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Stable and unstable manifolds of
diffeomorphisms with positive entropy

Naoya Sumi (鷲見 直哉)

Abstract

We show that $C^{2}$-diffeomorphisms with positive entropy are chaotic
in the sense of Li-Yorke. To do so we prove that these maps are $*-$

chaotic on the closure of stable manifolds for some points. The notion
of $”*$-chaos” was introduced by Kato and it is related to chaos in the
sense of Li-Yorke.

1 Introduction
We study chaotic properties of diffeomorphisms with positive entropy. Notions
of chaos have been given by Li and Yorke [9], Devaney [2] and others. It is
known that if a continuous map of interval has positive entropy, then it is
chaotic according to the definition of Li and Yorke (cf. [1]).

In [6] Katok proved the following :let $f$ be a $C^{1+\epsilon}$-diffeomorphism of a
closed surface. If the topological entropy of $f$ is positive, then there exists a
hyperbolic set $\Gamma$ such that the restriction of $f$ into $\Gamma$ is topologically conjugate
to a subshift of finite type with positive entropy. This implies that $f$ is chaotic
in the sense of Li-Yorke.

However, Katok’s theorem does not hold for the high dimensional case.
Indeed, let $f$ be a surface diffeomorphism with positive entropy and let $r$ :
$S^{1}arrow S^{1}$ be an irrational rotation. Then a product map $f\cross r$ has the same
positive entropy, but it does not have $\Gamma$ as above because there are no periodic
points of $f\cross r$ .

In this paper we show the following:

Theorem A Let $f$ be a $C^{2}$ -diffeomorphism of a closed $C^{\infty}$ -manifold. If the
topological entropy of $f$ is positive, then $f$ is chaotic in the sense of Li-Yorke.

To my knowledge this theorem gives the most simplest sufficient condition
for chaotic phenomena of high dimensional dynamical systems. It remains
a question whether Theorem A is true for homeomorphisms. However this
question is still unsolved.

Let $M$ be a closed $C^{\infty}$-manifold and let $d$ be the distance for $M$ induced
by a Riemannian metric $||\cdot||$ on $M$ . A subset $S$ of $M$ is a scrambled set of $f$

if there is a positive number $\tau>0$ such that for any $x,$ $y\in S$ with $x\neq y$ ,
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1. $\lim\sup_{narrow\infty}d(f^{n}(X), fn(y))>\tau$ ,

2. $\lim\inf_{narrow\infty}d(fn(x), fn(y))=0$.
If there is an uncountable scrambled set $S$ of $f$ , then we say that $f$ is chao$\mathrm{t}ic$

in the sense of $Li$-Yorke. Li and Yorke showed in [9] that if $f:[0,1]arrow[0,1]$ is
a continuous map with a periodic point of $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}_{0}\mathrm{d}3$ , then $f$ is chaotic in this
sense. In [9] there was the following one more $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}’ \mathrm{o}\mathrm{n}$: for any $x\in S$ and
any periodic point $p\in M,$ $\lim\sup_{narrow\infty}d(f^{n}(X), fn(p))>0$ . But this condition
is unnecessary because a scrambled set contains at most one point which does
not satisfy this condition. For the examples and the properties of scrambled
sets, the readers may refer to [1], [5], [11], [12], [13], [22], [23] and [24].

Concerning the chaos in the sense of Li-Yorke, Kato introduced the notion
of $”*$-chaos” as follows: let $F$ be a closed subset of $M$ . A map $f$ : $Marrow M$

is $*$ -chaotic on $F$ (in the sence of Li-Yorke) if the foilowing conditions are
satisfied:

1. there is $\tau>0$ such that if $U$ and $V$ are any nonempty open subsets of $F$

with $U\cap V=\emptyset$ and $N$ is any natural number, there is a natural number
$n\geq N$ such that $d(f^{n}(x), fn(y))>\tau$ for some $x\in U,$ $y\in V$ , and

2. for any nonempty open subsets $U,$ $V$ of $F$ and any $\epsilon>0$ there is a
natural number $n\geq 0$ such that $d(f^{n}(x), fn(y))<\epsilon$ for some $x\in U$ ,
$y\in V$ .

Such a set $F$ is called $\mathrm{a}*$ -chaotic set. If $S$ is a scrambled set, then the closure
of $S,\overline{S}$ , is $\mathrm{a}*$-chaotic set. In [4] Kato showed that the converse is true.

Lemma 1.1 ([4], Theorem 2.4) If $f$ : $Marrow M$ is continuous and is $*-$

chaotic on $F$ , then there $F_{\sigma}$ -set $S\subset F$ such that $S$ is a scrambled set of $f$ and
$\overline{S}=F$ . If $F$ is perfect ($i.e$ . $F$ has no isolated points), we can choose $S\mathit{8}uch$

that it is a countable union of Cantor sets.

To obtain Theorem A we need the following theorem.

Theorem $\mathrm{B}$ Let $f$ be a $C^{2}$ -diffeomorphism of a closed $C^{\infty}$ -manifold $M$ and
let $\mu$ be an $f$ -invariant ergodic Borel probability measure on M. If the metric
entropy of $\mu$ is positive, then for $\mu$-almost all $x\in M$ the following hold:

$(a)\overline{W^{s}(x)}$ is a $perfeci*$ -chaotic set; and

$(b)\overline{W^{u}(x)}$ contains a $perfeCt*$ -chaotic set.

Here $W^{s}(x)$ and $W^{u}(x)$ are defined by

$W^{s}(X)= \{y\in M:\lim\sup \mathrm{l}\mathrm{o}\underline{1}\mathrm{g}d(fn(x), fn(y))<0\}$ and,
$narrow\infty n$

$W^{u}(X)= \{y\in M:\lim\sup\log\underline{1}d(f^{-n}(x), f^{-}n(y))<0\}$

$narrow\infty$ $n$

respectively.
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We notice that for $\mu$-almost all $x\in M$ , the above sets $W^{s}(x)$ and $W^{u}(x)$ are
$C^{2}$ immersed manifolds under the assumptions of theorem B. Indeed, let $f$ and
$\mu$ be as above. For $\mu$-almost all $x\in M$ , there exist a splitting of the tangent
space $T_{x}M=\oplus_{i=}Es(x_{1i})(x)$ and real numbers $\lambda_{1}(x)<\lambda_{2}(x)<\cdots<\lambda_{s(x)(x})$

such that

$(a)$ the maps $xrightarrow E_{i}(x),$ $\lambda_{i}(x)$ and $s(x)$ are Borel measurable, moreover
$E_{i}(f(x))=D_{x}f(Ei(x))$ and $\lambda_{i}(X),$ $s(x)$ are $f$-invariant $(i=1, \cdots, s(x))$ ,

$(b) \lim_{narrow\pm\infty}\frac{1}{n}\log||D_{x}f^{n}(v)||=\lambda_{i}(X)$ $(0\neq v\in E_{i}(x), i=1, \cdots , s(x))$ and

$(c) \lim_{narrow\pm\infty}\frac{1}{n}\log|\det(Df^{n}x)|=\sum^{s}\lambda_{i}(i=1(x)x)\dim Ei(x)$

([14]). The numbers $\lambda_{1}(x),$
$\cdots,$ $\lambda_{s(}x)(X)$ are called Lyapunov exponents of $f$

at $x$ . Since $\mu$ is ergodic, we can put $s=s(x),$ $\lambda_{i}=\lambda_{i}(x)$ and $m_{i}=\dim E_{i}(x)$

$(i=1, \cdots , s)$ for $\mu$-almost all $x\in M$ .
Let $h_{\mu}(f)$ denote the metric entropy of $f$ (see [10] for definition). A well-

known theorem of Margulis and Ruelle [21] says that entropy is always bounded
above by the sum of positive Lyapunov exponents; i.e. $h_{\mu}(f)\leq\Sigma_{\lambda_{i}>0i}\lambda m_{i}$ .
Since $f$ has positive entropy, we have

$0<h_{\mu}(f) \leq\max\{\lambda_{i}\}=\lambda s$ .

Therefore, by Pesin’s stable manifold theorem ([3], [15], [17]), the set $W^{u}(x)$

is the image of a $C^{2}$ injective immersion of an euclidean space such that
$T_{x}W^{u}(x)=\oplus_{\lambda_{i>}}0E_{i}(x)(\neq\{0\})$ for $\mu$-almost all $x\in M$ . $W^{u}(x)$ is called an un-
stable manifold. Similarly, $W^{s}(x)$ is a $C^{2}$ immersed manifold because $W^{s}(x)$ is
the unstable manifold of $f^{-1}$ , which has positive entropy $h_{\mu}(f^{-1})=h(\mu f)>0$ .
$W^{s}(x)$ is called a stable manifold.

Let us see how Theorem A follows from Theorem B. We denote as $h(f)$
the topological entropy of $f$ (see [10] for definition). Then we know that
$h(f)= \sup\{h_{\mu}(f) : \mu\in \mathcal{M}_{e}(f)\}$ where $\mathcal{M}_{e}(f)$ is the set of all $\mathrm{f}$-invariant
ergodic Borel probability measures (cf [20]). Thus, if $h(f)>0$ , then we can
choose $\mu\in \mathcal{M}_{e}(f)$ with $h_{\mu}(f)>0$ . Therefore, by Theorem $\mathrm{B}$ and Lemma 1.1,
$f$ is chaotic in the sense of Li-Yorke.

Remark that (a) of Theorem $\mathrm{B}$ does not hold for unstable manifolds in
general. For example, the Smale horseshoe has unstable manifolds which in-
tersect a stable manifold of a fixed point $(\mathrm{c}\mathrm{f}.[18])$ . Since all points in the stable
manifold converge to the fixed point, they do not satisfy the first condition of
$*$-chaos.

Now we shall give a sufficient condition that $f$ is $*$-chaotic on $\overline{W^{u}(x)}$ as
follows.

Theorem $\mathrm{C}$ If $\mu i\mathit{8}$ an ergodic $SRB$ measure; then both $\overline{W^{s}(x)}$ and $\overline{W^{u}(X)}$

are $perfeCt*$ -chaotic sets for $\mu$-almost all $x\in M$ .
If $\xi$ is a measurable decomposition of $M$ , then a family $\{\mu_{x}^{\xi}|x\in M\}$ of

Borel probability measures exists, and it satisfies the following conditions:
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1. for $x,$ $y\in M$ if $\xi(x)=\xi(y)$ then $\mu_{x}^{\xi}=\mu_{y}^{\xi}$ , here $\xi(x)$ denotes a set
containing $x$ in $\xi$ ,

2. $\mu_{x}^{\xi}(\xi(x))=1$ for $\mu$-almost all $x\in M$ ,

3. for any Borel set $A$ a function $xarrow\#\mu_{x}^{\xi}(A)$ is measurable and $\mu(A)=$
$\int_{M}\mu_{x}^{\xi}(A)d\mu(X)$ .

The family $\{\mu_{x}^{\xi}|x\in M\}$ is called a canonical system of conditional measures
for $\mu$ and $\xi$ (see [19] for more details).

An $f$-invariant Borel probability measure $\mu$ is called a Sinai-Ruelle-Bowen
measure (SRB measure for abbreviation) provided

$(A)$ for $\mu$-almost all $x\in M$ , there exists a positive Lyapunov exponent of $x$ ,

$(B)\mu$ has a conditional measure that is absolutely continuous (with respect
to the Lebesgue measure) on unstable manifolds, which is defined as
follows:

From (A), the unstable manifold $W^{u}(x)$ is a $C^{2}$ submanifold for $\mu$-almost
all $x$ in $M$ . Let $m_{x}^{u}$ denote the Lebesgue measure of $W^{u}(x)$ . A measurable
decomposition $\xi$ of $M$ is said to be subordinate to unstable manifolds if for
$\mu$-almost all $x$ in $M$

$(C)\xi(x)\subset W^{u}(x)$ ,

$(D)\xi(x)$ contains an open neighborhood of $x$ in $W^{u}(x)$ .
We say that $\mu$ has an absolutely continuous conditional measure on unstable
manifolds provided $\mu_{x}^{\xi}$ is absolutely continuous with respect to $m_{x}^{u}$ for $\mu$-almost
all $x$ in $M$ if $\xi$ is subordinate to unstable manifolds. It is known ([7], [8]) that
$\mu$ satisfies (B) if and only if the following equation holds:

$h_{\mu}(f)= \int_{\lambda i(x}\sum_{>)0}\lambda_{i}(x)\dim E_{i}(x)d\mu(X)$.

This is sometimes known as Pesin’s formula. For the examples and the
stochastic properties of diffeomorphisms with SRB measures, the readers may
refer to [25]. In a similar way we can defin.e a measurable partition subordinate
to stable manifolds.

2 Preliminaries
In this section we introduce $f$-invariant measurable partitions each of whose
elements is contained in the closure of (un)stable manifolds. Let $f$ be a $C^{2}-$

diffeomorphism of a closed $C^{\infty}$-manifold $M$ and let $\mu$ be an $f$-invariant ergodic
Borel probability measure on $M$ with $h_{\mu}(f)>0$ . Denote as $B$ the family of
Borel sets.
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Lemma 2.1 (Proposition 3.1 [7]) Let $f$ and $\mu$ be as above. Then there
$exi_{\mathit{8}}t$ measurable partitions $\xi^{s}$ and $\xi^{u}$ of $M$ such that

$(a)\xi^{s}\leq f\xi^{s}$ and $\xi^{u}\leq f^{-1}\xi^{u}$ ,

$(b)\xi^{s}$ and $\xi^{u}$ are subordinate to stable manifolds and unstable manifolds
respectively,

$(c)$ both $\mathrm{V}_{n=0}^{\infty}fn\xi^{s}$ and $\mathrm{v}_{n=0}^{\infty}f-n\xi^{u}$ are the partitions into points,

$(d)$ for $\mu$-almost all $x\in M$ ,

$\bigcup_{n=0}^{\infty}f^{-n}\xi S(f^{n}(x))=W^{s}(x)$ and $\bigcup_{n=0}^{\infty}f^{n}\xi u(f-n(x))=W^{u}(x)$ .

Lemma 2.2 (Corollary 5.3 [8]) Let $f$ and $\mu$ be as above and let $\xi^{\sigma}(\sigma=$

$s,$ $u)$ be as in Lemma 2.1. Then,

$h_{\mu}(f)$ $=H_{\mu}(f \xi s|\xi^{s})=\int-\log\mu x(f\xi s(X)\xi^{s})d\mu(X)$

$=H_{\mu}(f^{-}1 \xi u|\xi u)=\int-\log\mu^{\xi^{u}}x(f^{-}1\xi^{u}(X))d\mu(x)$

where the family $\{\mu_{x}^{\xi^{\sigma}}|x\in M\}$ is a canonical system of conditional measures
for $\mu$ and $\xi^{\sigma}$ .

Let us introduce two measurable partitions defined by

$\eta^{s}=\bigwedge_{i=0}^{\infty}f^{-}i\xi^{s}$ and $\eta^{u}=\bigwedge_{i=0}^{\infty}f^{i}\xi u$ .

By Lemma 2.1(a) and (d) we can easily check that $f\eta^{\sigma}=\eta^{\sigma}$ and $\eta^{\sigma}(x)\subset$

$\overline{W^{\sigma}(x)}$ for $\mu$-almost all $x(\sigma=s, u)$ . Let $\{\mu_{x}^{\sigma}|x\in M\}$ be a canonical system
of conditional measures for $\mu$ and $\eta^{\sigma}(\sigma=s, u)$ . By Doob’s theorem it follows
that for $\mathrm{A}\in B$

$\mu_{x}^{s}(A)=\lim_{narrow\infty}\mu_{x}^{j\xi}-hS(A)$ and $\mu_{x}^{u}(A)=\lim_{narrow\infty}\mu_{x}^{f\xi}(nuA)$ ( $\mu$-almost all $x$).

Since $f\eta^{\sigma}=\eta^{\sigma}$ and $f$ preserves $\mu$ , we have $\mu_{x}^{\sigma}(A)=\mu_{fx}^{\sigma}(fA)$ ( $\mu$-almost all $x$ )
for $\mathrm{A}\in B$ and $\sigma=s,$ $u$ .

Let $C(M)$ be the Banach space of continuous real-valued functions of $M$

with the $\sup$ norm $||\cdot||$ , and let $\mathcal{M}(M)$ be a set of all Borel probability
measures on $M$ with the weak topology. Since $C(M)$ is separable, there exists
a countable set $\{\varphi_{1}, \varphi_{2}, \cdots\}$ which is dense in $C(M)$ . For $\nu,$ $\nu’\in \mathcal{M}(X)$ define

$\rho(\nu, \nu’)=n1\sum_{=}\frac{|\int\varphi_{n}d\nu-J\varphi_{n}d\nu’|}{2^{n}||\varphi_{n}||}\infty$ .

Then $\rho$ is a compatible metric for $\mathcal{M}(X)$ and $(\mathcal{M}(X), \rho)$ is compact $(\mathrm{c}\mathrm{f}.[10])$ .
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Lemma 2.3 Let $f,$ $\mu$ and $\{\mu_{x}^{\sigma}|x\in M\}$ be $a\mathit{8}$ above. Then for $\epsilon>0$ and
$\sigma=s,$ $u$ there exists a closed set $F_{\epsilon}^{\sigma}$ with $\mu(F^{\sigma})\in\geq 1-\epsilon$ satisfying the map

$F_{\epsilon}^{\sigma}\ni xrightarrow\mu_{x}^{\sigma}\in \mathcal{M}(X)$

$i\mathit{8}$ continuous.

Proof. Let $\{\varphi_{1}, \varphi_{2}, \cdots\}$ be as above. By the definition of conditional
measures the map

$M \ni x-\rangle\int\varphi_{n}d\mu_{x}\sigma$

is Borel measurable for $n\geq 1$ . Thus, by Lusin’s theorem, for $n\geq 1$ there
exists a closed set $F_{n}^{\sigma}$ with $\mu(F_{n}^{\sigma})\geq 1-\epsilon/2^{n}$ satisfying

$F_{n}^{\sigma} \ni x\vdash+\int\varphi_{n}d\mu_{x}^{\sigma}$ : continuous.

Then $F_{\epsilon}^{\sigma}= \bigcap_{n=1}^{\infty}F_{n}^{\sigma}$ has the desired property.
$\square$

Lemma 2.4 Let $f,$ $\mu$ and $\{\mu_{x}^{\sigma}|x\in M\}$ be as above. Then for $\mu$-almost all
$x\in M$ and $\sigma=s,$ $u,$ $\mathit{8}upp(\mu_{x})\sigma$ has no isolated points.

Proof. We will give the proof for $\sigma=u$ and so we here omit for $\sigma=s$

since the technique of the proof is similar.
If this lemma is false, $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})$ has an isolated point for $x$ belonging to

some Borel set with positive measure. Let $\xi^{u}$ be as in Lemma 2.1. Since
diam $(f^{-k}\xi^{u}(X))arrow 0(karrow\infty)$ by Lemma 2.1 (c),

$P_{-k}=$ { $x\in M:\mu_{x}^{f^{-k}}\xi^{u}$ is a point measure}

has positive $\mu$-measure for $k$ large enough. Since $\mu$ is $f$-invariant, we have
$f_{*}^{n}\mu_{x}f^{-ku}\xi=\mu_{f^{n}x}^{f\xi}n-ku$ for $\mu$-almost all $x$ and $n\in \mathbb{Z}$ . Then

$f^{n}(P_{-k})$ $=$ { $f^{n}(x)\in M:\mu_{x}^{f^{-k}\xi^{u}}$ is a point measure}
$=$ { $x\in M:f_{*}n\mu_{fx}^{f}--nk_{\xi^{u}}$ is a point measure}
$=$ { $x\in M:\mu_{x}^{f^{n-ku}}\xi$ is a point measure}
$=P_{n-k}$ $(n\in \mathbb{Z})$ .

Put
$P= \bigcap_{j\geq\geq jn-}1^{\cup}nPk=\mathrm{n}_{j\geq}1\cup n\geq jf^{n}P_{-}k$.

Since $P$ is $f$-invariant and $\mu$ is ergodic, we have $\mu(P)=1$ .
For $x\in P$ there exists an increasing sequence $\{n_{i}\}_{i>0}$ such that $x\in P_{n_{i}}$ for

$i\geq 0$ . Since $\mu_{x}^{u}=\lim_{narrow\infty}\mu_{x}!^{n}\xi^{u}=\lim_{iarrow\infty}\mu_{x}^{f^{n}}i\xi^{u}$ and $\mu_{x}^{\overline{f}^{n_{i}}\xi^{u}}$ is a point measure
for $i$ , so is $\mu_{x}^{u}$ . Therefore $\mu_{x}^{u}$ is a point measure for $\mu$-almost all $x\in M$ .
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Since $\xi^{u}$ is finer than $\eta^{u}$ and $\mu_{x}^{u}$ is a point measure for $\mu$-almost all $x\in M$ ,
so is $\mu_{x}^{\xi^{u}}$ . Thus $\mu_{x}^{\xi^{u}}(f-1\xi^{u}(x))=1$ for $\mu$-almost all $x$ . Therefore

$h_{\mu}(f)= \int-\log\mu_{x}^{\xi^{u}}(f^{-}1\xi u(x))d\mu(_{X})=0$

by Lemma 2.2. This is a contradiction.
$\square$

Let $B(x, r)$ and $U(x, r)$ denote the closed and open balls in $M$ with center
$x\in M$ and radius $r>0$ respectively.

Lemma 2.5 Let $f,$ $\mu$ and $\{\mu_{x}^{\sigma}|x\in M\}$ be as above. Then for $\mu$-almost all
$x\in M$

$\overline{W^{s}(y)}=\overline{W^{s}(x)}$ ( $\mu_{x}^{s}$ -almost all $y\in M$).

Proof. Let $\xi^{s}$ be as in Lemma 2.1. Then we have that for $\mu$-almost all
$x\in M$

$\xi^{s}(y)\subset\overline{W^{s}(x)}$ ( $\mu_{x}^{s}$-almost all $y$ ).

Indeed, let $d_{x}^{s}$ denote the distance induced by the Riemannian metric on
$W^{s}(x)$ . Then there exist an increasing family $\{\Lambda_{l}\}_{l\geq 1}$ of closed sets of $M$

with $\mu(\bigcup_{\ell\geq}1\Lambda\ell)=1$ and a sequence $\{A_{l}\}_{\ell\geq 1}$ of positive numbers satisfying
that

(e) for each $x\in\Lambda_{l}$ there exists $\epsilon=\epsilon(x)>0$ , such that

$B(x, \epsilon)\mathrm{n}\Lambda_{l}\ni y\text{ト}arrow W_{A}^{\mathit{8}}(ty)=\{Z\in W^{s}(y) : d^{s}x(z, y)\leq A_{l}\}$

is continuous with respect to the Hausdorff metric $d_{H}$ : i.e.

$\Lambda_{\ell\ni}\lim_{xyarrow}dH(W_{A}^{S}t(y), WA_{\ell}s(X))=0$ ,

(f) for each $x\in\Lambda_{l},$ $\xi^{s}(X)\subset W_{A_{t}}^{s}(x)$

$(\mathrm{C}\mathrm{f}.[7], [15], [16])$ . Take arbitrary $y\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{s}|\Lambda_{\ell})(\ell\geq 1)$ . Let $\epsilon=\epsilon(y)>0$

be as in (e) and let $0<r<\epsilon$ . Recall that for $\mu$-almost all $x\in M$

$\mu_{x}^{s}(\bigcup_{t\geq 1\ell}\Lambda)=1$ and $\mu_{x}^{s}|\Lambda_{\ell}=\lim_{narrow\infty}\mu_{x}f^{-}n\xi^{\mathit{8}}|\Lambda_{\ell}$ $(\ell\geq 1)$ .

Since $U(y, r)$ is open, we have $\mu_{x}^{f^{-n}\xi^{s}}(U(y, r)\cap\Lambda_{\ell})>0$ for $n$ large enough. So
we can take $y’\in U(y, r)\cap\Lambda_{l}\cap f^{-n}\xi^{S}(x)$ . Since $y’\in f^{-n}\xi^{s}(x)\subset W^{s}(x)$ , we
have $W_{A_{t}}^{\mathit{8}}(y^{;})\subset W^{s}(x)$ . Since $y’\in U(y, r)\cap\Lambda_{l}$ and $r$ is arbitrary, it follows
that

$\lim_{rarrow 0}d_{H}(W_{A_{t}}^{s}(y’), W_{A_{\mathit{1}}}^{s}(y))=0$.

Therefore $\xi^{s}(y)\subset W_{A_{\ell}}^{s}(y)\subset\overline{W^{s}(x)}$ .
From this fact it follows that for $n\geq 0$ and $\mu$-almost all $x\in M$

$\xi^{s}(f^{n}(y))\subset\overline{W^{s}(f^{n}(x))}$ ( $\mu_{x}^{s}$-almost all $y$).
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Thus

$W^{s}(y)= \bigcup_{n\geq 0}f^{-n}\xi s(f^{n}y)\subset\bigcup_{n\geq 0}f^{-n}(\overline{Ws(f^{n(_{X)}})})\subset\overline{W^{s}(X)}$

for $\mu_{x}^{s}$-almost all $y$ . On the other hand, by the definition of conditional
measures, $\mu_{y}^{s}=\mu_{x}^{s}$ for $y\in\eta^{s}(x)$ . This implies that

$\overline{W^{s}(y)}=\overline{W^{s}(x)}\mathrm{f}\mathrm{o}\mathrm{r}\square$

$\mu_{x}^{\mathit{8}}$-almost all $y$ .

3 Proof of Theorem $\mathrm{B}(\mathrm{a})$

The purpose of this section is to show Theorem $\mathrm{B}(\mathrm{a})$ . Let $f$ be a $C^{2_{-}}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}_{-}$

phism of a closed $C^{\infty}$-manifold $M$ and let $\mu$ be an $f$-invariant ergodic Borel
probability measure on $M$ with positive entropy. As described in \S 1 the stable
manifold $W^{s}(x)$ is a $C^{2}$ immersed manifold for $\mu$-almost all $x\in M$ and so the
closure of $W^{s}(x),$ $\overline{W^{s}(X)}$ , is perfect.

Let $\eta^{s}$ and $\{\mu_{x}^{s}|x\in M\}$ be as in \S 2. By Lemma 2.4, $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{s})$ has no
isolated points for $\mu$-almost all $x\in M$ . Therefore, to obtain the conclusion it
suffices to show the following.

Proposition 1 If $\mu_{x}^{s}i\mathit{8}$ not a point measure for $\mu$-almost all $x\in M$ , then
$\overline{W^{s}(x)}$ is $a*$ -chaotic set for $\mu$-almost all $x\in M$ .

Proof. Fix $0<\epsilon<1$ and let $F_{\epsilon}^{s}$ be as in Lemma 2.3. By assumption
we can take and fix $x_{0}\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu|F_{\mathrm{g}}^{s})$ such that $\mu_{x_{0}}^{s}$ is not a point measure.
Since $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{s}0)$ is not one point, there are disjoint open sets $O_{1}$ and $O_{2}$ of $M$

satiswing that

$d(O_{1}, \mathit{0}_{2})=\inf\{d(x, y) : x\in O_{1}, y\in O_{2}\}>\delta$ and (1)
$\mu_{x_{0}}^{s}(Oi)>\delta$ $(i=1,2)$

for some $\delta>0$ . By Lemma 2.3 we can choose $\epsilon’>0$ such that

$\mu_{x}^{s}(O_{i})>\delta$ $(i=1,2)$ (2)

for $x\in U(x_{0},6’)\cap F_{\epsilon}^{s}$ . Put $K= \bigcap_{n=0}^{\infty}\bigcup_{k\geq n}f^{-k}(U(X0, \epsilon’)\cap F_{\epsilon}^{s})$ . Since
$\mu(U(x_{0}, \epsilon’)\cap F_{\epsilon}^{s})>0$ , by ergodicity of $\mu$ we have $\mu(K)=1$ .

Take arbitrary $\delta’$ with $0< \sqrt{\delta’}<\min\{\mu(U(x_{0,\mathcal{E})}’\cap F_{\epsilon}^{s}), \delta\}$ . Let $\xi^{s}$ be as
in Lemma 2.1 and put

$A_{m}^{s}(n)=\{x\in M|d_{H}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}((f^{-}[k/2]\xi^{s}(f^{[/2}k]X),\overline{W^{S}(_{X)}}fk-[k/2]\xi s(f[k/2]x))\leq 1/m()\leq 1/mk’\geq n)\}$ (3)

for $n,$ $m\geq 1$ . Then $A_{m}^{S}(n)\subset \mathrm{A}_{m}^{s}(n+1)$ and $\mu(\bigcup_{n=0}^{\infty}A_{m}^{S}(n))=1$ by Lemma
2.1 (c) and (d). Thus there exists an increasing sequence $\{n_{m}\}$ such that
$\mu(A_{m}^{s}(n_{m}))\geq 1-\delta’/2^{m}(m\geq 1)$ . Since

$\int\mu_{x}^{s}(\bigcap_{m}\infty \mathrm{A}^{s}(n_{m}))d\mu=\mu(\bigcap_{m1m}^{\infty}A^{s}(n_{m}))\geq 1-\sum_{m=1}^{\infty}\delta’/=1m=12^{m}=-\delta’$ ,
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we can find a Borel set $C_{\delta}^{S},$ $\subset M$ with $\mu(o_{\delta}^{S},)\geq 1-\sqrt{\delta’}$ satisfying

$\mu_{x}^{s}(\bigcap_{m1m}\infty=A^{s}(n_{m}))\geq 1-\sqrt{\delta^{J}}$ (4)

for $x\in C_{\delta}^{s}$ . To obtain the conclusion it sufficies to show that $\overline{W^{s}(x)}$ is a
$*$-chaotic set for $x\in K\cap C_{\delta}^{S}$, because $\delta’$ is arbitrary.

For $x\in K\cap C_{\delta}^{s},$ , by the definition of $K$ , there exists a sequence of positive
integers $\{k_{m}\}_{m}$ with $k_{m}>n_{m}$ such that $f^{k_{m}}(x)\in U(x_{0}, \mathcal{E}’)\cap F_{\epsilon}^{s}$. Then by (4)
and (2)

$\mu_{x}^{s}(A_{m}^{s}(k_{m}))\geq\mu_{x}^{s}(\bigcap_{m}\infty=1mA^{s}(k_{m}))\geq\mu_{x}S(\mathrm{n}_{m=}^{\infty}1mA^{S}(n_{m}))\geq 1-\sqrt{\delta’}$,
$\mu_{x}^{s}(f^{-k}m(O_{i}))=\mu_{j}^{s}k_{m}(x)(Oi)>\delta>\sqrt{\delta’}$ $(i=1,2, m\geq 1)$ .

Thus we have $\mu_{x}^{s}(A_{m}^{S}(k_{m})\cap f^{-k_{m}}(o_{i}))>0$ for $i=1,2$ and $m\geq 1$ . From
Lemma 2.5 we may assume that for $m\geq 1$ and $i=1,2$ there exists a point
$y_{i}=y_{i}(m)\in A_{m}^{s}(k_{m})\cap f^{-k_{m}}(O_{i})$ such that

$\overline{W^{s}(y_{i})}=\overline{W^{S}(X)}$ .

By (3) we have

$d_{H}(f^{-[k_{m}}/2]\xi s(f^{[}km/2]yi),\overline{W^{s}(X)})=d_{H}(f^{-}[km/2]\xi S(f^{[}km/2]y_{i}),\overline{Ws(y_{i})})\leq 1/m$,
diam$(f^{k_{m^{-}}}[km/2]\xi s(f^{[}km/2]yi))\leq 1/m$ $(i=1,2, m\geq 1)$ .

(5)
To show that $\overline{W^{S}(x)}$ is $\mathrm{a}*$-chaotic set, suppose that nonempty open sets

$U_{1}$ and $U_{2}$ satisfy

$U_{1^{\cap}}U2\neq\emptyset$ , $U_{j}\cap\overline{Ws(_{X})}\neq\emptyset$ $(j=1,2)$ .

By (5) we may assume that

$y_{i}\in f^{-}[km/2]\xi s(f^{[}km/2]yi)\cap U_{j}\neq\emptyset$ ,
(6)

$f^{k_{m}}(y_{i})\in f^{k_{m}-[k/2]}m\xi S(f^{[k}m/2]iy)\subset O_{i}$ $(1\leq i,j\leq 2)$

if $m$ is sufficiently large. Take

$a_{i,j}=a_{i,j(m})\in f^{-[/}k_{m}2]\xi^{s}(f[km/2]yi)\cap U_{j}$

for $1\leq i,j\leq 2$ . Then we have that for $1\leq i,j\leq 2$

$a_{i,j}\in U_{j}$ , $d(f^{k_{m}}(a1,1),$ $f^{k}m(a2,2))>\tau$ and $d(f^{k_{m}}(a1,1),$ $f^{k}m(a1,2))<1/m$

by (1), (5) and (6). Since $m$ is arbitrary, $\overline{W^{s}(x)}$ is a $*$-chaotic set for $x\in$

$K\cap C_{\delta}^{s},$ .
$\square$
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4 Proof of Theorem $\mathrm{B}(\mathrm{b})$

In this section we will prove Theorem $\mathrm{B}(\mathrm{b})$ . Let $f,$ $\mu,$
$\eta^{\mathrm{u}}$ and $\{\mu_{x}^{u}|x\in M\}$

be as in \S 2. By Lemma 2.4, $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})$ has no isolated points for $\mu$-almost all
$x\in M$ . Therefore, to obtain the conclusion it sufficies to show the following.

Proposition 2 If $\mu_{x}^{u}$ is not a point measure for $\mu$ -almost all $x\in M$ , then
supp $(\mu_{x}^{u})(\subset\overline{W^{u}(x)})$ is $a*$ -chaotic set for $\mu- almo\mathit{8}t$ all $x\in M$ .

Proof. Fix $0<\epsilon<1$ and let $F_{\epsilon}^{u}$ be as in Lemma 2.3. By assumption
we can take and fix $x_{0}\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu|F_{\epsilon}^{u})$ such that $\mu_{x_{0}}^{u}$ is not a point measure.
Choose two distinct points $y_{1},$ $y_{2}\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x0}^{u})$ and put $\tau=d(y_{1}, y_{2})/2(>0)$ .
Take arbitrarily $0<r<\tau/2$ and choose $\delta=\delta(r)>0$ such that

$\mu_{x_{0}}^{u}(U(yi, r))>\delta$ $(i=1,2)$ . (7)

Remark that

$d(U(y_{1}, r),$ $U(y_{2}, r))= \inf\{d(x, y) : d(x, y_{1})<r, d(y, y_{2})<r\}>\tau$ . (8)

Since $U(y_{i}, r)(i=1,2)$ are open, by (7) there exists a large integer $M=$
$M(r)>0$ such that

$\nu(U(yi, r))>\delta=\delta(r)$ $(i=1,2)$ (9)

for $\nu\in \mathcal{M}(M)$ with $\rho(\nu, \mu_{x0}^{u})<1/M$ . We can find $\epsilon’=\epsilon’(r)>0$ such that

$\rho(\mu_{x}^{u}, \mu_{x}^{u}0)<1/2M=1/2M(r)$ $(x\in U(x_{0}, \epsilon)’\cap F_{\epsilon}^{u})$ . (10)

Note that $\epsilon’$ depends on $r$ .
Let $\xi^{u}$ be as in Lemma 2.1 and put

$B_{m}^{u}(n)=\{x\in M|\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\rho(\mu xf^{k}\xi u,uf^{-}k+[k/2\mathrm{J}\xi^{u}\mu_{x})\leq 1/(f-[k/2]x))m,\leq 1/m$ $(k\geq n)\}$ (11)

for $n,$ $m\geq 1.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}B^{u}m(n)\subset B_{m}^{u}(n+1)$ and $\mu(\bigcup_{n=0^{B_{m}}}^{\infty}u(n))=1$ , by Lemma 2.1
(c) and Doob’s theorem. Thus there exists an increasing sequence $\{n_{m}\}$ such
that $\mu(B_{m}^{u}(n_{m}))\geq 1-1/2^{m+1}(m\geq 1)$ . Since $\mu(\cap^{\infty}k=mB_{k(}^{u}nk))\geq 1-1/2^{m}$ for
$m\geq 1$ , we can find a Borel set $D_{m}^{u}$ with $\mu(D_{m}^{u})\geq 1-2^{-m/2}$ satisfying

$\mu_{x}^{u}(\mathrm{n}_{k=}^{\infty}B_{k}^{u}(mn_{k}))\geq 1-2^{-m/2}$ $(x\in D_{m}^{u})$ . (12)

Put

$K_{r}= \bigcap_{k=1}^{\infty}\bigcup_{m=k}^{\infty}(_{n}\bigcap_{=0}^{\infty}\bigcup_{\ell\geq n}f^{-}l(U(x_{0}, \epsilon’(r))\cap F_{\epsilon}u\cap Du)m)$ $(0<r<\tau/2)$ .

Then $\mu(K_{r})=1(0<r<\tau/2)$ by ergodicity of $\mu$ . To obtain the conclusion it
sufficies to show that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})$ is $\mathrm{a}*$-chaotic set for $x\in K=\mathrm{n}n\geq 1K1/n$ .
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To do this fix $x\in K_{r}(r=1/n, n\geq 1)$ and suppose that nonempty open
sets $U_{1}$ and $U_{2}$ satisfy

$U_{1}\cap U_{2}\neq\emptyset$ , $U_{j}\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})\neq\emptyset$ $(j=1,2)$ .
Choose $m_{0}>0$ with

$0<2^{-m\mathrm{o}/2}< \min\{\mu^{u}x(Uj) : j=1,2\}$ and $m_{0}\geq 2M$ .

Since $x\in K_{r}$ , by the definition of $K_{r}$ , there exist $m_{1}>m_{0}$ and a sequence of
positive integers $\{\ell_{k}\}_{k}$ with $\ell_{k}>n_{k}$ such that

$f^{l_{k}}(x)\in U(x_{0}, \epsilon’(r))\cap F_{\epsilon m}^{u}\mathrm{n}D^{u}1$ $(k\geq 1)$ . (13)

Since
$\mu_{x}^{u}(f^{-l}k(B^{u}k(nk)))$ $\geq\mu_{x}^{u}(f^{-f}k(\bigcap_{kk}^{\infty}Bu(=m1nk)))$

$=\mu_{f^{l_{k}}(}^{u}x)(\cap k=m_{1}B_{k(}^{u}\infty nk))$

$\geq 1-2^{-m1/2}\geq 1-2^{-m/2}0$ $(k\geq m_{1})$

by (12), we have

$\mu_{x}^{u}(U_{j}\cap f^{-}\ell_{k}(B_{k}u(nk)))\geq\mu_{x}^{u}(U_{j})-2-m_{0}/2>0$ $(k\geq m_{1})$ .
Then, by the definition of $\{\mu_{x}^{u}|x\in M\}$ , we can choose

$z_{j}=z_{j}(k)\in U_{j}\cap f^{-}\ell kB_{k}^{u}(n_{k})$

with $\eta^{u}(x)=\eta^{u}(z_{j})$ for $j=1,2$ and $k\geq m_{1}$ . Thus we have $\eta^{u}(f^{\ell_{k}}(x))=$

$\eta^{u}(f^{l_{k}}(z_{j}))$ and so $\mu_{f^{f}k}^{u}(x)\mu^{u}f^{l}k(zj)=$ . Since $f^{\ell_{k}}(z_{j})\in B_{k}^{u}(n_{k})\subset B_{k}^{u}(\ell_{k})$ , by (11)
we have

$\rho(\mu_{f^{t_{k(z_{j}}}}^{f^{t}}, \mu ft_{k}(x)))=\rho(k\xi uuftk\xi^{u},f\mu t_{k})\mu f(\mathcal{Z}_{j}(t_{k}z_{j}))u\leq 1/k\leq 1/m_{0}\leq 1/2M$, (14)

diam$(f^{-f}k+[\ell k./2]\xi u(ft_{k}-[t_{k}/2](_{Z}j)))\leq 1/k$ (15)

for $j=1,2$ and $k\geq m_{1}$ . Thus, by (9), (10), (13) and (14),

$\mu_{z_{j}}^{\xi^{u}}(f^{-}l_{k}U(y_{i}, r))=\mu^{f^{t_{k\xi}u}}t_{k}(zj)(fU(yi, r))>\delta$ .

Since $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{z_{\mathrm{j}}}\xi^{u})\subset\xi^{u}(z_{j})$, we have

$\xi^{u}(z_{j})\cap f-fkU(y_{i}, r)\neq\emptyset$

for $1\leq i,j\leq 2$ and $k\geq m_{1}$ . For $k$ large enough, by (15) we may assume
$z_{j}\in f^{-}l_{k}+[^{\ell_{k}}/2]\xi^{u}(f\ell_{k}-[\ell_{k}/2](Z_{j}))\subset U_{j}$ .

Therefore
$U_{j}\cap f^{-\ell_{k}}U(y_{i}, r)$ $\supset f^{-\ell_{k}[^{\ell_{k}/2]}}+\xi u(f\ell k-[\ell_{k}/2](Zj))\cap f^{-}l_{k}U(y_{i}, r)$

$\supset\xi^{u}(_{Z_{j}})\cap f-\ell_{k}U(y_{i}, r)\neq\emptyset$
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for $1\leq i,j\leq 2$ and $k$ large enough. Take
$b_{i,j}=b_{ii}(k)\in f^{-\ell_{k}}(U(yi, r))\cap Uj$

for $1\leq i,j\leq 2$ . Then we have that for $1\leq i,$ $j\leq 2$

$b_{i,j}\in U_{j}$ , $d(f^{\ell_{k}}(b_{1,1}), f^{\ell}k(b_{2,2}))>\tau$ and $d(f^{l_{k}}(b1,1),$ $fl_{k}(b_{1,2}))<r=1/n$

by (8). This implies that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})$ is $\mathrm{a}*$-chaotic set for
$x\in K=\mathrm{n}n\geq 1K1/n\cdot\square$

5 Proof of Theorem $\mathrm{C}$

The purpose of this section is to show Theorem C. Let $f$ be a $C^{2}$-diffeomorphism
of a closed $C^{\infty}$ -manifold $M$ and let $\mu$ be an ergodic SRB measure. As de-
scribed in \S 1 the $\mathrm{P}\mathrm{e}\sin$

)
$\mathrm{s}$ formula holds: i.e. $h_{\mu}(f)=\Sigma_{\lambda_{i}>0^{\lambda_{i}m}i}$ . Thus we

have $h_{\mu}(f) \geq\max\{\lambda_{i}\}>0$ because $\mu$ satisfies the condition (A) mentioned in
\S 1. Therefore, by Theorem $\mathrm{B},$ $\overline{W^{S}(x)}$ is $\mathrm{a}*$-chaotic set for $\mu$-almost all $x\in M$ .

To show that $\overline{W^{u}(X)}$ is $\mathrm{a}*$-chaotic set we need the following lemma.

Lemma 5.1 ([8], Corollary 6.1.4) Let $\mu$ be an ergodic measure satisfying
Pesin’s formula, let $\xi^{u}$ be as in Lemma 2.1 and let $\psi$ be the density of $\mu_{x}^{\xi^{u}}$ with
respect to $m_{x}^{u}$ . Then at $\mu$-almost all $x_{f}\psi$ is a strictly positive function on $\xi^{u}(x)$

and $\log\psi i\mathit{8}$ Lipschitz along $W^{u}$ -leaves.

Let $\eta^{u}$ and $\{\mu_{x}^{u}|x\in M\}$ be as in \S 2. Then, by Proposition 2, $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})(\subset$

$\overline{W^{u}(x)})$ is a $*$-chaotic set for $\mu$-almost all $x\in M$ . Therefore, to obtain the
conclusion it sufficies to show the following.

Proposition 3 If $\mu$ is an $sRBmea\mathit{8}ure$ , then supp$(\mu_{x}^{u})=\overline{W^{u}(x)}$ for $\mu$-almost
all $x\in M$ .

Proof. We first show that $\xi^{u}(x)\subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu^{u}x)$ for $\mu$-almost all $x\in M$ . Since
$\xi^{u}$ is finer than $\eta^{u}$ , for $\mu$-almost all $z\in M$

$\int\mu_{x}^{\xi^{u}}(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu^{u}z))d\mu z(ux)=\mu^{u}z(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{z}^{u}))=1$ .

Then $\mu_{x}^{\xi^{u}}(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{P}(\mu_{z})u)=1$ for $\mu_{z}^{u}$-almost all $x$ . Since $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu^{u}z)$ is closed, by
Lemma 5.1 we have that

$\xi^{u}(x)\subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{z})u\sup=\mathrm{P}(\mu^{u}x)$

for $\mu_{z}^{u}$-almost all $x$ . Therefore $\xi^{u}(x)\subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})$ for $\mu$-almost all $x$ .
Since $f_{*}\mu_{x}^{u}=\mu_{f^{x}}^{u}$ for $\mu$-almost all $x$ , we have $f(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}u))=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{fx}^{u})$ for

$\mu$-almost all $x$ . By Lemma 2.1 (d)
$W^{u}(x)$ $= \bigcup_{n=0}^{\infty}fn\xi^{u}(f-n(x))$

$\subset\bigcup_{n=0}^{\infty}fn(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu^{u}f-n(x)))$

$\subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu_{x}^{u})$

for $\mu$-almost all $x\in M$ . Therefore $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu^{u}x)=\overline{W^{u}(x)}$ for $\mu$-almost all
$x\in M\square$

.
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