

Semicontinuous solutions for Hamilton－Jacobi equations

with general Hamiltonians

| 北大•理 | 儀我 | 美一（Yoshikazu Giga） |
| :--- | :--- | :--- | :--- |
| 室蘭工大•工 | 佐藤 | 元彦（Moto－Hiko Sato） |

1．Introduction

We consider the initial value problem for the Hamilton－Jacobi equation of form

$$
\begin{array}{ll}
u_{t}+H\left(x, u_{x}\right)=0 & \text { in } \mathbf{R}^{n} \times(0, T) \\
u(0, x)=u_{0}(x), & x \in \mathbf{R}^{n} \tag{1b}
\end{array}
$$

where $u_{t}=\partial u / \partial t$ and $u_{x}=\left(\partial_{x_{1}} u, \cdots, \partial_{x_{n}} u\right), \partial_{x_{i}} u=\partial u / \partial x_{i} ; \infty \geq T>0$ is a fixed number．Our main goal is to find a suitable notion of solution when u_{0} is discontinuous．The theory of viscosity solutions initiated by Crandall and Lions［CL］ yields the global solvability of the initial value problem by extending the notion of solutions when u_{0} is continuous（cf．［E，Chap．10］，［L］，［B］）．In fact，if initial data u_{0} is bounded，uniformly continuous，it is well－known［CL］，［L］that the initial value problem（1a）－（1b）admits a unique global（uniformly）continuous viscosity solutions when H is enough regular，for example H satisfies the Lipschitz conditions

$$
\begin{align*}
& |H(x, p)-H(x, q)| \leq C|p-q| \tag{2a}\\
& |H(x, p)-H(y, p)| \leq C(1+|p|)|x-y| . \tag{2b}
\end{align*}
$$

We only refer to $[B],[L]$ and［CIL］for the basic theory of viscosity solutions．The notion of viscosity solution has been extended to semicontinuous functions．This

[^0]is very important to prove the existence of solutions without appealing hard estimates. Such a method is first introduced by [I]. However, if u_{0} is, for example, upper semicontinuous, a classical semicontinuous viscosity solution may not be unique.

Recently to overcome this inconvenience, Barron and Jensen [BJ] introduced another notion of viscosity solutions for semicontinuous functions when the Hamiltonian $H=H(x, p)$ is concave in p and proved the existence and the uniqueness of their solution for (1a), (1b) for bounded (from above), upper semicontinuous initial data u_{0}. Their solution is now called a bilateral solution [BD$]$. For later development of the theory as well as other approaches we refer to $[\mathrm{BD}]$ and references cited there. However, their theory is limited for concave H. (In [BJ] H is assumed to be convex but they consider the terminal value problem which is easily transformed to the initial value problem with concave Hamiltonian by setting $T-t$ by t.)

In this paper we introduce a new notion of a solution which is unique for a given initial upper semicontinuous initial data. For (1a), (1b) we consider auxiliary problem

$$
\begin{array}{ll}
\psi_{t}-\psi_{y} H\left(x,-\psi_{x} / \psi_{y}\right)=0 & \text { in } \mathbf{R}^{n+1} \times(0, T) \\
\psi(0, x, y)=\psi_{0}(x, y), & (x, y) \in \mathbf{R}^{n} \times \mathbf{R} \tag{3b}
\end{array}
$$

The equation (3a) is called the level set equation for the evolution of the graph of u of (1a). In fact, if a level set of a solution ψ of (3a) is given as the graph of a function $v=v(t, x)$, then v must solve (1a). For given upper semicontinuous initial data $u_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{-\infty\}$, shortly $u_{0} \in \operatorname{USC}\left(\mathbf{R}^{n}\right)$, we take

$$
\begin{equation*}
\psi_{0}(x, y)=-\min \left\{\operatorname{dist}\left((x, y), K_{0}\right), 1\right\} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{0}=\left\{(x, y) \in \mathbf{R}^{n} \times \mathbf{R} ; y \leq u_{0}(x)\right\} . \tag{5}
\end{equation*}
$$

We solve (3a), (3b) and set

$$
\begin{equation*}
\bar{u}(t, x)=\sup \{y \in \mathbf{R} ; \psi(t, x, y) \geq 0\} \tag{6}
\end{equation*}
$$

where ψ is the continuous viscosity solution of (3a), (3b). We call \bar{u} an L-solution of (1a), (1b). Such a solution uniquely exists globally in time under suitable condition on H.

Theorem 1. Assume that the recession function

$$
\begin{equation*}
H_{\infty}(x, p)=\lim _{\lambda \downarrow 0} \lambda H(x, p / \lambda), \quad x \in \mathbf{R}^{n}, p \in \mathbf{R}^{n} \tag{7}
\end{equation*}
$$

exists and that H satisfies (2a), (2b). Then there exists a global unique L-solution for an arbitrary $u_{0} \in \operatorname{USC}\left(\mathbf{R}^{n}\right)$.

One may relax the assumptions on H (cf. Remark right before references) but in this paper we shall always assume (2a), (2b) and (7). These assumptions guarantee that the singularity at $\psi_{y}=0$ in (3a) is removable if we restrict ψ satisfying $\psi_{y} \leq 0$. Moreover, (3a), (3b) admits a unique global solution for any bounded, uniformly continuous initial data $\psi_{0}=\psi_{0}(x, y)$ which is nonincreasing in y. (The monotonicity of the solution ψ in y is preserved for $t>0$.)

2. Comparison and uniqueness

Since a solution of (3a), (3b) enjoys a comparison principle, so does an L-solution (1a), (1b).

Theorem 2 (Comparison). Let u and v be the L-solution of (1a), (1b) with initial data u_{0} and v_{0}, respectively, where $u_{0}, v_{0} \in \operatorname{USC}\left(\mathbf{R}^{n}\right)$. If $u_{0} \leq v_{0}$ on \mathbf{R}^{n}, then $u \leq v$ on $\mathbf{R}^{n} \times(0, T)$.

In the definition of an L-solution the specific form of ψ_{0} given by (4) is not important.
Theorem 3 (Uniqueness). Assume that ψ_{0} is a bounded uniformly continuous function such that $\left\{\psi_{0} \geq 0\right\}=K_{0}$ and that $y \mapsto \psi_{0}(x, y)$ is nonincreasing. Let ψ be the solution of (3a), (3b). Then

$$
\tilde{u}(t, x)=\sup \{y \in \mathbf{R} ; \psi(t, x, y) \geq 0\}, \quad t \in(0, T), x \in \mathbf{R}^{n}
$$

agrees with the L-solution of (1a), (1b).
The key observation for the proof is that the set $\{\psi \geq 0\}(=\{(t, x, y) ; \psi(t, x, y) \geq$ $0\}$ depends only on K_{0} and is independent of the choice of ψ_{0}. This is a typical uniqueness property of a level set equation. It is based on invariance of solution under the change of the dependent variable as stated below (which is slightly more general than stated in references [ESou], [ES], [CGG1], [G], [IS] since θ need not be continuous).

Lemma 4 (Invariance). Assume that ψ is a subsolution (resp. supersolution) of (3a). Assume that θ is upper (resp. lower) semicontinuous and nondecreasing. Assume that $\theta \not \equiv-\infty$ (resp. $\theta \not \equiv+\infty$). Then the composite function $\theta \circ \psi$ is also a subsolution (resp. supersolution of (3a)).

If $\{\psi \geq 0\}$ were a bounded set, a comparison principle for (3a), (3b) and Lemma 4 would yield the uniqueness of $\{\psi \geq 0\}$ as in [ES], [CGG1], [G]. However, since $\{\psi \geq 0\}$ is unbounded, we actually argue as in [IS] to get the uniqueness of $\{\psi \geq 0\}$.

3. Consistency

We shall compare other notion of solutions.

Theorem 5. Let \bar{u} be the L-solution of (1a), (1b) with $u_{0} \in \operatorname{USC}\left(\mathbf{R}^{n}\right)$. Then \bar{u} be a viscosity solution of (1a) provided that \bar{u} does not take $\pm \infty$.

Sketch of the proof. Let ψ be the solution of (3a), (3b) with ψ_{0} in (4). By Lemma 4 the function $I^{-} \circ \psi$ is a subsolution of (3a), where $I^{-}(\sigma)=0$ for $\sigma \geq 0$ and $I^{-}(\sigma)=-\infty$ for $\sigma<0$. From this it is easy to see that \bar{u} is a viscosity subsolution.

To prove that \bar{u} is a viscosity supersolution we need to use the fact that $y \mapsto$ $\psi(x, y)$ is nonincreasing. This implies that the lower semicontinuous envelope $(\bar{u})_{*}$ of
\bar{u} equals

$$
\underline{u}(t, x)=\inf \{y \in \mathbf{R} ;(t, x, y) \in \overline{\{\psi<0\}}\} \quad t \in(0, T), x \in \mathbf{R}^{n} .
$$

Since $I^{+} \circ(\psi+1 / m)$ is a supersolution of (3a) by Lemma 4, we see, by stability as $m \rightarrow \infty$, that

$$
\Psi(t, x, y)= \begin{cases}\infty & \text { for }(t, x, y) \in \operatorname{int}\{\psi \geq 0\} \\ 0 & \text { for }(t, x, y) \in \overline{\{\psi<0\}}\end{cases}
$$

is a subsolution of (3a), where $I^{+}(\sigma)=0$ for $\sigma \leq 0$ and $I^{+}(\sigma)=\infty$ for $\sigma>0$. Thus \underline{u} is a supersolution.

Theorem 6. Assume that u_{0} is bounded, uniformly continuous. Then the bounded, uniformly continuous viscosity solution u of (1a), (1b) is an L-solution.

This follows from Theorem 3 by choosing $\psi=((y-u(t, x)) \wedge M) \vee M$ for $M=\sup |u|$.
Theorem 7. Assume that $p \mapsto H(x, p)$ is concave. Let \bar{u} be the L-solution of (3a), (3b) with $u_{0} \in U S C\left(\mathbf{R}^{n}\right)$ and $\sup u_{0}<\infty$. Then \bar{u} is a bilateral viscosity solution with initial data u_{0}.

For the proof we use the property that the bilateral solution is given as a monotone limit of continuous viscosity solution [BJ]. Thus the proof is reduced to the next lemma.

Lemma 8. Assume that $u_{0 \varepsilon} \downarrow u_{0} \in \operatorname{USC}\left(\mathbf{R}^{n}\right)$ with $u_{0 \varepsilon}$ which is Lipschitz in \mathbf{R}^{n}. Assume that $u_{0 \varepsilon} \geq u_{0 \varepsilon^{\prime}}+\varepsilon-\varepsilon^{\prime}$ for $\varepsilon>\varepsilon^{\prime}>0$. Let u_{ε} be the solution of (1a), (1b) with $u_{0}=u_{0 \varepsilon}$. Then $\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}$ is an L-solution of (1a), (1b) (so that it agrees with $\bar{u})$.

The sequence $u_{0 \varepsilon}$ is easily constructed by setting $u_{0 \varepsilon}=u_{0}^{\varepsilon}+\varepsilon$ with sup-convolution u_{0}^{ε} of u_{0}.

4. Right accessibility

It is not clear in what sense the initial value is attained for L-solutions (unless initial data is continuous.) Since the viscosity solution of (3a), (3b) with ψ_{0} in (4) is continuous up to $t=0$, the set $\{\psi \geq 0\}$ is closed in $[0, T) \times \mathbf{R}^{n} \times \mathbf{R}$ so that

$$
\begin{equation*}
u_{0}(x) \geq \varlimsup_{\substack{t \downarrow 0 \\ y \rightarrow x}} \bar{u}(t, y) \tag{8}
\end{equation*}
$$

However, in general it is not clear whether there is a sequence $t_{m} \rightarrow 0, y_{m} \rightarrow x$ such that

$$
\begin{equation*}
u_{0}(x)=\lim _{m \rightarrow \infty} \bar{u}\left(t_{m}, y_{m}\right) \tag{9}
\end{equation*}
$$

We call this last property the right accessibility as in [CGG2]. Since \bar{u} is upper semicontinuous in $[0, T) \times \mathbf{R}^{n}$, the property (9) is equivalent to $u_{0}(x)=\left(\left.\bar{u}\right|_{\left.(0, T) \times \mathbf{R}^{n}\right)_{*}}\right.$ $(0, x)$.

We give a simple criterion for right accessibility without mentioning its proof.
Lemma 9. Assume that $F \in C\left(\mathbf{R}^{N}\right)$ is positively homogeneous of degree one.
Let A be a closed convex set in \mathbf{R}^{N}. Let w be the L-solution of

$$
w_{t}+F\left(w_{z}\right)=0, \quad z \in \mathbf{R}^{N}, t>0 ;\left.\quad w\right|_{t=0}=w_{0}
$$

with $w_{0}(z)=0, z \in A$ and $\sup \left\{w_{0}(z) ;\right.$ dist $\left.(z, A) \geq \delta\right\}<0$ for $\delta>0$. Then

$$
w(t, z)= \begin{cases}0 & z \in A+t W_{\alpha} \\ <0 & \text { otherwise }\end{cases}
$$

Here

$$
W_{\alpha}=\left\{z \in \mathbf{R}^{N} ; \sup _{|p|=1}(z \cdot p-\alpha(p)) \leq 0\right\}, \alpha(p)=-F(-p)
$$

The set W_{α} is often called the Wulff shape with respect to α if α is positive. The set W_{α} may be empty. For example if $F(p)=|p|$, then $W_{\alpha}=\emptyset$. Thus if we consider (1a), (1b) with $H(p)=|p|$ and $u_{0}(x)=0, x=0 ; u_{0}(x)=-\infty, x \neq 0$, then the L-solution $u(t, x)=-\infty$ for all $t>0$. Thus (9) is not fulfilled.

Theorem 10. If H is homogeneous degree of one, and independent of x, then an L-solution is right accessible for any $u_{0} \in \operatorname{USC}\left(\mathbf{R}^{n}\right)$ if and only if $W_{\alpha} \neq \emptyset$.

Remark 11. Our results up to $\S 3$ can be generalized for more general equation

$$
u_{t}+H\left(x, u, u_{x}\right)=0
$$

when H fulfills
(i) $H \in C\left(\mathbf{R}^{n} \times \mathbf{R} \times \mathbf{R}^{n}\right)$ and H_{∞} exists;
(ii) There exists a modulus m_{1} that satisfies

$$
\left|q H(x, y-p / q)-q H\left(x^{\prime}, y^{\prime},-p / q\right)\right| \leq m_{1}\left(\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|\right)(|p|+|q|+1)\right.
$$

(iii) For each $C_{1}>0$ there exists a modulus m_{2} such that

$$
\left|q H(x, y-p / q)-q^{\prime} H\left(x, y,-p^{\prime} / q^{\prime}\right)\right| \leq m_{2}\left(\left|p-p^{\prime}\right|+\left|q-q^{\prime}\right|\right)
$$

for all $x \in \mathbf{R}^{n}, y \in \mathbf{R}, p, p^{\prime} \in \mathbf{R}^{n}, q, q^{\prime}<0$ satisfying $|p|,\left|p^{\prime}\right|,|q|,\left|q^{\prime}\right| \leq C_{1}$;
(iv) $y \mapsto H(x, y, p)$ is nondecreasing.

A typical example of H satisfying these assumptions is $a(x) \sqrt{b+|p|^{\beta}}$ and a is Lipschitz and $0 \leq \beta \leq 1, b \geq 0$.

References.

[BD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamiltonian-Jacobi-Bellman Equation, Systems \& Control: Foundations \& Applications, Birkhäuser, Boston, (1997)
[B] G. Barles, Solutions de Viscosité des Equations de Hamilton-Jacobi, Mathématiques \& Applications, vol.17, Springer-Verlag, Paris, (1994)
[BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions of HamiltonJacobi equations with convex Hamiltonians, Commun. in Partial Differential Equations, 15(1990), 1713-1742
[CGG1] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geometry, 33(1991), 749-786. (Announcement: Proc. Japan Acad., Ser. A., 65(1989), 207-210)
[CGG2] Y.-G. Chen, Y. Giga and S. Goto, Remarks on viscosity solutions for evolution equations, Proc. Japan Acad., Ser.A., 67(1991), 323-328
[CL] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277(1983), 1-42
[CLI] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27(1992), 1-67
[E] L. C. Evans, Partial Differential Equations, Graduate Studies in Math., vol.19, Amer. Math. Soc., Providence, (1998)
[ESou] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33(1984), 773-797
[ESp] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I. J. Differntial Geometry, 33(1991), 635-681
[G] Y. Giga, A level set method for surface evolution equations, Sugaku Expositions, 10(1997), 217-241 (translated from Sūgaku 47 (1995), 321-340)
[GGIS] Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40(1991), 443-470
[I] H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384
[IS] H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tôhoku Math. J., 47(1995), 227-250
[L] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Math. 69, Pitman, Boston-London-Melbourne, (1982)

[^0]: ＊Department of Mathematics，Hokkaido University，Sapporo 060－0810，Japan．Partly sup－ ported by Ministry of Education，Science，Sports and Culture through grant 10304010 for scientific research
 ＊＊Muroran Institute of Technology，27－1 Mizumoto，Muroran 050－8585 Japan

