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1. Introduction

The present paper deals with the master equation, which is a nonlinear inte
gro-partial differential equation. The equation plays a very important role in quanti
tative sociodynamics (see, e.g., [1-5] and [8-11]). For example, the equation can
describe migration of human population.

The master equation has the following form:

ov(tx)/ dt= —w(t,x)v(t,x) + S yeD\’V(t',xly)v(t,y)dy, (1.1)

w@@ssgﬁmwmﬂm@, (1.2)

where D is the state space (see [4], pp. 8-11 and p. 22). We assume that D is a
bounded Lebesgue measurable set C R", where n is an integer. By v = v(t,X) we
denote an unknown function which represents the density of certain sociodynamic
quantity at time t € [0,+00) and at a point X €D. For example, if the equation (1.1)
describes migration of human population, then the total population n a subset d<D
is equal to yedv(t,y)dy. By W = W(t;xly) we denote the zransition rate at time t

€ [0,+00) and from a point y €D to a point X €D. In the next section, we will im
pose certain conditions on the transition rate. In pamcular it will be assumed that
W = W(t;x|y) contains the unknown function v = v(t,x), ie., that (1.1) is nonlinear.

By making use of the methods developed in [6] and [7] we can prove that the
Cauchy problem for (1.1) has a unique local positive-valued solution (see Proposi
tion 2.7). The purpose of the present paper is to investigate how solutions to the
Cauchy problem behave as the time variable increases. The main results of this pa
per are Theorems 3.3 and 3.5, which will be stated in Section 3.

Remark 1.1. (i) In general the integer n is equal to 1 or 2 in quantitative sociody
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namics. Hence, in the present paper, we assume that n = 2, i.e., that DCR XR. We
can apply the method developed in this paper also when n#2. Hence there is no
loss of generality.

(i) In [6] and [7] we assume that the equation (1.1) describes migration of
human population. However, we have no need to impose such a restriction on the
present paper.

(ii) See, e.g., papers and books cited in References of [1-5] and [8-11] for
migration of human population.

2. Preliminaries
In the same way as [4], pp. 137-138, and [9], pp. 81-100, we will assume that
the transition rate has the following form in the present paper:

W =W(txy) =v Oexp(Ut.x)—Uty)—E(xy)), 2.1

where v = v (t) denotes the flexibility at time t €[0,+00), U= U(t,x) is the utility
at time t€[0,+00) and at a point XD, and E = E(x,y) denotes the effort from a
point y €D to a point XED. See [4] pp. 137-157, for the flexibility, the utility, and
the effort.

In [6] and [7], we assume that the flexibility is a positive-valued essentially
bounded known function of the time variable and that the effort is an essentially
bounded real-valued known function of the space variable. In place of these as
sumptions, for simplicity, we will impose the following assumption on the present
paper:

Assumption 2.1. (i) The flexibility is identically equal to a positive constant.
(i) The effort is identically equal to a real constant.

Remark 2.2. It follows from Assumption 2.1 and (2.1) that the transition rate is
- represented as the product of a function of (t,x) and a function of (t,y).

In [6] and [7], we assume that the utility is an essentially bounded known

function of the time variable, the space variable, and v(t,x)/||v(t, *)||;: \(Dy where we

" denote the norm of L! D) by |||, L'(D) In place of this assumption, we will impose
the following assumption on the present paper:



43

Assumption 2.3. The utility is an affine function of v(t,x)/||v(t, - Mg D)
tive constant coefficients, ie., U= U(t,x) has the following form:

with posi

U=Utx) = cv(tLx)/|Iv(E, + C22,

* )“LI(D)
where ¢34, j = 1,2, are positive constants.

Remark 2.4. (i) In quite the same way as [6] and [7], we can define solutions to
the Cauchy problem for (1.1). |

(i) In [6] and [7], we assume that the utility has its own limit, i.e., that the
utility can neither increase nor decrease to an unlimited extent. Making use of this
result, m [6] and [7] we deduce that the Cauchy problem for (1.1) has a unique
uniformly bounded solution (see [6], Sections 1 and 3). However, from Assumption
2.3, we see that the utility tends to infinity as v(t,x)/||v(t, *)|| 1 D) tends to infinity. It

follows from this result that some solutions to the Cauchy problem blow up in a fi
nite time interval or tend to infinity as the time variable tends to infinity (see Theo
rems 3.3 and 3.5 for the details). This is the difference between the result of the
present paper and that obtamed in [6] and [7].

In the same way as [6] and [7], we can deduce that

Iv(t, )HLI(D) = [|v(0, - )HLI(D), for each t=0. (2.2)

Applying this result, Assumption 2.3, and Assumption 2.1 to (2.1), we see that the
transition rate W = W(t;x|y) has the following form:

W(EXlY) = 25exp {21 (V) —VEDWIVO, iyl 23)

where ¢, 3 is a positive constant.
Let us rewrite (1.1) by introducing the following new unknown function u =
u(t,x) in place of v = v(t,x):

u=u(tx) = c;1v(t/c23[D} D] *x)/|Iv (0, (2.4)

* )”Ll(D)’

where |S| denotes the Lebesgue measure of a Lebesgue measurable set S&R XR.
Differentiating (2.4) with respect to t, and applying (2.3) and (1.1), we see thatu =
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u(t,x) satisfies the following integro-partial differential equation:
d u(t,x)/ dt = M(u(t,x);u(t, * )), M) -
where
M(zu(t, - )) = —a(u(t, - ))ze “+b(u(t, * ))e*, 2.5)

a=a@t -) =§ ey,

b=bu(t, ) = § _ uty)e "y,

Q = {x=|D| "z z€eD}. (2.6)
We easily obtain the following equality from (2.6):
|Q|=1. 2.7)

We consider (M) in place of (1.1) in what follows throughout the paper. We
denote by (CP) the Cauchy problem for (M) with the mitial data,

u(0,%) = ug(x), (ID)

where 1y = uy(x) is an essentially bounded, Lebesgue-measurable function of x € Q
such that ess inf uo(x)>0. We write || *||, as the norm of LP(Q), p = 1, +0. From

(2.4) we easily see that |[ug( * )|} = ¢2.1/|D.
In the same way as the Cauchy problem for (1.1), we can define a solution to
the Cauchy problem (CP) as follows:

Definition 2.5. Let T be a positive constant. If u = u(t,x) € L*([0,T];X Q)), if u
= u(t,x) satisfies (M) almost everywhere in [0,T]; X Q,, and if u = u(t,x) satisfies
(ID), then we say that u = u(t,x) is a solution to (CP) n [0,T]. If u = u(t,x) is a so
lution to (CP) in [0,T] for each T >0, then we say that u = u(t,x) is a global solution
to (CP). '
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Remark 2.6. It follows from (M) and the above definition that d u(t,x)/ dtEL”
([0,T]: X Q). Hence, u = u(t,x) is absolutely continuous with respect to t=0 for
ae x€Q. | '

Proposition 2.7. (i) The Cauchy problem (CP) has a unique solution u = u(t,x) in
[0,T], where T is a positive constant dependent on ug = uy(x).

(i) If u = u(t,x) is a solution to (CP) in [0,T] for some T >0, then the follow
ing (1-3) hold:

(1) ess inf u(t,x) >0.

(t.x)g 0,T|xQ _

(2) [luct, * )i = |luol|; for each t&[0,T].

(3) If u(t,x;) = u(t,x,) for some t<[0,T] and for some x;€ Q, j = 1,2, then
u(t,x;) = u(t,x,) for each t€[0,T]. If u(t,x;)<u(t,x;) for some t&[0,T] and for
some x; € Q, j= 1,2, then u(t,x;)<u(t,x;) for each tE[0,T].

Remark 2.8. By Remark 2.2, in Proof of Proposition 2.7, (i), (3) we can regard
(M) as an ordinary differential equation with the parameter x. If we do not make
Assumption 2.1, (i), then there is a possibility that W = W(t;x|y) contains a function
of (x,y) which cannot be expressed as the product of a function of x and a function
of y. In such a case we cannot regard (M) as an ordinary differential equation with
the parameter x. |
3. The main result

Let us introduce some symbols which will be employed in presenting the main
theorems. Consider the following equation:

F@) =f(0), 3.1)
where z denotes the unknown value, 6 €[0,+0) is the parameter, and |
F =F(z) = zexp(—2z),
f=f(0) = F(B)if0= 6 =1,
f=f(0) = e ®*if 6=1.

We consider only positive solutions of (3.1). Investigating the graphs of F = F(z)
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and f = f(z) (note that if z>1, then F(z)<f(z)), we obtain the following lemma:

Lemma 3.1. (i) If 6 #1/2, then the equation (3.1) has only two positive solutions
different from each other.

(i) Write ;= {(0),j=12, £1(6)<{,(0), as the solutions of (3.1).
If 0<<O6<1/2, then {1(0) =6 and 1/2<{,(0)<+00. If 1/2< 6 =1, then 0
< C(0)<12and L,(6)= O.1If 6>1, then 0<{(6)<1/2 and 6 >
£2(0)>1.

(i) £1(6) = 1/2—0and L,(8) — 12+0as 6 — 1/2.

For uy = up(x) (see (ID)), we decompose 2 as follows: Q = Q,U Q,,
where

Qs = Qa(u) = (XE Q5 uo(x) = ess sup w9}, (3.2)

Q= Qi) = Q\Qy(u). (3.3)

If Q,(uo) is not a null set, ie., if |Q,(up)|>0, then we can define the following
function:

G=G(@ = —F@*+F(g(ulh,2)), z=0, (3.4)
where
g=g(r,z) = (1—2/Q1(u))/|Qa2(wo)l, r=0. (3.5)
If | Q2(up)| >0, then we can define the following step function:
Uy =Un(Upsx) = ki x€ Qj(w), j= 12, (3.6)

where k; is defined in the lemma below, and k; is defined by k;| Q ;|+ky| 5] = ||uol|s,
ie., ky = g(|[uoll1,k1).

Lemma 3.2, If Q3(up) is not a null set, and

l[uoll >1/2, | (3.7)
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then there exists k; €(0,1/2) such that
G(z)>0 if 0=z<k,,
G(k;) =0,
G(2)<0 if K, <z=1/2.

Proof. From (3.4) we easily see that

G(0)>0. H (3.8)
It follows from (2.7) that
Q[ Qol = 1. (3.9)
Hence,
G([uoll1) = 0. (3.10)

Making use of (3.7) and (3.9), we see that g(|juol];,1/2)>1/2. Applying this
inequality to (3.4) with z = 1/2, and noting that F = F(z) attains the maximum value
at z=1/2, we have

G(1/2) < 0. (3.11)

It is not easy to directly inspect G = G(z). Dividing (3.4) by | Q,lexp(2]|Q,|z),
we consider the following function in place of G = G(z):

G=G(2) = G(|Q2lz)/|Q2lexp(2Q21[2),

where z is a variable defined as follows: z = z/|Q,|. If G(z) >0 (<0, respec
tively), then G(z) >0 (<0, respectively). We deduce that (3.10), (3.11), (3.8) are
equivalent to the following equality and inequalities respectively: '

G(uo) = 0, G(1/2|Q,))<0, G(0)>0, (3.12)
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where ug = |jug||1/| Q,|. It follows from (3.7) and (3.9) that
w > 12/Qy > 12 (3.13)

Dividing (3.4) by |Q,|exp(2]Q,|z), and making use of (3.9), we can decom
pose G = G(z) as follows:

G(z) = —F(2) + h(z),
where h = h(z) is an affine function such that
h= h(Z) (uo—[L21|2)/] Q,]exp(2uo).

We deduce that h(0) > 0 and J h(z)/ d z<0. Furthermore we see that the graph
of w= F(z) is strictly concave in 0=2<1 and is strictly convex in 1<{z<+00. We
deduce that F(0) = F(+00) = 0 and that F = F(z) increases with z€[0,1/2] and de
creases with z&€[1/2,+00). Making use of these results, (3.12), and (3.13), we see
that the equation G(z) = 0 has only three positive solutions z = p, q, r such that

o< p<121Q< q = 1, (3.14)
w=gqorr,
G(z)>0if 0=z<p, - (3.15)
G(z)<0 if p<z<gq, | (3.16)
G(z)>0 if <z<r,
G(2)<0 if r<z.

(3.14-16) imply that k; = p|Q,| satisfies the present lemma.

Theorem 3.3. (I) If 0<|jug|[;<1/2 and ess sup up(x) < & 2(|jugll1), then the
Cauchy problem (CP) has a unique positive-valued global solution u = u(t,x) which
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satisfies that ||u(t, * )—|juolli]le — O ast — oo,
(II) If up = up(x) satisfies the following nequality:

ol >1, (3.17)

then the following (i) and (ii) hold:
(1) If vy = up(x) is such that

|Q2(u0)| >0, (3.18)
then the Cauchy problem (CP) has a unique positive-valued global solution u =
u(t,x) which converges to u,, = u,(up;x) for a.e. x€ Q ast — oo (see (3.2) and
(3.6)).

(11) If up = up(x) satisfies

[Q2(ug)| = 0, (3.19)

then the Cauchy problem (CP) has a unique positive-valued solution u = u(t,x)
which satisfies the following (3.20-22):

ess sup u(t,x) — +00, (3.20)
XEW4+(r)
§ u(ty)dy — |juolls, (3.21)
yE wdr)
u(t,x) — 0+0 fora.e. x€w _(r), (3.22)

as t 1 t, for each r=0, where t,, is a positive constant or tg, =+00, {W ,(1)}=0 18
a family of Lebesgue measurable sets such that

Q= wi(r)Uw (r)and w(r)N w_(r) is empty for eachr, (3.23)
W) 2wr) and @ _(1)S 0 _(ry) if 1,=r3, (3.24)
w4(r) is not a null set for eachr, - (3.25)

|lw()|{0and|w_(r)| T 1asr T+, (3.26)



50

Remark 3.4. If t,, is a positive constant in Theorem 3.3, (II), (ii), then the solution
blowsupast 1 t,. Ift, = +00, then the solution is global. It depends on uy =
uy(x) whether t,, =400 or t,, < +00, )

The above theorem does not cover the case where 1/2=|[ug||;=1. If we try to
numerically solve the Cauchy problem (CP) in such a case, then we find that the
behavior of solutions is extremely complicated. Hence it is very difficult to take a
purely theoretical approach in trying to describe how solutions to (CP) behave
when 1/2=||uoll; =1. However we can obtain the following theorem:

Theorem 3.5. Let ¢ €(1/2,1] be a constant. For each & >0, there e‘xistys soine Ug
= uo(x) which satisfies the following three conditions:

12<]jup]) =1, (3.27)

luo( * ) —colle = &, (3.28)
a solution to (CP) with the initial data uy = ug(x) satisfies (3.20-26).

Remark 3.6. (i) If up(x) = ¢, where ¢y is a positive constant, then the Cauchy
problem (CP) has a unique global solution u = u(t,x) = co. By (2.7), we see that ¢,
= |luol|s. Theorem 3.5 means that if 1/2<co=1, then even the constant solution u =
ut,x) = ¢cpis unstable.

(ii) If (3.19) holds, then uy = uy(x) is not 1dent1ca11y equal to a constant.

(iii) Theorems 3.3 and 3.5 do not cover the case where ||ug||;= 1/2. We cannot
apply the method developed in the present paper to such a case.

(iv) Numerical solutlons to the Cauchy problem (CP) will be fully studied in
another paper.

(v) See [7] for the details of the proof of the main result.

From Remark 3.6, (i), and Theorems 3.3 and 3.5, we can obtamn the following
corollary:

Corollary 3.7. If 0<c,<1/2, then the constant solution u = u(t,x) = ¢, is as
ymptotic stable. If co>1/2, then the constant solution is unstable.
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