigenfunction satisfying —A¢; = Ai1¢; in 2 and
. = 0 on 90. Because f(u) is convex, the assumption f'(0) > A; implies
f(s) < s for s < 0. Now set v* = —€¢; for € > 0 then we have

—AV* = APy = —eXidp = Mot > f(vY). (21)
That is, v* = —e¢y is a super-solution of (2), so we can apply Theorem 1
with v* = —e¢; and v, = 0 to obtain the conclusion.

Finally, we note that any interpolations and extrapolations of sub- and
super-solutions are also sub- and super-solutions, respectively. For instance
we have the following.

Corollary 7 Let the stationary problem (2) has the minimal solution v = vy
and non-minimal solutions vy, v3. Then if ug > v* = avy + (1 — a)vs for
some o > 1 or o < 0 we have Ty, < +00.



3 Proof of Theorem 1

Let (7) and (8) hold. If we take u.(z,t) and u*(z,t) to be the solutions
local in time of (1) for ug = v, and ug = v*, respectively, then by the strong
maximum principle and the Hopf lemma we have

’U,(',to) > U,*(',t()) > u*(',to)
for 0 < tg < 1. This means that these functions are C* on Q and satisfy
u(-,to) > (-, to) > u*(-, o) in Q

and p 5 9ur*
U Uy U
5;(',’50) < ‘5;(',150) <3,

where v denotes the outer unit normal vector. Furthermore (11) holds for
v(z,t) = u.(z,t), in which case we say that u.(:,to) is a strict sub-solution of
(2). Similarly, u*(-,to) is a strict super-solution. Therefore, we may assume
from the begining that v* and v, are strict super- and sub- solutions of (2),

respectively, that uo(z), v.(z) and v*(z) are C! functions on §, and that
they satisfy

('at()) on aﬂa

Uy >> Uy > V. (22)
From (22) we can take a constant 6 > 1 such that
up > Ovu, + (1 — 6)v*™. (23)

Therefore, using the comparison principle, we can reduce the theorem to the
case that ug is the extrapolation of v, and v*, that is, the right-hand side of
(23) with > 1. In this case up becomes again a strict sub-solution of (2)
from the convexity of f.

From (5), there exist constants g < A; and C' > 0 such that

f(s) > pus—C for s<0.
Take A > 1 and denote by w, the solution of
(—=A — pwy =-AC in Q, wy=0 on O0f.

A simple calculation shows that wy(z) is a sub-solution of (2). Furthermore,
taking \ large enough, we have v* > wy. Then, by the method of super-sub



solutions ([1], [2], e.g.) we have a solution #(z) of (2) satisfying wy < ¥ < v*.
In other words, we may suppose v*(x) is a stationary solution.

Under these circumstances, because ug € C?(2) N CH(Q) is a strict sub-
solution of (2), u(z,t) is increasing in ¢ for each x € . Therefore, we have
a measurable function v(z)

t_l}g_noo u(z,t) = v(zx) € [v*(z),+o0] for z€Q (24)
if we assume T, = +o00.

What we are trying to show is that this function v(z) must be a (singular)
stationary solution satisfying v > v*. Because it is stable from below, the
third solution, unstable from both above and below, probably exists between
v and v*. But this will violate the triple law. In the present paper, however,
we do a different argument based on the parabolic dynamics. In this way, we
also provides a proof of the triple law involving singular stationary solutions,
avoiding technical difficulties in treating singularity.

First, from (5), we have a constant j, such that

f(s)—As>0 for s> j.. (25)

Let ¢;(z) > 0 be the first eigenfunction of —A normalized as

/ngl(a:)d:z: ~ 1.

We can deduce

/Q w(z, ) (@)de < j. (£t > 0) (26)

if Ty = +o00 holds (c.f. [7]).
In fact, the function

ﬂwzﬁw@mu@m

satisfies

dj
Ziniz G (20

because of the convexity of f and Jensen’s inequality. Therefore, if j(0) > i,
then j(t) > j. by (25). Hence it holds

.[mﬂﬁ?szﬁmﬁ:



and this contradicts (6). This means that T, = +oo implies j(0) < j.. By
translating the initial time, we get the conclusion. ‘
In use of the monotone convergence theorem we get from (26) that

/Qv(a:)@(a:)da: < Ju and  v(z) < +oo ae z€. (27)

Let —M = mingug. Then u(z,t) > —M holds on £ x [0, +00). Because (5)
implies f' > 0 at 400, there exists some v € R such that

s € [-M,+o00) — f(s)+ys is non-decreasing.
We may suppose that v > 0, so —A, = —A + v is invertible. In terms of

the fundamental solution {U,(z,y;t)} of J, — A,, we obtain from Duhamel’s
principle that

, t
u(x,t) = /Q U7(:E,y;t)1_to(y)dy+/() ds/ﬂ Uy(x,y;8) fy (u(y, t — s)) dy, (28)

where f,(s) = f(s) + vs. Again by (24) we have

o(w) = [ ds [ Uy(a,y)f, (o) d.

or more precisely,
ww) = [ [ Uslayis) [y (0(w) = f (0" 4)) dyds
+ [T [ Uy, u ) fy (v (9) dyds. (29)
To see this, let G,(z,y) be the Green’s function of —A,,. Then
Uy(z,y;t) >0, /QGW(as,y)dy < 400,

and ‘ o
Grlz,y) = [ Uplw,y;5)ds (30)
J0

hold. In particular we have

U,(z,-) € L' (9 x (Q,+oo)) (31)
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for any z € (.
We write the second term of the right-hand side of (28) as

/0°° /Q Uy(z,y;9) [f (u(y, t — 3)) = fr (V" ())] X104 (s)dyds
+ ./ooo /Q Uy (z,y;8) fy (v*(Y)) Xo,4(8)dyds.

For the first term of the above representation, the monotone convergence

theorem is applicable. As for the second term of the above, by (31), we

can apply the dominated convergence theorem as t — +o00. So the desired

consequence (29) follows because lim;_, o U(,y;t) = 0 exponentially.
Now, we deduce from (29) and (30) that

o@) = [ [ Ustwyis)ds- [f (o) = £ (0" () dy
+ [ [T Uz yss)ds - £ (0" @) dy
- /QGW(.’E,y) [fy (v(y)) = fy (0" ()] dy

+ [ Gyl y)fy () dy. (32)
Relations (27) and (32) imply
§-ve L), 6§ f(v) e LYQ), (33)
and ,
= [ Gya )ty 0w dy  for z€T, (34)

where §(z) = dist (x, 09).

In general, given a measurable function ug(z) with v* < up < v, we can
construct: the minimal solution for (1) via the monotone iteration (c.f. [14]).
That is,

uy(z,t) = /U(Ty,t)tto(ydy+/d8/U z,y;t — 8)fy (v (y)) dy
and

Ugs(z,t) = /U z,y; t)uo(y)dy

+/ dS/U z,y;t — ) fy (ue(y, s)) dy. (35)
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We can show inductively that the function

w € C ([0, +00), L'(, 6(x)dx)) |
is well-defined, that
v'(2) S uk(z,t) <o) (z€0, t>0) (36)
holds, and that {ux(x,t)} is non-decreasing in k. In particlular we have

w*(z,t) = lim wug(z,t) € v*(z),v(z)]. ) (37)

k—+o00

In fact, first note v*(x) is a classical stationary solution and hence

[ Vst ity iy + [ ds [ Uyw,550 = ), (@) dy = v* (@) (39)

We can deduce also that

[ U,y i)y + [ ds [ Uy(m, 5t = 9)fy (0(a) dy = () (39

from (34) and the standard identity

t
[ Ustayst = s)ds = Go(a,9) = [ Vsl )Gy (v 2)dz. (40)

Now, from monotonicity of f, and relations (33), (38), and (39) we have
inequality (36) and well-definedness of ug(z,t) in C ([0, +o0), L}(Q, §(z)dz))
inductively. Monotonicity of ux(z,t) in k follows similarly by an induction.

Returning to the case that ug is an extrapolation of the sub-solution v,
and the solution v* of (2), we have

v < ug L ul-t) < (41)

for t, > 0. This allows us to take a constant § € (0, 1) such that

Bul-,to) + (1 = B)v*

Uy <
< P+ (1-pp =1. (42)
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Because v* < ¥ < v, we can take the minimal solution @(z,t) of (1) with
the initial value 9. Actually, this is defined by

Cd(x,t) = lim Gg(x,t)
k—o0
with

1(2,1) /U (=, ;)0 dy+/ dS/U (z,y; = 8)fy (v'(y)) dy
and
Ugr1(z,t) / U,(,y;t) y)dy
+ [ds [ U@t - 9)fy i)y (43)
Again equalities (38) and (39), and convexity and mononicity of f, imply
ar(z,t) < Pu(z) + (1 =P (z) (z€Q, t>0) (44)

inductively. .

We have assumed T}, = 400 and hence a classical solution u(z,t) global in
time exists for the initial value ug(z) given above. Therefore, u(x,t) coincides
with the minimal solution. Namely,

u(z,t) = lim ug(z,t) (45)

k—o0

holds for the sequence {ux(z,t)} defined by (35).
To prove this, first we deduce

ug(z,t) < u(z,t)

inductively from up > v*, monotonicity of f,, and

t
ulw,t) = [ U,y thuoly)dy + [ ds [ UG, y5t = )1, (u(y, s)) dy.
Therefore, the right-hand side of (45), denoted by (x,t), satisfies

v*(z) < d(x,t) < u(z,t). (46)
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Letting k — oo in (35), we obtain.

Wz, t) = /ﬂ Uy(,y; t)uo(y)dy +,/0 ds‘/QUy(:c,y;t—S)fv (4(y, s)) dy. (47)

However, relations (46) and (47) imply that 4(z,t) is a classical solution of
(1) and hence @(z,t) = u(z,t). This means (45).
Now, monotonicity of f, implies - °

ug(z,t) < (7; t) (zeQ, t>0)
inductively. Then, letting k — oo, we have

w(z,1) < iz,1) < fo(e) + (1- Pu'(a) (e, ¢20).

Therefore,
v(z) < po(z) + (1 - Pp'(z) (z2€Q) | (48)
by letting ¢ — +o0.
However, 0 < # < 1 so that (48) contradlcts (41) with (27). D
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