

Kyoto University Research Information Repository	
Title	On some conditions of starlikeness
Author(s)	Yamakawa, Rikuo
Citation	数理解析研究所講究録 (1999), 1112: 138-141
Issue Date	1999-09
URL	http://hdl.handle.net/2433/63350
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On some conditions of starlikeness

山川 陸夫

Rikuo Yamakawa Department of natural Sciences Shibura Institute of technology

Abstract

Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ be analytic in the unit disk U. Yuan Chun Fang proved that

$$\left|\frac{f''(z)}{f'(z)}\right| < m \Longrightarrow Re \frac{zf'(z)}{f(z)} > 0 \quad (z \in U),$$

where $m(=2.83\cdots)$ is the best possible. In this paper, we generalize this theorem.

1. Introduction

Let A_p denote the class of functions of the form

(1)
$$f(z) = z^p + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} \cdot \dots \cdot (p \in N),$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$, and M_p denote the class of functions

(2)
$$f(z) = z^{-p} + a_{-p+1}z^{-p+1} + a_{-p+2}z^{-p+2} \cdot \cdots \quad (p \in N),$$

which are analytic in punctured disk $U - \{0\}$. Then we denote two classes of starlike functions as follows:

(3)
$$A_p^* = \{ f \in A_p : \Re \frac{zf'(z)}{f(z)} > 0, \ z \in U \},$$

(4)
$$M_p^* = \{ f \in M_p : \Re \frac{zf'(z)}{f(z)} < 0, \ z \in U \}.$$

For the class A_1 , Singh and Singh [4] showed the following theorem.

Theorem A Let $f(z) \in A_1$, then

(5)
$$|\frac{f''(z)}{f'(z)}| < \frac{3}{2} \quad (z \in U) \Longrightarrow f(z) \in A_1^*.$$

He used Jack's Lemma. Mocanu [3,p.338] showed

Theorem B Let $g(z) = \frac{e^{\lambda z} - 1}{\lambda}$.

(6)
$$g(z) \in A_1^* \iff |\lambda| \le m = 2.8329 \cdots.$$

Where m is the least positive solutin of the following equation

(7)
$$\cos\sqrt{x^2 - 1} + \sqrt{x^2 - 1}\sin\sqrt{x^2 - 1} - \frac{1}{e} = 0.$$

Miller and Mocanu [2] proved, using their theory of first order differential subordination, that

Theorem C Let $f(z) \in A_1$. Then

(8)
$$\left|\frac{f''(z)}{f'(z)}\right| < 2 \Longrightarrow f(z) \in A_1^*.$$

In the same article [2], they posed the interesting question of finding the maximum value of k for which

(9)
$$|\frac{f''(z)}{f'(z)}| < k \Longrightarrow f(z) \in A_1^*.$$

From the above two theorems, $2 \le k \le m$. Some Mathematicians improved the lower bound of k. And recently, Yuan Chun Fang [4] showed

Theorem D Let $f(z) \in A_1$. Then

$$|\frac{f''(z)}{f'(z)}| < m \quad (z \in U) \Longrightarrow f(z) \in A_1^*.$$

The result is sharp, with the extremal function

(11)
$$G(z) = \frac{e^{mz} - 1}{m}.$$

The purpose of this paper is to obtain similar theorems for A_p and M_p .

Theorem 1 If $f(z) \in A_p$ satisfies

(12)
$$|\frac{f''(z)}{f'(z)} - \frac{p-1}{p} \frac{f'(z)}{f(z)}| \le m \quad (z \in U),$$

then f belongs to A_n^* . The result is sharp, with the extremal function

(13)
$$G_1(z) = (\frac{e^{mz} - 1}{m})^p.$$

Theorem 2 If $f(z) \in M_p$ satisfies

(14)
$$|\frac{f''(z)}{f'(z)} - \frac{p+1}{p} \frac{f'(z)}{f(z)}| \le m \quad (z \in U),$$

then f belongs to M_p^* . The result is sharp, with the extremal function

(15)
$$G_2(z) = (\frac{m}{e^{mz} - 1})^p.$$

2. Proof of Theorem 1

We use the following lemma due to Miller and Mocanu [2, Theorem 2].

Lemma let h be convex in U and θ and ϕ be analytic in a domain D. Let p be analytic in U, with $p(0) = h(0) = \theta(p(0))$ and $p(U) \subset D$. If the differential equation

(16)
$$\theta(q(z)) + zq'(z)\phi(q(z)) = h(z)$$

has a univalent solution in U that satisfies q(0) = h(0) and

(17)
$$\theta(q(z)) \prec h(z),$$

then the relation

(18)
$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec h(z)$$

implies $p(z) \prec q(z)$. The function q is the best dominant of (18).

Suppose $f(z) \in A_p^*$ satisfies (12), then we have

(19)
$$\frac{zf''(z)}{f'(z)} - \frac{p-1}{p} \frac{zf'(z)}{f(z)} \prec mz.$$

Let put

$$p(z) = \frac{1}{p} \frac{zf'(z)}{f(z)}, \qquad q(z) = \frac{1}{p} \frac{zG'_1(z)}{G_1(z)}$$
 $h(z) = 1 + mz, \qquad \theta(z) = z, \quad and \quad \phi(z) = \frac{1}{z}.$

Then we have

(20)
$$q(z) = \frac{zG'(z)}{G(z)} = m\frac{ze^{mz}}{e^{mz} - 1}.$$

(21)
$$q(z) + \frac{zq'(z)}{q(z)} = 1 + mz,$$

and

(22)
$$p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{p-1}{p} \frac{zf'(z)}{f(z)}.$$

From (19) and (22) we obtain (18), and from (21) we obtain (16). It yields $p(z) \prec q(z)$, and so $\frac{zf'(z)}{f(z)} \prec \frac{zG'(z)}{G(z)}$. Therefore, from Theorem B we obtain that

$$\frac{zf'(z)}{f(z)} > 0 \quad (z \in U).$$

Concernig the exremal function, we have

$$\frac{zG_1''(z)}{G_1'(z)} - \frac{p-1}{p} \frac{G_1f'(z)}{G_1(z)} = m.$$

This implies that $G_1(z)$ is exremal.

Proof of Theorem 2 is similar, so we omit.

References

- [1] Yuan Chun Fang, Univalence of analytic solutions to some first order differential equations, Acta Mathematica Sinica (Chinese, Chinese summary). 35(4), 483-491.
- [2] S.S. Miller and P.T. Mocanu, On some class of first-order differential subordinations, *Michigan Math. J.* **32**(1985), 185-194.
- [3] P.T. Mocanu, Asupra razei de stelaritate a functiilor univalente, Stud. Cer. Mat. (Cluj), 11(1960), 337-341.
- [4] R.Singh and S. Singh, Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curie-Sklodowska., 35(1981), 145-147. Colloq. Math. 47(1982), 309-314.