
Title
Neuralnet Collocation Method for Solving Differential
Equations (Computation mechanics and domain decomposition
methods)

Author(s) Takeda, Tatsuoki; Fukuhara, Makoto; Liaqat, Ali

Citation 数理解析研究所講究録 (2000), 1129: 115-128

Issue Date 2000-02

URL http://hdl.handle.net/2433/63650

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Neuralnet Collocation Method for Solving Differential Equations

Tatsuoki TAKEDA, Makoto FUKUHARA, Ali LIAQAT
Department of Information Mathematics and Computer Science

The University of Electro-Communications

電気通信大学 竹田辰興、 福原誠、 リアカト・アリ

Abstract
Collocation method for solving differential equations by using a multi-

layer neural network is described. Possible applications of the method are
investigated by considering the distinctive features of the method. Data
assimillation is one of promising application fields of this method.

1. Introduction
1.1 Neural network

In this article we present an application of a feed-forward multi-layer
neural network (neuralnet) as a solution method of a differential equation.
The feed-forward multi-layer neural network is a system composed of (1)

simple processor units (PUs) placed in layers and (2) connections between
the PUs of adjacent layers (Fig.1). Data flow from the input layer to the
output layer through the hidden (intermediate) layers and the connections
to which weights determined by a training process are assigned. At each PU
of the hidden layers and the output layer weighted sum of the incoming
data is calculated and the result is nonlinearly transformed by an activ ation
function and transferred to the next layer. Usually some kind of sigmoid
functions is used as the activation function. But at the output layer often
the nonlinear transformation is omitted. The neural network is usually
trained as follows. (1) A lot of datasets composed of input data and
corresponding output data (supervisor data) are prepared. (2) Output data
are calculated by entering the input data to the input PUs according to the
above data flow. (3) Sum of squared errors of the output data from the
supervisor data is calculated. (4) W eights assigned to the connections are
adjusted so that the above squared sum is minimized. The most
commonly used algorithm to this process is the gradient method and, in
the case of the feed-forward multi-layer neural network the error back

数理解析研究所講究録
1129巻 2000年 115-128 115

propagation method based on the gradient method is implemented
efficiently.

Fig.1 A schematic diagram of a three-layered neural network

1.2 Features of a neural network
The feed-forward multi-layer neural network is characterized by

keywords of training, m apping, smoothing, and interpolation. In relation
with the keywords, we make use of the following distinctive features of the
neural network for our purpose.
(1) Training\cdot. Optimization of the set of the weights with respect to an

appropriate object function is carried out. The object function of the
neural network is represented as

$E= \sum_{\mathrm{t}l^{nt}em}F(\vec{f}(\vec{x}_{t},\vec{p}n\ell em’)\mathrm{I}$

where $\vec{x}_{\mu \mathrm{f}tem}$ is an input data vector for the training and \vec{p} is a vector

representing the weights. For the feed-forward multi-layer neural
network the following type of object functions is usually employed.

$\mathrm{p}(\vec{f}(_{\vec{X}_{\}nttem}}’\vec{\mathcal{P}}))=[\vec{f}(\vec{X}\vec{p}\mu ttem’)-\vec{f}_{\mu t}tem]\wedge 2$

Usually a sum of squared errors of output data from the prepared
supervisor data is used for the obj ect function as abov e, but it should be

116

remarked that there are other possibilities for choice of the object
function. The training by the error back propagation method is
carried out as

$\vec{p}\Rightarrow\vec{p}-\alpha^{\frac{\partial E}{\phi^{arrow}}}$

(2) $\mathrm{M}\mathrm{a}_{\mathrm{P}\mathrm{P}^{\mathrm{i}\mathrm{g}}}\mathrm{n}\cdot$. By the neural network mapping from the input space to the
output space good approximation can be attained in $\mathrm{c}o$mparison with a
usual orthogonal function expansion. It is because in this method not
only expansion coefficients but also the basis functions of the
expansion themselves are optimized.

(3) Smoothing and interpolation: These are carried out in the meaning of
the least square fitting. It is important that these are always associated
with the above neural network mapping processes.

1.3 Object function and aims of our study
In our study we applied the feed-forward multi-layer neural network

to the solution method of differential equations. Milligen et al., and
Lagaris et al., have proposed the method and demonstrated successful
results by the method $[1,2]$. This is a kind of the collocation methods, i.e.,
the whole procedure is described as follows.
(1) From the computational domain Ω a subdomain $\hat{\Omega}$ composed of

collocation points is constructed.
(2) The coordinates of a collocation point are regarded as a pattern for the

input data of the neural network and a solution value corresponding to
the coordinates is regarded as the output data of the neural network.

(3) The residual of the differential equation is calculated from the output
data and the squared residual is used as the object function. In this
process it should be noted that the residual is expressed malytically
because the output data are the analytical functions of the input
variables with the weight variables as parameters.
Difference of the methods by Milligen et al., and Lagaris et al., is in the

treatment of the $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$conditions. In the method $\mathrm{b}\mathrm{y}\overline{\mathrm{M}}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}$ et
al., these conditions are treated as penalty terms in the object functions.
These conditions are, therefore, satisfied only approximately. In the
method by Lagaris et al., on the other hand, these conditions are exactly
satisfied by employing appropriate form factors multiplied to the neural

117

network output variables. However, it is rather difficult or impossible to

find form factors appropriate for a given problem.
Moreover, the solution method by using the neural network is

generally time-consuming in comparison with the well-studied
conventional solution methods of differential equati$o\mathrm{n}\mathrm{s}$ and it does not
seem useful to apply the neural network solution method to a usual

problem for solving differential equations.
Our aims of the study are described as follows.

(1) Extension of the method by Lagaris et al., to a method with subdomain-
defined form factors: As it is difficult to find a single appropriate form

factor which describes the whole $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$conditions we divide
the domain into a number of subdom ains and construct a set of a form
factor in each subdomain. We apply the method to a simple model
problem.

(2) Application of the neural network collocation method for data

assimilation problems: One of the distinctive features of the neural
network differential equation solver is that a smooth solution can be
obtained even if $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{l}/\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ noise is induded in

constraining conditions such as $\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}/\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ conditions and so on.
By making use of this feature the method can be applied efficiently to

the data assimilation. We study basic problems concerning this

application.

2. Neuralnet collocation method (NCM)

2.1 Analytical expression of derivatives of solution
In this subsection we consider a three-layered neural network. The

result can be extended easily to a network with more layers. An analytical
expression of a solution is given as

$y_{k}= \sum_{j=1}^{f}w^{(}kj(_{\mathrm{i}=}2)\sum wX\sigma I1j(1i)i+w^{(}j01)1$

where $\mathrm{x},$
$\mathrm{y},$

w, and σ are the input variable, the output variable, the weight
variable, and the activation function (usually a sigmoid function: $\sigma(\mathrm{x})=$

$1/(1+\mathrm{e}^{\mathrm{X}})-)$, respectively. $\mathrm{w}_{\mathrm{i}^{0}}$ is the offset.
By differentiating the solution with respect to the input variables a

derivative of the solution are obtained as

118

$\frac{\phi_{k}}{\partial\kappa_{\ell}}=\sum_{-,j1}^{j}w_{kj}^{(2}w_{j\ell}-)(1)\sigma 1(_{i-}\sum_{- 1}^{I}w_{ji}^{()}1xi^{+w^{(1})}j0)$

$\frac{\partial_{\mathcal{Y}_{k}}^{2}}{\partial\kappa_{\ell}\ _{m}}=\sum_{j--1}wwjkjj\ell(2)(1)w^{(1)}jm0\mathrm{J}(_{i}\sum_{=1}w^{(}Xw_{j0}^{(1)}Ijii^{+}1))$

where $\sigma^{\mathrm{t}}=d\sigma(\mathrm{x})/d\mathrm{X}$. By using these expression the residual of the d

ifferential equation is expressed analytically.

2.2 Collocation method
We consider the following differential equation.

$D^{arrow}\mathrm{y}=\vec{g}(_{\vec{X})},$ $\vec{x}\in\Omega$

where D is an operator. We assume the output value of the neural
network is an approximation of the solution of the differential equation, i.e.,

$\vec{y}\simeq\vec{f}(\vec{x},\vec{p}\rangle$

where \vec{p} is the weights expressed as a vector. The object function is,
therefore, expressed as

$\mathrm{E}=\int\{D\vec{f}(\vec{X},\vec{\mathcal{P}})-s^{(\vec{X}})\}^{2}d_{\vec{X}}$

Then the computational domain Ω is discretized to a domain $\hat{\Omega}$ of the
collocation points and the object function for the collocation method is
obtained as

$E= \sum_{pat\mathrm{f}e\Gamma n}F(\vec{f}(\vec{\chi}’\vec{p}pat\prime ern))$

$F(\vec{f}(\vec{x}_{p}\vec{p}at\prime ern’)\rangle=\{D\vec{f}(\vec{X}\vec{p}paftern’)-\vec{g}(X_{p\mathrm{f}m})ate\}$

$\vec{x}_{p\prime}\in atten\hat{\Omega}\subset\Omega$

2.3 $\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}/\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$conditions
The boundary conditions of the Dirichlet type are given as follows.

$\vec{y}(\vec{x}_{b})=\vec{y}_{b}$, $\vec{x}_{b}\in\Gamma$

where Γ is the boundary of the computational domain. Essentially the
same discussion holds for other kinds of boundary conditions. Initial
conditions are also treated similarly.

According to the Milligen’s method the $\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}/\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ conditions
are imposed by preparing the following object function.

$\hat{E}=E+w_{b}$

$E_{b}= \sum_{i}(\vec{y}(_{\vec{X}_{b\mathrm{t}})-_{\hat{\vec{\mathcal{Y}}}}}\wedge bi)^{2}$

It should be noted that in this expression the points where the constraining

119

conditions are given should not necessarily be placed on the computational
boundary.

In the case of the Lagaris’ method the solution of the differential
equation is approximated as $f(\vec{x},\vec{p})$ by using the output data of the neural
network $\vec{f_{NN}}(\vec{x},\vec{p})$ as

$\vec{f}(\vec{x},\vec{p})=\vec{A}(\vec{x})+\vec{H}(\vec{x},\vec{f}_{N}N(\vec{X},\vec{p}))$

$\vec{A}(\vec{x}_{b})=\vec{y}_{b}$

$\vec{H}(\vec{x}_{b},\vec{f}_{NN}(_{\vec{X}\vec{p})}b’)=0$

For the Dirichlet boundary conditions $\vec{H}(\vec{x}_{b},\vec{f}_{NN}(\vec{\chi}\vec{p}b’)\mathrm{I}$ is expressed as a

product of an $\mathrm{a}\mathrm{p}\mathrm{p}_{arrow}\mathrm{r}\mathrm{o}\mathrm{p}\dot{\mathrm{n}}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$ chosen form factor and the output data of the
neural network $f_{\mathrm{N}N}(\vec{x},\vec{p})$. In this case the form factor vanishes at the
boundary.

3. Boundary condition assignment by divided form factors
In this section we describe the method to apply the Lagaris’ method to

problems with a complicated boundary shape. This is realized by dividing
the whole computational domain into subdomains with simpler boundary
shapes. $\mathrm{W}\mathrm{e}$ solve the Poisson equation in a square domain and in a T-

shaped domain. The Lagaris’ method cannot be applied directly to the
problem in the T-shaped domain and we divide the T-shaped domain into 7
subdomains.

3.1 Method of a divided form factor
The conditions which the form factor g used for the Dirichlet type

boundary condition should satisfy are summarized as 1) it vanishes on the
boundary, 2) it is positive (or $\mathrm{n}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$) $- \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ in the domain, 3) it should
be sufficiently smooth, and 4) derivatives are easy to calculate. As far as
these conditions are satisfied choice of the form factor is arbitrary. In the
following we consider two examples, i.e., the case of the square dom ain and
the case of the T-shaped domain.

(1) Example 1 (the square domain: $(-1,1)\cross(-\mathrm{L}1)$) (Fig.2)

In this case the simplest form factor is expressed as
$g(X,\mathrm{y})=(1+X)(1-\chi\rangle(1+\nu)(1-\nu)$

120

x

Fig.2 The square domain. $\mathrm{F}\mathrm{l}\mathrm{g}.3$ lhe 1-shaped domain.

(2) Example 2 (the T-shaped domain: $(-1,1)\cross(0,1)\cup(-1/2,1/2)\cross(-1,1)$) (Fig.3)
For this case an example of the divided form factor is given as

$g(X,\nu^{)}=\{$

$x(1+x)\mathrm{y}(1-y)$ $(\overline{\Omega}_{1})$

$x(1-x)y(1-y)$ $(\overline{\Omega}_{2})$

$y(1-y)/4$ $(\overline{\Omega}_{3}\rangle$

$(1/4-x)2(1-\mathrm{y})2/4$ $(\overline{\Omega}_{4})$

$r_{1}(1-r_{1})/4$ $(\overline{\Omega}_{5})$

$r_{1}(1-\gamma)1/4$ $(\overline{\Omega}_{\text{\’{o}}})$

1/16 $(\overline{\Omega}_{7})$

$(_{r_{2}\sqrt{(_{X}-1/2)^{2}+\nu^{2}}}^{r_{1}}=\sqrt{(_{X}+1/2)^{2}+y2})=$ ($g:C^{1}$ class)

3.2 Model problems
As a model equation we consider the following Poisson equation,

$\Delta u=-(20X-3\frac{15}{2}\chi\lambda y-3\nu)-6(X^{5}-\frac{5}{4}X^{3}+\frac{1}{4}\chi\psi$ in Ω

$u=0$ on Γ

XVe solve the above equation for the two types of computational domains
(Fig.4) described in the previous section. The exact solution is given for the
above problems as

$u(x,y)=(x-1)(X- \frac{1}{2})\chi(X+1)(x+\frac{1}{2}\rangle(\mathrm{y}-1)y(\mathrm{y}+1)$

121

Fig.4 The computational domains for the model problems.

For simplicity of programing we employed a training algorithm composed of
a random search and the linear least square method instead of the
conventionaly used error backpropagation method. The structure of the

neural network is composed of two PUs in the input layer, 40 PUs in the
$\mathrm{l}\dot{\mathrm{u}}\mathrm{d}\mathrm{d}\mathrm{e}\mathrm{n}$ layer, and 1 PU in the output layer (we denote this structure as 2-40-
1). The results of the calculations are shown in Figs.5-8 and the magnitude

of the errors is summarized in Table 1, where the maximum random value
denotes the maximum range of the initially assigned weights.

Tahle 1 $\mathrm{F}_{\lrcorner}1^{\cdot}t0\mathrm{r}_{\mathrm{l}\mathrm{s}}$ of solutions of the two model problems

122

(a) (a)

(b) $(\mathrm{b}\rangle$

(c) (c)

Fig.5 Birdeye view of the solution Fig.6 Birdeye view of the solution
in the square domain in T-shaped domain
(a) NN collocation, (b) exact, (a) NN collocation, (b) exact.
(c) absolute error (c) absolute error

123

Numerical solution

(a) (b)

Fig.7 Contour plot of the solution (a) in the square domain and the
corresponding error.

Numerical solution Absolute error

(a) (b)

Fig.8 Contour plot of the solution (a) in the T-shaped domain and the
corresponding error.

4. Application of NCM to a data assimilation problem
In this chapter we study basic issues of the neuralnet collocation

method relating to the data assimilation problems.
4.1 Irregular $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$conditions

In order to investigate the possibility to apply the neuralnet collocation
method to the data assimilation problem we solve differential equations
with constraining conditions given irregularly in space or time.

124

4.2 Solution of Lorenz equation
In this section we solve the Lorenz equation by assigning initial

conditions at different temporal points, $\mathrm{t}_{0\cross},$ toY’ md $\mathrm{t}_{0\mathrm{Z}}$ for three variables, X,
Y, and Z, respectively. For training the network we employed a
combination of the error back-propagation method and the quasi-N ewton
method. The Lorenz equation is

$\frac{dX}{dt}=\sigma(Y-\mathrm{x})$

$\frac{dY}{dt}=r\mathrm{X}-\gamma-\mathrm{X}\mathrm{Z}$

$\frac{dZ}{dt}=\mathrm{X}Y-b\mathrm{z}$

$X(t_{0\mathrm{X}})=\mathrm{x}_{0},$ $Y(t_{0Y})=Y_{0},$ $Z(t_{0\mathrm{z}^{)}}=Z_{0}$

The object function of the neuralnet collocation method is given as follows.

$E= \sum_{t\in\hat{D}}\wedge\lfloor_{- t}\wedge$

$\hat{D}\subset Dand|\hat{D}|<\infty$

$X_{t}=A+(t-t_{0\mathrm{x}})f_{\mathrm{N}}N(\mathrm{f},\vec{p}_{\mathrm{X}})$

$Y_{t}=B+(t-t_{0)}’)f_{N}N(t,\vec{\mathcal{P}}\gamma)$

$Z_{t}=C+(t-\mathrm{f}_{0\mathrm{Z}})f_{NN}(t,\vec{\mathcal{P}}\mathrm{z})$

$t\in D,$ $D=[0,0.4]$, $A=x(t_{\mathrm{o}\mathrm{x}}),$ $B=\mathrm{Y}(to\mathrm{Y}),$ $C=Z(t_{0})\mathrm{z}$

At first, above equation is solved by the Runge-Kutta method for the
following conditions to obtain a base solution for comparison of the
neuralnet collocation method.

$t\in D=[0,0.4]$

$X_{0}=0.0,$ $Y_{0}=1.0,$ $Z_{0}=0.0$, $t_{0\mathrm{X}}=t_{0\mathrm{Y}}=\mathrm{f}_{0Z}=t_{0}=0,0$

$\sigma=1.0,$ $r=28.0,b=8/3$

Next, we solve the same problem by the neuralnet collocation method
imposing the initial condition at $\mathrm{t}=0$. The results by the Runge-Kutta
method and the neuralnet collocation method are shown in Fig.9, where
they are indistinguishable each other in this scale. The error of the results
is 2.22E-2 after the error back-propagation, and 2.16E-3 after the quasi-

125

Newton procedure.
Then we solved the Lorenz equation for initial conditions imposed

separately to different variables, X, Y, and Z. The initial conditions were
obtained from the base solution by the Runge-Kutta method as

$(X_{0}(t_{0\mathrm{X}}),Y_{0}(t_{0\mathrm{Y}}),Z0(t_{0\mathrm{z}}))$

$=(0.1961(0.2),1.0348^{0}\cdot 1),0.0011(0.05))$

The $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{D}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{a}1$ results are shown in $\mathrm{F}\mathrm{i}\epsilon.10$ with the base solutions,

la) $\iota \mathrm{a}|$

1D1 (Dl

(C) (c)

Fig. 9 Solutions of the Lorenz equation Fig.10 Solutions of the Lorenz
for the same initial conditions for equation for separately
$\mathrm{X}(\mathrm{a}),$ $\mathrm{Y}(\mathrm{b})$, and $\mathrm{Z}(\mathrm{c})$. given initial conditions.

126

4.3 Solution of a heat equation
In order to investigate a possibility to apply the neuralnet collocation

method to the data assimilation problem we consider to solve the heat
equation for irregularly imposed initial conditions.

$\alpha^{2}\frac{\partial^{2}u}{h^{2}}+\sin 3m-\frac{\partial u}{\partial t}=0$, $(x,t)\in D=[0,1]\cross[0.1]$

$\alpha=1$

$u(\mathrm{O},t)=u(1,t)=0.\mathrm{O}$

$u(x, 0)=\sin\pi x$

The analytical solution to the above problem is given as
$u(x,t)= \exp(-(m)2t)\sin\pi X+\frac{1-\mathrm{e}\mathrm{x}_{\mathrm{P}}(-(3m)2t)}{(3\pi\alpha)^{2}}\sin 3\pi x$

The same problem was solved by the neuralnet $\mathrm{c}\mathrm{o}\mathbb{I}_{0}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ method. The
result is shown with the analytical solution in Fig. 11. Results with the
average errors of 3.49E-3 and 1.33E-3 are obtained after 20000 iteration of
the ba&-propagation method, and 5 iterations of the quasi-Newton method,
respectively. By giving initial conditions for $\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{e}\omega \mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y}$ placed spatial
points almost similar results were obtained.

晶億億 $\mathrm{m}\iota \mathrm{K}$.
h’–輸 d –

\blacksquare

5. Discussion and conclusion
(1) Extension of Lagaris’ method to a case of subdomain-defined form factor

127

for the $\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}/\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ conditions is successfully applied to solution of

Poisson equation in a square domain and in a T-shaped domain. To

attain higher accuracy some improvements are necessary.
(2) In order to study a poSsibilit‘y to apply the neuralnet collocation method

for the data assimilation problem simple model problems on the

Lorentz equation and the heat equation were solved. Promising
results were obtained.

References
[1] B.Ph. van Milligen, et al., Phys. Rev. Letters 75 (1995) 3594-3597.
[2] I.E. Lagaris, et al., Comput. Phys. Commun. 104 (1997) 1-14

128

