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Stable and unstable manifolds of
diffeomorphisms with positive entropy

Naoya Sumi (R E#R)

Abstract

We show that C2-diffeomorphisms with positive entropy are chaotic
in the sense of Li-Yorke. To do so we prove that these maps are *-
chaotic on the closure of stable manifolds for some points. The notion
of "x-chaos” was introduced by Kato and it is related to chaos in the
sense of Li-Yorke.

1 Introduction

We study chaotic properties of diffeomorphisms with positive entropy. Notions
of chaos have been given by Li and Yorke [9], Devaney [2] and others. It is
known that if a continuous map of interval has positive entropy, then it is
chaotic according to the definition of Li and Yorke (cf. [1]).

In [6] Katok proved the following :let f be a C'*c-diffeomorphism of a
closed surface. If the topological entropy of f is positive, then there exists a
hyperbolic set I" such that the restriction of f into I' is topologically conjugate
to a subshift of finite type with positive entropy. This implies that f is chaotic
in the sense of Li-Yorke.

However, Katok’s theorem does not hold for the high dimensional case.
Indeed, let f be a surface diffeomorphism with positive entropy and let r :
S — 8! be an irrational rotation. Then a product map f X r has the same
positive entropy, but it does not have I' as above because there are no periodic
points of f x r. ‘

In this paper we show the following:

Theorem A Let f be a C%-diffeomorphism of a closed C*®-manifold. If the
topological entropy of f is positive, then f is chaotic in the sense of Li-Yorke.

To my knowledge this theorem gives the most simplest sufficient condition
for chaotic phenomena of high dimensional dynamical systems. It remains
a question whether Theorem A is true for homeomorphisms. However this
question is still unsolved. -

Let M be a closed C*-manifold and let d be the distance for M induced
by a Riemannian metric || - || on M. A subset S of M is a scrambled set of f
if there is a positive number 7 > 0 such that for any z, y € S with z # v,



1. limsup,,_,., d(f™(z), f*(y)) > 7,
2. liminf, . d(f™(z), /"(y)) = 0.

If there is an uncountable scrambled set S of f, then we say that f is chaotic
in the sense of Li-Yorke . Li and Yorke showed in [9] that if f:[0,1] — [0,1] is
a continuous map with a periodic point of period 3, then f is chaotic in this
sense. In [9] there was the following one more condition: for any z € S and
any periodic point p € M, limsup,,_,,, d(f™(z), f*(p)) > 0. But this condition
is unnecessary because a scrambled set contains at most one point which does
not satisfy this condition. For the examples and the properties of scrambled
sets, the readers may refer to [1], [5], [11], [12], [13], [22], [23] and [24].

Concerning the chaos in the sense of Li-Yorke, Kato introduced the notion
of ”#-chaos” as follows: let F' be a closed subset of M. Amap f: M - M
is x-chaotic on F' (in the sence of Li-Yorke) if the following conditions are
satisfied: :

1. there is 7 > 0 such that if U and V' are any nonempty open subsets of F'
with UNV = @ and N is any natural number, there is a natural number
n > N such that d(f"(z), f*(y)) > 7 for some z € U, y € V, and

2. for any nonempty open subsets U, V of F and any € > 0 there is a
natural number n > 0 such that d(f"(z), f*(y)) < ¢ for some z € U,
yeV. '

Such a set F is called a *-chaotic set . If S is a scrambled set, then the closure
of S, S, is a x-chaotic set. In [4] Kato showed that the converse is true.

Lemma 1.1 ([4], Theorem 2.4) If f : M — M is continuous and is *-
chaotic on F, then there F,-set S C F such that S is a scrambled set of f and
S =F. If F is perfect (i.e. F has no isolated points), we can choose S such
that it is a countable union of Cantor sets.

To obtain Theorem A we need the following theorem.

Theorem B Let f be a C?-diffeomorphism of a closed C®-manifold M and
let p be an f-invariant ergodic Borel probability measure on M. If the metric
‘entropy of p s positive, then for u-almost all x € M the following hold:

(a) Ws(x) is a perfect x-chaotic set, and

(b) Wu(z) contains a perfect *-chaotic set.

Here W*(z) and W*(z) are defined by

W*(@) = {y € M : limsup logd(/"(z), f(s)) < 0} and,
W(2) = {y € M : msup —logd(f~"(a), f™"(v)) < 0}

respectively.
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We notice that for u-almost all z € M, the above sets W (z) and W*(z) are
C? immersed manifolds under the assumptions of theorem B. Indeed, let f and
¢ be as above. For p-almost all z € M, there exist a splitting of the tangent

space Tp,M = GBf(fl)Ez(x) and real numbers A;(z) < Ay(z) < -+ < As(z) (7).

such that

(a) the maps « — Ej(z), \(z) and s(z) are Borel measurable, moreover
Ei(f(z)) = Dof(Ei(z)) and \i(z), s(z) are f-invariant (i=1,-+,s(z)),

() lm_ ~log |D.f" ()]l = M(z) (0#ve By(z), i=1,--:,5(z)) and

n—100 7,

s(z)
(c) im % log |det(D.f™)| = > Ai(z)dimE;(z)
i=1

((14]). The numbers A (z), -, Ay(z)(z) are called Lyapunov exponents of f
at z. Since y is ergodic, we can put s = s(z), A\; = \i(z) and m; = dimE;(z)
(i=1,---,s) for p-almost all z € M.

Let hy(f) denote the metric entropy of f (see [10] for definition). A well-
known theorem of Margulis and Ruelle [21] says that entropy is always bounded
above by the sum of positive Lyapunov exponents; i.e. hy(f) < ¥y 0 Aim;.
Since f has positive entropy, we have

0 < hu(f) < max{\;} = \,.

Therefore, by Pesin’s stable manifold theorem ([3], [15], [17]), the set W*(x)
is the image of a C? injective immersion of an euclidean space such that
W' (z) = ®x,50Ei(z)(# {0}) for p-almost all z € M. W*(z) is called an un-
stable manifold . Similarly, W*(z) is a C? immersed manifold because W* (z) is
the unstable manifold of f~*, which has positive entropy hu(f71) = hu(f) > 0.
W*(z) is called a stable manifold .

Let us see how Theorem A follows from Theorem B. We denote as h(f)
the topological entropy of f (see [10] for definition). Then we know that
h(f) = sup{hu(f) : u € M(f)} where M(f) is the set of all f-invariant
ergodic Borel probability measures (cf [20]). Thus, if A(f) > 0, then we can
choose y € M, (f) with h,(f) > 0. Therefore, by Theorem B and Lemma 1.1,
[ is chaotic in the sense of Li-Yorke.

Remark that (a) of Theorem B does not hold for unstable manifolds in
general. For example, the Smale horseshoe has unstable manifolds which in-
tersect a stable manifold of a fixed point (cf.[18]). Since all points in the stable
manifold converge to the fixed point, they do not satisfy the first condition of
*-chaos. :

Now we shall give a sufficient condition that f is *-chaotic on We(z) as
follows. '

Theorem C If y is an ergodic SRB measure, then both Ws(z) and Wu(z)
are perfect x-chaotic sets for p-almost all z € M.

If £ is a measurable decomposition of M, then a family {i&|lz € M} of
Borel probability measures exists, and it satisfies the following conditions:
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L for z, y € M if {(z) = £(y) then pi = uf, here {(z) denotes a set
containing z in &, :

2. p5(&(z)) =1 for p-almost all z € M,

3. for any Borel set A a function z — pf(A) is measurable and p(A4) =
I 1 (A)dp(z).

The family {yf|z € M} is called a canonical system of conditional measures
for p and & (see [19] for more details).

An f-invariant Borel probability measure p is called a Sinai-Ruelle-Bowen
measure (SRB measure for abbreviation) provided

(A) for p-almost all z € M, there exists a positive Lyapunov exponent of z,

(B) u has a conditional measure that is absolutely continuous (with respect
to the Lebesgue measure) on unstable manifolds, which is defined as
follows:

From (A), the unstable manifold W*(z) is a C? submanifold for u-almost
all z in M. Let m} denote the Lebesgue measure of W¥%(z). A measurable
decomposition £ of M is said to be subordinate to unstable manifolds if for
p~almost all z in M

(C) &(z) c W (=),
(D) &(z) contains an open neighborhood of z in W*(z).

We say that p has an absolutely continuous conditional measure on unstable
manifolds provided 4 is absolutely continuous with respect to m¥ for y-almost
all z in M if £ is subordinate to unstable manifolds. It is known ([7], [8]) that
w satisfies (B) if and only if the following equation holds:

ha(f) = / 3 \il(z)dimE;(z)du(z).

s (:B)>0

This is sometimes known as Pesin’s formula . For the examples and the
stochastic properties of diffecomorphisms with SRB measures, the readers may
refer to [25]. In a similar way we can deﬁne a measurable partition subordinate
to stable manifolds.

2 Preliminaries

In this section we introduce f-invariant measurable partitions each of whose
elements is contained in the closure of (un)stable manifolds. Let f be a C2-

diffeomorphism of a closed C*®-manifold M and let p be an f-invariant ergodic
Borel probability measure on M with h“( f) > 0 Denote as B the family of
Borel sets.
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Lemma 2.1 (Proposition 3.1 [7]) Let f and p be as above. Then there
exist measurable partitions £ and £ of M such that

(a) & < f€ and & < f71¢Y,

(b) & and £ are subordinate to stable manifolds and unstable manifolds
respectively,

(c) both Voo f™E5 and V2, f"EY are the partitions into points,
(d) for p-almost al z € M,

7@ =w@ md  { ree)=we)

Lemma 2.2 (Corollary 5.3 [8]) Let f and p be as above and let £° (0 =
s,u) be as in Lemma 2.1. Then,

h(f) = H(f&°1°) = [ ~log 4 (7€*(@))du(z)
= H,(57¢6") = [ —log uf (/7" (@) du(a)

where the family {u§ |z € M} is a canonical system of conditional measures
for u and £°.

Let us introduce two measurable partitions defined by

o0 o0
T]s —_ /\ f—zé-s and ,nu _ /\ fzé-u
=0 4 i=0
By Lemma 2.1(a) and (d) we can easily check that fn° = n° and 7°(z) C
We(x) for p-almost all z (o = s,u). Let {uZ|x € M} be a canonical system

of conditional measures for 4 and 7° (o = s,4). By Doob’s theorem it follows
that for A € B

pe(A) = lim pf ¢ (A) and  pf(4) = lim pf"¢(4) (u-almost all 7).

Since fn” =n and f preserves u, we have uJ(A) = u%,(fA) (p-almost all z)
for A€ Band o = s,u.

Let C(M) be the Banach space of continuous real-valued functions of M
with the sup norm || - ||, and let M(M) be a set of all Borel probability
measures on M with the weak topology. Since C(M) is separable, there exists
a countable set {1, @, - - -} which is dense in C(M). For v, v/ € M(X) define

& n - nd ,'
) = 5 e ]

Then p is a compatible metric for M(X) and (M(X), p) is compact (cf.[10]).
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Lemma 2.3 Let f, p and {ul|lr € M} be as above. Then for ¢ > 0 and
o = s,u there exists a closed set F? with u(F?) > 1 — ¢ satisfying the map

F? 3z g € M(X)
18 continuous.

Proof. Let {¢1,92, :} be as above. By the definition of conditional
measures the map

Mamr——)/cpndu;

is Borel measurable for n > 1. Thus, by Lusin’s theorem, for n > 1 there

exists a closed set F7 with u(F?) > 1 — /2" satisfying
F]3z2— / endug, : continuous.

Then F7 = ;2 F7 has the desired property.

Lemma 2.4 Let f, p and {pS|x € M} be as above. Then for p-almost all
z € M and o = s,u, supp(pl) has no isolated points.

Proof. We will give the proof for ¢ = u and so we here omit for 0 = s
since the technique of the proof is similar.

If this lemma is false, supp(u¥) has an isolated point for z belonging to
some Borel set with positive measure. Let £* be as in Lemma 2.1. Since
diam(f~*¢%(z)) — 0 (k — o0) by Lemma 2.1 (c),

Py={z e M: "¢ is a point measure }

has positive y-measure for k large enough. Since u is f-invariant, we have
—keu n—kgu
frud e = ,uﬁnz ¢ for p-almost all z and n € Z. Then

FAHP) ={f™x) € M : uf"¢" is a point measure }
={zeM: f:‘uj:::iu is a point measure }
={zr e M: uf" """ is a point measure }
=Por (neZ).

Put
P = Nj»1 Unzj Pook = Njz1 Unxj f"Pog.

Since P is f-invariant and y is ergodic, we have u(P) = 1.

For z € P there exists an increasing sequence {n;};>o such that z € P,, for
i > 0. Since p = limp, oo pf "¢ = lim; 0o pf™*¢" and pf™¢" is a point measure
for 4, so is p¥. Therefore u¥ is a point measure for py-almost all z € M.
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Since £* is finer than #* and p is a point measure for y-almost all z € M,
sois p§ . Thus p§" (F~1¢%(z)) =1 for p-almost all z. Therefore

hu(f) = [ log i€’ (/7 '€" (@) du(z) = 0

by Lemma 2.2. This is a contradiction.
O

Let B(z,r) and U(z,r) denote the closed and open balls in M with center
z € M and radius r > 0 respectively.

Lemma 2.5 Let f, p and {uZlz € M} be as above. Then for u-almost all
xeM

We(y) = We(z) (ul-almost ally € M).

Proof. Let £° be as in Lemma 2.1. Then we have that for y-almost all
zeM

§(y) Cc We(z) (pi-almost all y).
Indeed, let d} denote the distance induced by the Riemannian metric on
We#(z). Then there exist an increasing family {As}¢>1 of closed sets of M
with 4(Ug>1A¢) = 1 and a sequence {Az},>1 of positive numbers satisfying
that |
(e) for each x € A, there exists € = £(z) > 0, such that
B(z,e)NAe 3y = Wi, (y) ={z € W(y) : di(2,9) < A}

is continuous with respect to the Hausdorff metric dg: i.e.

lim _dg (W3, (3), W4, (=) = O,

ADy—z

(f) for each x € Ay, £°(z) C W, (2)

(c£.[7], [15], [16]). Take arbitrary y € supp(us|As) (£ > 1). Let & = &(y) > 0
be as in (e) and let 0 < r < e. Recall that for p-almost all z € M

HiUpiAe) =1 and  pg|A, = lim pf "¢

Ae (£>1).

Since U(y,r) is open, we have pf "¢ (U(y,r) N A;) > 0 for n large enough. So
we can take y' € U(y,r) N Ay N f~"€*(z). Since ¥/ € f¢(x) C W*(z), we
have W3,(y') € W*(z). Since ¥’ € U(y,r) N Ay and r is arbitrary, it follows
that

lim d (W3, (y'), Wi, (y)) = 0.

‘Therefore £*(y) C W3, (y) C Ws(z).
From this fact it follows that for n > 0 and p-almost all z € M

(/") CW(F@)  (is-slmost all ).



Thus

W2(y) = Unsof "€ (f"5) C Unsod (@) € (@)

for pé-almost all y. On the other hand, by the definition of conditional
measures, gy = pj for y € n°(z). This implies that W*(y) = W*(z) for
pi-almost all y. : |

3 Proof of Theorem B(a)

The purpose of this section is to show Theorem B(a). Let f be a C2-diffeomor-

phism of a closed C*°-manifold M and let ;1 be an f-invariant ergodic Borel
probability measure on M with positive entropy. As described in §1 the stable
manifold W#(z) is a C? immersed manifold for y-almost all z € M and so the
closure of W*(z), W*(z), is perfect.

Let n° and {uilx € M} be as in §2. By Lemma 2.4, supp(u’) has no
isolated points for y-almost all z € M. Therefore, to obtain the conclusion it
suffices to show the following.

Proposition 1 If y? is not a point measure for p-almost all x € M, then
Ws(z) is a x-chaotic set for u-almost all zx € M.

Proof. Fix 0 < ¢ < 1 and let F? be as in Lemma 2.3. By assumption
we can take and fix z, € supp(u|F?) such that 3, is not a point measure.
Since supp(u;,) is not one point, there are disjoint open sets O; and O, of M
satisfying that

d(Ol,Og) = 1nf{d(x,y) T e 01, Yy E 02} > 6 and (1)
,U;O(Oi) >4 (2 = 172)

for some § > 0. By Lemma. 2.3 we can choose’e’ > 0 such that
p4z(0i) > 6 (i=1,2) (2)

for € Ulxo,e) NFS. Put K = Ny Ukon S 5(U(o,€') N F#). Since
w(U(zo,€") N E?) > 0, by ergodicity of u we have u(K) = 1.

Take arbitrary &' with 0 < V&' < min{u(U(xo,&') N F?),8}. Let £° be as
in Lemma 2.1 and put

da(f W (), @) < U, |
" M| dam(pr-tg (i) < ym (k2w [
for n,m > 1. Then A2,(n) C A% (n +1) and p(U%, A2 (n)) = 1 by Lemma

2.1 (c) and (d). Thus there exists an increasing sequence {n,} such that
(A8 (ny)) > 1—6/2™ (m > 1). Since

Al (n) = {m eEM

[ (O A (m) s = p(O By Ain(rn)) 2 1= Y 8 /2" =16,

m=1
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we can find a Borel set C§ C M with u(Cg) > 1 — /& satisfying
He(Mpa A () 2 1~ V& (4)

for z € C§. To obtain the conclusion it sufficies to show that We(z) is a
*-chaotic set for 2 € K N C§ because ¢' is arbitrary.

For z € KN Cj, by the definition of K, there exists a sequence of positive
integers {km}m with k., > n,, such that fkm (z) € U(zo,€") N F¥. Then by (4)

and (2)
- (A (b)) 2 1 (MR A (k) > 12 (N33 A5 () 2> 1=V,
#’;(f_km(o’i)) = “;km(m)(ol) >4 > ﬁ (2 = 132a m 2 1)
Thus we have pf(AS (km) N f7*(0;)) > 0 for i = 1,2 and m > 1. From

Lemma 2.5 we may assume that for m > 1 and ¢ = 1,2 there exists a point
Yi = yi(m) € A3 (k) 0 f~*m(0;) such that

We(y;) = We(x).
By (3) we have
dpg (U /2gs (flom/2ly;), Wo (@) = dpg (f~ W/ (£lom/2y), W (i) < 1/m,

diam (fFm—tbm/2gs(flon/Ay)) < 1/m (i =1,2, m > 1).
(5)

To show that W#(z) is a *-chaotic set, suppose that nonempty open sets
U, and U, satisfy

UNU; #0, UﬂWs()aé@ (]—12)

By (5) we may assume that

y; € fVm/2gs(flhm/2y.) U; # 0,
i (ys) € frm—tmPlgs (flbm2ly,) c O; (1 <14,5 < 2)

if m is sufficiently large. Take ,
ai; = ai;(m) € fln/Age (fln 2y N U
for 1 < 4,5 < 2. Then we have that for 1 <4,j < 2
ai; € Uj,  d(f*(a14), f*(a22)) > 7 and d(f*(asy), fkm(al,z)‘) <1l/m

by (1) (5) and (6) Since m is arbitrary, W*(z) is a *-chaotic set for z €

d
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4 Proof of Theorem B(b)

In this section we will prove Theorem B (b). Let f, p, n* and {u¥lz € M}
- be as in §2. By Lemma 2.4, supp(u¥) has no isolated points for y-almost all
x € M. Therefore, to obtain the conclusion it sufficies to show the following.

Proposition 2 If p% is not a point measure for p-almost all x € M, then

“supp(u)(C W(z)) is a x-chaotic set for p-almost all z € M.

Proof. Fix 0 < ¢ < 1 and let F* be as in Lemma 2.3. By assumption
we can take and fix xo € supp(u|Fy) such that pZ is not a point measure.
Choose two distinct points y1,y, € supp(uy,) and put 7 = d(y1,92)/2(> 0).
Take arbitrarily 0 < r < 7/2 and choose § = §(r) > 0 such that

W (Uer)) > 6 (i=1,2) )
Remark that
AUy, 7),Ulye, 7)) = inf{d(z,y) : d(z,31) <7, dy, 1) <r}>7.  (8)

Since U(y;,r) (i = 1,2) are open, by (7) there exists a large integer M =
M(r) > 0 such that

v(U(yir) >6=4(r) (i=1,2) (9)
for v € M(M) with p(v, uj,) < 1/M. We can find ¢ = €'(r) > 0 such that
Pz, tiz,) <1/2M =1/2M(r) (z € U(zo,e') N FY). (10)

Note that € depends on r.
Let &* be as in Lemma 2.1 and put

B,’ﬁl(n) = {z EM

(il ) < 1/m, | 1)
diam(f~#+#/2gx(f~02g)) <1/m (k> n)

for n,m > 1.Then By, (n) C Bt (n+1) and p(U2, B%(n)) = 1, by Lemma 2.1
(c) and Doob’s theorem. Thus there exists an increasing sequence {n,,} such
that (B, (nm)) > 1 —1/2™* (m > 1). Since p(NX,,BE(ng)) > 1—1/2™ for
m > 1, we can find a Borel set DY with u(D%) > 1 — 27™/2 satisfying

pe (M2, Br(ng)) > 1—2"™2% (3 € DY). (12)

K= U (ﬁ U f~f(U(xo,e'(r))manDg,)) 0<r<7/2).

Then u(K,) =1 (0 < r < 7/2) by ergodicity of . To obtain the conclusion it
sufficies to show that supp(uj) is a *-chaotic set for 2 € K = Nyp>1Ky/n.
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To do this fix z € K, (r =1/n,n > 1) and suppose that nonempty open
sets Uy and U, satisfy

UinUz#0, UjNnsupp(uy) #0 (j=1,2).

Choose mg > 0 with

0 <272 <min{ug(U;) : = 1,2} and mg > 2M.

Since z € K,, by the definition of K, there exist my > my and a sequence of
positive integers {¢}; with £, > n; such that

fé (z) € U(zo,&'(r)) N F2N Dy (k>1). (13)
Since
pe(f~5%(BE () > pb(f =4 (N§2m, BE (1))

= Kt (r) (MiZm, Bk (nk))
>1-2"m™/2>1-2"m/2 (k> m)

by (12), we have

Hz(Us 0 F5% (B () 2 pa(Uy) = 272 > 0 (k > my).
Then, by the definition of {u%|z € M}, we can choose
7 = z(k) € U; N f~% By (ny)

with n*(z) = 1%(2;) for j = 1,2 and k > m;. Thus we have 7*(f%(z)) =
n%(f%(z;)) and so Wit () = e,y Since f%(z;) € Bi(ny) C BE(&), by (11)
we have

L1 ¢u Ly cu . l
Py oy o)) = Pyt s i) < 1/k < Lfmo < 1/2M, (14)
diam(f ~4+/Aen( pht/A(2))) < 1/k (15)

for j =1,2 and k > m;. Thus, by (9), (10), (13) and (14),
u — Ly cu
uE, (F%U (i, ) = wheyt, (Ui, ) > 6.
Since supp(ut;) C £*(z;), we have
| £ () N U (s, ) # 0
for 1 <4,5 <2 and k > m;. For k large enough, by (15) we may assume
Zj € f_ek+[ek/2]§u(f£k_[lk/2](Zj)) C Uj.
Therefore |

Uj N f~%U(gir) O Af-fk“fk/?]&#(f‘k"W (2)) N f~5U (yi, 7)
D &%(z) N 85U (ys, ) # 0
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for 1 < 4,7 < 2 and k large enough. Take

big = bij(k) € F4(U(yi, 7)) NT;
for 1 < 4,5 < 2. Then we have that for 1 <14,j <2

bi; € Uj, d(f%(b11), f*(ba2)) > 7 and d(f*(b11), (o)) <r=1/n

by (8). This implies that supp(u%) is a *-chaotic set for z € K = Ny>1K1/n.
O

5 Proof of Theorem C

The purpose of this section is to show Theorem C. Let f be a C2-diffeomorphism

of a closed C*®-manifold M and let u be an ergodic SRB measure. As de-

scribed in §1 the Pesin’s formula holds: ie. h,(f) = X),50 Asmi. Thus we

have h,(f) > max{\;} > 0 because y satisfies the condition (A) mentioned in

§1. Therefore by Theorem B, W?(z) is a *-chaotic set for p-almost all z € M.
To show that W(z) is a #-chaotic set we need the following lemma.

Lemma 5.1 ([8], Corollary 6.1.4) Let pu be an ergodic measure satzsfymg
Pesin’s formula, let £ be as in Lemma 2.1 and let ¢ be the density of s with
- respect to m®. Then at p-almost all z, v is a strictly positive function on £*(z)
and log v is Lipschitz along W*"-leaves.

Let n* and {u®|z € M} be as in §2. Then, by Proposition 2, supp(u})(C
Wt (z)) is a *-chaotic set for py-almost all € M. Therefore, to obtain the
conclusion it sufficies to show the following.

 Proposition 3 If u is an SRB measure, then supp(ut) = W(z) for p-almost
allz € M.

Proof. We first show that £%(z) C supp(u¥) for p-almost all z € M. Since
&% is finer than 7%, for p-almost all z € M
| K€ (supp(2))dpi (@) = it (supp(u)) =

Then pf (supp(p?)) = 1 for p¥-almost all . Since supp(uy) is closed, by.
Lemma 5.1 we have that

§"(z) C supp(p;) = supp(ug)
for p¥-almost all z. Therefore £*(z) C supp(py) for p-almost all z.

Since f,p¥ = pY4, for p-almost all z, we have f(supp(uj)) = supp(ufm) for
p-almost all z. By Lemma 2.1 (d)

W*(z) = Unso f6*(f(z))
C UsZo £ (5upp(pif-n(z)))
C supp(y)

for u—almost all z € M. Therefore supp(u¥) = W(z) for y-almost all z € M.
a
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