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Double group construction for $W^{*}$-quantum groups

TAKEHIKO YAMANOUCHI

Department of Mathematics
Faculty of Science

Hokkaido University

Intorduction.

In [Dr], Drinfeld devised an ingenious method, called the double group construc-
tion, which generates a quasitriangular Hopf algebra out of any finite-dimensional Hopf
algebra. This method was used to find solutions to the quantum Yang-Baxter equa-
tion in statistical mechanics. It was Podles’ and Woronowicz [PW] who employed this
method from the viewpoint of operator algebras in oder to define a quantum deforma-
tion of Lorentz group. Later, Baaj and Skandalis [BS] introduced a notion of a Kac
system, using (regular and irreducible) multiplicative unitaries. They showed that one
can equally define the quantum double of a Kac system, and that the framework of Kac
systems is stable under the construction of the quantum double. Afterwards, Nakagami
[N] discussed the double group construction for Woronowicz algebras. The category of
Woronowicz algebras can be naturally regarded as a “subcategory” of Kac systems. In
[N], Nakagami was able to define the quantum double of a compact Woronowicz algebra,
and to show that the double group is again a (noncompact, unimodular) Woronowicz al-
gebra. It is, however, not so transparent how Nakagami’s double construction is related
to Baaj-Skandalis’.

The purpose of this note is to define (construct) the quantum double for $\mathrm{a}\underline{general}$

(quasi) Woronowicz algebra, and to prove that the category of (quasi) Woronowicz
algebras is stable under this construction. We also give a breif description of the dual
of the quantum double, which was left untouched in [N].

1. Definition of a quasi Woronowicz algebra.

In this section, we give a quick review on quasi Woronowicz algebras, introduced in
[Y1]. Quasi Woronowicz algebras are almost like Woronowicz algebras introduced in
[MN]. It is not too much to say that what is true for Woronowicz algebras is equally
true for quasi Woronowicz algebras. Thus, for the general theory of quasi Woronowicz
algebras, we may refer readers to [MN] and [N] (also see [Y1]).

A coinvolutive Hopf-von Neumann algebra is a triple $(\mathcal{M}, \delta, R)$ in which:
(1) $\mathcal{M}$ is a von Neumann algebra;
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(2) $\delta$ is an injective $\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}*$-homomorphism, called a coproluci (or a comultiplica-
tion), from $\mathcal{M}$ into $\mathcal{M}\otimes \mathcal{M}-$ with the coassociativity condition: $(\delta\otimes id_{\lambda 4})0\delta=$

$(id_{(4}\otimes’\delta)0\delta$ ;
(3) $R$ is $\mathrm{a}*$-antiautomorphism of $\mathcal{M}$ , called a coinvolution or a unitary antipode,

such that $R^{2}=id_{\lambda 4}$ and $\sigma \mathrm{o}(R\otimes R)0\delta=\delta \mathrm{o}R$ , where $\sigma$ is the usual flip.

A quasi Woronowicz algebra is a family $\mathrm{W}=(\mathcal{M}, \delta, R, \tau, h)$ in which:

(1) $(\mathcal{M}, \delta, R)$ is a coinvolutive Hopf-von Neumann algebra;
(2) $\tau$ is a continuous one-parameter automorphism group of $\mathcal{M}$ , called the defor-

mation automorphism, which commutes with the coproduct $\delta$ and the antipode
$R$ ;

(3) $h$ is a $\tau$-invariant faithful normal semifinite weight on $\mathcal{M}$ , called the Haar mea-
sure of $\mathrm{W}$ , satisfying the following conditions:
(a) Quasi left invariance: For any $\phi$ in $\mathcal{M}_{*}^{+}$ , we have $(\phi\otimes h)0\delta(x)=h(x)\phi(1)$

for all $x\in \mathrm{m}_{h}^{+}$ ;
(b) Strong left invariance: For any $x,$ $y\in \mathfrak{n}_{h}$ and $\phi\in\lambda 4_{*}$ which is analytic

with respect to the adjoint action of the deformation automorphism $\tau$ on $\mathcal{M}_{*}$ ,
the following equality holds:

$(\phi\otimes h)((1\otimes y^{*})\delta(x))=(\phi 0\tau_{-i/2}\mathrm{o}R\otimes h)(\delta(y^{*})(1\otimes x))$ .

(c) Commutativity: $h\mathrm{o}\sigma_{t}^{h\circ R}=h$ for all $t\in \mathrm{R}$ (or, $e$quivalently, $h\mathrm{o}R\mathrm{o}\sigma_{t}^{h}=h\mathrm{o}R$ ).

We say that a quasi Woronowicz algebra $\mathrm{W}=(\mathcal{M}, \delta, R, \tau, h)$ is unimodular (resp.
compact) if $h=h\mathrm{o}R$ (resp. $h$ is bounded).

Readers should note that only difference between a Woronowicz algebra and a quasi
Woronowicz algebra is whether one requires that the weight $h$ should be left invariant or
that it should be quasi left invariant. In other words, in the definition of a Woronowicz
algebra, one requires that $h$ should satisfy $(\phi\otimes h)0\delta(x)=h(x)\phi(1)$ for all $\phi\in \mathcal{M}_{*}^{+}$

and all $x\in \mathcal{M}_{+}$ . Let us briefly tell the reason why we work with quasi Woronowicz
algebras rather than with Woronowicz algebras in this note. In the paper [MN], there is
a crucial gap at the end of the proof of Proposition 3.8. Because of this gap, we do $\underline{not}$

yet know that the dual Woronowicz algebra in the sense of [MN] is really a Woronowicz
algebra. One can, however, easily see that the dual $\underline{is}$ a quasi Woronowicz algebra.
Moreover, the argument in [MN] proving the “duality” goes through perfectly without
any change even if we start with a quasi Woronowicz algebra, not with a Woronowicz
algebra. This is why we stick to working with quasi Woronowicz algebras. Besides,
as shown in [Y1], every matched pair of (locally compact) groups gives rise to a quasi
Woronowicz algebra. Hence there are plenty of examples of quasi Woronowicz algebras.

Remark. After the conference “Hilbert $C^{*}$ -modules and groupoid $C^{*}$ -algebras” at
R.I.M.S., I was informed by Prof. Nakagami that quasi left invariance is actually equiv-
alent to left invariance. Thus a quasi Woronowicz algebra is the same as a Woronowicz
algebra. However, the proof of this equivalence has not yet been available to us, as of
June, 1999. Hence we will distinguish these two objects(notions) at least in this note.

Throughout the remainder of this note, we fix a quasi Woronowicz algebra $\mathrm{W}=(\mathcal{M}$ ,
$\delta,$ $R,$ $\tau,$ $h)$ . We always think of $\mathcal{M}$ as represented on the Hilbert space fl, constructed
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from the weight $h$ by the GNS construction. We denote by $\triangle$ and $J$ the modular
operator and the modular conjugation of $h$ , respectively. By the commutativity $\mathrm{o}\mathrm{f}h$ ,
there exists a non-singular positive self-adjoint operator $Q$ on $\mathfrak{H}$ affiliat $e\mathrm{d}$ with the
centralizer $\mathcal{M}_{h}=\{x\in \mathcal{M} : \sigma_{t}^{h}(x)=x(t\in \mathrm{R})\}$ of $h$ such that the Connes’ Radon
Nikodym derivative $(D(h\mathrm{o}R) : Dh)_{t}$ satisfies $(D(h\mathrm{o}R) : Dh)_{t}=Q^{it}$ for $t\in$ R. In
the notation in $[\underline{\mathrm{M}}\mathrm{N}]$ , we have $Q=\rho^{-1}$ . We write $W$ for the $Kac$ -Takesaki operator
of W. As usual, $\mathrm{W}=(\overline{M},\hat{\delta},\hat{R},\hat{\tau},\hat{h}\underline{)}$ stands for the quasi Woronowicz algebra dual
to W. The Kac-Takesaki operator of $\mathrm{W}$ is denoted by $\overline{W}$ . Let $\triangle^{\wedge}$ and $\hat{J}$ designate the
modular objects associated with the Haar measure $\hat{h}$ , which are regarded as acting on
the Hilbert space fi.

2. Hopf-von Neumann algebra structure on $\mathcal{M}\otimes\overline{\mathcal{M}}-$.
In this section, we shall $e$quip the tensor product $e\vee:=\mathcal{M}\otimes\overline{\mathcal{M}}-$ with a Hopf-von

Neumann algebraic structure. The method for this is exactly the same as the one set
out in Section 2 of [N]. But, here, we will reconsider it more carefully along the line of
argument given in [BS, Section 8].

Let $\mathrm{X}=(\overline{W}’)^{*},$ where $\overline{W}’$ stands for the Kac-Takesaki operator associated with the
commutant of the dual of the given quasi Woronowicz algebra W. Then set

$\mathrm{Y}_{0}$ $:=\Sigma \mathrm{X}^{*}\Sigma$ , $Z_{0}:=\Sigma \mathrm{X}(u\otimes u)\mathrm{X}^{*}(u\otimes u)\Sigma$ .

Here $u$ is the self-adjoint unitary given by $u=J\hat{J}=\hat{J}J$ . Then, by [ $\mathrm{B}\mathrm{S},$ Th\’eor\‘eme 8.17],
the family $\{(\mathrm{B}, \mathrm{X}, u), (B, \mathrm{Y}_{0}, u), Z_{0}\}$ forms a matched pair of Kac systems. ( $\mathrm{P}\mathrm{r}e$cisely
speaking, each of these systems may not be a Kac system, since the Kac-Takesaki
operator $W$ is not in general regular in the sense of [BS]. But this will not be any harm
for our purpose. We remark that the Kac-Takesaki operator is always a manageable
multiplicative unitary in the sense of [W].) Hence, by [$\mathrm{B}\mathrm{S}$ , Proposition 8.14], if we set
$V_{0}:=(Z_{0})_{12}^{*}\mathrm{X}_{13}(Z_{0})_{12}(\mathrm{Y}_{0})_{24}$ , then the map $\delta_{\tau}$ given by

$\delta_{\tau}(X):=V_{0}(X\otimes 1)V_{0}^{*}$ $(X\in S_{\mathrm{x}^{\otimes S_{\mathrm{Y}_{0}}’’)}}^{;;-}$

defines a coproduct on the von Neumann algebra $S_{\mathrm{X}}’’\otimes S_{\mathrm{Y}_{0}}’’-$ . In our notation, we have

$S_{\mathrm{X}}’’=\mathrm{W}$, $S_{\mathrm{Y}_{0}}’’=\overline{\mathrm{W}}^{\prime\sigma}$ .

Since we want to work with $N:=\mathcal{M}\otimes\overline{\mathcal{M}}-$ rather than $\mathcal{M}\otimes\overline{\mathcal{M}}’-$ , we modify the above
construction in the following way. First we note that the map Ad $u$ gives a quasi
Woronowicz algebra isomorphism from $\overline{\mathrm{W}}$ onto $\overline{\mathrm{W}}^{\prime\sigma}$ (cf. $[\mathrm{N}$ , Section 4]). So, through
the isomorphism $id_{\lambda 4}\otimes \mathrm{A}\mathrm{d}u$ , everything that is true for the above construction can be
translat $e\mathrm{d}$ in terms of our setting $N=\mathcal{M}\otimes\overline{\mathcal{M}}-$ . Thus we put

$\mathrm{Y}:=(u\otimes u)\mathrm{Y}_{0}(u\otimes u)$ , $Z$ $:=(1\otimes u)Z_{0}(1\otimes u)$ .
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Then the family $\{(fl, \mathrm{X}, u), (fl, \mathrm{Y}, u), Z\}$ forms a matched pair. Hence the map $\gamma$ given
by $\gamma:=\sigma \mathrm{o}$ Ad $Z$ defines an “inversion” on $\mathcal{M}$ and $\overline{\mathcal{M}}$ (in the sense of [BS]). Namely, $\gamma$

is an isomorphism from $A4\otimes\overline{\mathcal{M}}-$ onto $\overline{\mathrm{A}4}-\otimes \mathcal{M}$ satisfying

(2.1) $\{$

$(\gamma\otimes id_{\mathcal{M}})\mathrm{o}(id_{\mathcal{M}}\otimes\gamma)\mathrm{o}(\delta\otimes id_{\hat{\mathcal{M}}})=(id_{\hat{\mathcal{M}}}\otimes\delta)\mathit{0}\gamma$,

$(id_{\hat{\mathcal{M}}}\otimes\gamma)\mathrm{o}(\gamma\otimes id_{\hat{\mathrm{A}}4})\mathrm{o}(id_{\lambda 4}\otimes\hat{\delta})=(\hat{\delta}\otimes id_{d} 4)0\gamma$ .
Then the map

$\delta^{N}:=(id_{\mathcal{M}}\otimes\gamma\otimes id_{\hat{\mathrm{A}}\mathrm{t}})\mathrm{o}(\delta\otimes\hat{\delta})$

defines a coproduct on $N$ . Moreover, with $V=Z_{12}^{*}\mathrm{X}_{13}Z_{12}\mathrm{Y}_{24}$ , we have
$\delta^{N}(x)=V(x\otimes 1_{\mathfrak{H}\otimes \mathfrak{H}})V^{*}$ $(x\in N)$ .

It can be verified that $Z=\hat{\mathrm{X}}\tilde{\mathrm{X}}^{*}$ with the notation in [BS, Section 6]. Since $\tilde{\mathrm{X}}=$

$(u\otimes u)W^{*}(u\otimes u)$ belongs to $\mathcal{M}’\otimes-\overline{\mathcal{M}}’$ , the map $\gamma$ actually equals $\sigma \mathrm{o}$ Ad $\hat{\mathrm{X}}$ . Since
$\hat{\mathrm{X}}=W^{*}$ , the inversion $\gamma$ coincides with $\sigma_{W}$ introduced in [$\mathrm{N}$ , Section 2]. Therefore,
our coproduct $\delta^{N}$ is the same as Nakagami’s.

Theorem 2.2. Retain the notation established ab$ove$ . Let
$R^{N}:=(R\otimes\hat{R})\mathrm{o}AdW^{*}$ ,

$\tau_{t}^{N}:=\tau_{t}\otimes\hat{\tau}_{t}$ .
Then $(N_{2}\delta^{\Lambda^{(}}, R^{N})$ is a coinvolutive Hopf-von Neumann algebra. Each $\tau_{t}^{N}i\epsilon$ a coinvo-
lutive Hopf-von Neumann algebra automorphism, $i.e.$ , it satisfies

$(\tau_{t}^{N}\otimes\tau_{t}^{N})0\delta^{\Lambda’}=\delta^{N}0\tau_{t}^{N}$ ,
$R^{N}\mathrm{o}\tau_{t}^{N}=\tau_{t}^{N}\mathrm{o}R^{N}$

for any $t\in \mathrm{R}$ .
Proof. This follows from a combination of Lemma 5 and Lemma 6 of [N]. $\square$

3. Haar measure for $(N, \delta^{N}, R^{N}, \tau^{N})$ .
The purpose of this section is to give a Haar measure $h^{N}$ for the coinvolutive Hopf-

von Neumann algebra $(N, \delta^{N}, R^{N})$ with the deformation automorphism $\tau^{N}$ defined in
the previous section. We can learn from [N] what $h^{N}$ should be. Thus, following [N],
we let $h^{\Lambda’}$ be the faithful normal semifinite weight on $N=\mathcal{M}\otimes\overline{\mathcal{M}}$ defined by

$h^{N}:=h\otimes\hat{h}0\hat{R}$ .
The reason why $h^{N}$ worked in Nakagami’s case is that $h^{N}$ equals the weight $\Psi$ $:=$

$(h\otimes\hat{h})0$ Ad $W^{*}$ when $\mathrm{W}$ is a compact Woronowicz algebra. This fact enabled him to
prove that $h^{N}$ in fact satisfies left invariance, strong left invariance and commutativity.
However, this equality can be proven to be false in general by looking at examples
obtained from matched pairs of groups. Thus the question is “How much are $h^{N}$ and $\Psi$

different in the general setting ?” Our philosophy is that the difference can be measured
in terms of of the Radon-Nikodym derivative. This derivative can be explicitly computed
as follows:
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Proposition 3.1. The weight $h^{N}$ is $\sigma^{\Psi}$ -invariant. The Radon Nikodym derivative
$(Dh^{N} : D\Psi)$ of $h^{N}$ witi respect to $\Psi$ is given by

$(Dh^{N} : D\Psi)_{t}=W(Q^{it}\otimes 1)W^{*}$ .

In particular, $we$ A$aveh^{N}=\Psi(P\cdot)$ , wiere $P$ is the nonsing$ul\mathrm{a}r$ posiiive self-adjoint
$op$erator defined by $P:=W(Q\otimes 1)W^{*}$ .

Moreover, we can prove

Theorem 3.2. The $\iota v\mathrm{e}\mathrm{i}\mathrm{g}hth^{N}$ is $R^{N}$-invaxiant, i.e.,

$h^{N}=h^{N}\mathrm{o}R^{N}$ .

In [$\mathrm{N}$ , Lemma 8], Nakagami proved that $h^{N}$ is nothing but $\Psi$ , by using the sturcture
of the dual algebra $\overline{\mathcal{M}}$ when $\mathrm{W}$ is compact. But Proposition 3.1 fully explains why $h^{N}$

equals $\Psi$ in the case of a compact Woronowicz algebra, and that one does not need to
use the structure of $\overline{\mathcal{M}}$ to obtain the equality. It also says that $h^{N}$ coincides with $\Psi$ so
long as $\mathrm{W}$ is unimodular. Powerfuless of Proposition 3.1 is that we can go “back and
forth” between $h^{N}$ and $\Psi$ , since we have $h^{N}=\Psi(P\cdot)$ . Thanks to this, we can prove
that $h^{N}$ is both quasi left invariant and strong left invariant, by applying Nakagami’s
argument in [N] with a suitable $\mathrm{m}o$dification. Therefore we get

Theorem 3.3. The system $(N, \delta^{N}, R^{N}, \tau^{N}, h^{N})$ is a unimodular quasi Woronoavicz
alge$bra$ .

Definition 3.4. We call the unimodular quasi Woronowicz algebra constructed above
the quanium double (group) of the given quasi Woronowicz algebra $\mathrm{W}$ , and denote it by
$D(\mathrm{W})$ . The construction is referred to as the double group construction.

Corollary 3.5. If a $\mathrm{q}u\mathrm{a}si$ Woronowicz alge $\mathrm{b}r\mathrm{a}\mathrm{W}$ is a $Kac$ algebra, then so is the
quantum double $D(\mathrm{W})$ .

Proof. We retain the notation introduced so far. Note first that a quasi Woronowicz
algebra $\mathrm{W}$ is a Kac algebra if and only if $\sigma^{h}=\sigma^{h\circ R}$ and the deformation automorphism
is trivial. By Theorem 3.2, we certainly have $\sigma^{h^{N}}=\sigma^{h^{N}\mathrm{o}R^{N}}$ If $\mathrm{W}$ is a Kac algebra,
then $\tau^{N}$ is trivial. Hence the quantum double $D(\mathrm{W})$ is a Kac algebra. $\square$

4. The dual of $D(\mathrm{W})$ .
This section is concerned with the dual of the quantum double $D(\mathrm{W})$ . For this, we

first clarify how $W$ and $\overline{W}$ etc. are related to the Kac-Takesaki operator $W^{N}$ of the
double group $D(\mathrm{W})$ . This is not at all a trivial task, since $W^{N}$ “lives” in a different
Hilbert space from the one where $W$ and $\overline{W}$ live. But, by definition, these two Hilbert
spaces are canonically isomorphic. Thus, for our purpose, one first has to identify
this canonical isomorphism. In any case, through this isomorphism, the Kac-Takesaki
operator $W^{N}$ is described as follows:
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Theorem 4.1. The $Kac$-Takesaki operator $W^{N}$ of the quantum double $D(\mathrm{W})$ equals
$Z_{34}^{*}\overline{W}_{24}Z_{34}W_{13}$ .
Remark. Theorem 4.1 fully answers the problem raised in Section 2 of [$\mathrm{N}$ , Page
532]. In other words, Theorem 4.11 gives an explicit relation between the Kac-Takesaki
operators for a general quasi Woronowicz algebra $\mathrm{W}$ and its quantum double $D(\mathrm{W})$ .

Once we have Theorem 4.1, we can describe the dual $\hat{N}$ and its commutant $\hat{N}’$ .

Corollary 4.2. Tie quasi Woronowicz algebra $\hat{N}$ dual to $N$ is generated by $\overline{\mathcal{M}}\otimes \mathrm{C}$

and $Z^{*}(\mathrm{C}\otimes \mathcal{M})Z$ .

Proposition 4.3. The modular conjugation $\hat{J}_{N}$ associated with $\overline{D(\mathrm{W})}$ is $(\hat{J}\otimes J)Z=$

$Z^{*}(\hat{J}\otimes J)$ .

Corollary 4.4. The commutant $\hat{N}’$ of the dual $\hat{N}$ is genera$ted$ by $Z^{*}(\overline{\mathcal{M}}’\otimes \mathrm{C})Z$ and
$\mathrm{C}\otimes \mathcal{M}’$ .

Proof. The assertion easily follows from a combination of Corollary 4.2 and Proposi-
tion 4.3. $\square$

In what follows, we set $\Sigma_{34}^{12}:=\Sigma_{13}\Sigma_{24}$ . In $\dot{\mathrm{o}}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$ words, $\Sigma_{34}^{12}$ is the unitary on
$fi\otimes fl\otimes ff\otimes fi$. given by $\Sigma_{34}^{12}(\xi\otimes\eta)=\eta\otimes\xi$ for $\xi,$ $\eta\in\ovalbox{\tt\small REJECT}\otimes \mathrm{B}$ .

Theorem 4.5. Witb the uniiary $V$ deffied in Section 2, $we$ have

$(\hat{J}_{N\otimes}\hat{J}_{N})\Sigma_{34}^{12}V\Sigma_{34}^{12}(\hat{J}_{N}\otimes\hat{J}_{N})=W^{N}$.

Therefore, $V$ is the adjoint of the $Kac$-Takesaki operator $W(\overline{D(\mathrm{W})}’)$ of the $c$ommutant
of the dual quasi Woronowicz alge $\mathrm{b}r\mathrm{a}$.

As a direct consequence of Theorem 4.5, we immediately obtain the proposition that
follows. It is merely a rephrase of a part of Proposition 8.14 and Proposition 8.19 in
[BS].

Proposition 4.6. (1) For any $z\in\overline{\mathcal{M}}’$ and $b\in \mathcal{M}’$ , put $\pi(z):=Z^{*}(z\otimes 1)Z,$ $\pi’(b):=1\otimes$

$b$ . TAen $\pi:\overline{\mathcal{M}}’arrow\hat{N}’$ and $\pi’$ : $\mathcal{M}^{l}arrow\hat{N}’$ are Hopf-von Neumann algebra morpfi$sms$,
i.e., we $h\mathrm{a}ve$

$(\pi\otimes\pi)0\hat{\delta}’(z)=(\overline{\delta^{N}})’0\pi(z)$ ,
$(\pi’\otimes\pi’)0\delta’(b)=(\overline{\delta^{N}})’0\pi’(b)$.

(2) Set $\mathcal{R}:=Z_{12}^{*}\mathrm{X}_{14}Z_{12}$ . Then $\prime \mathcal{R}$ is a unitary in $\hat{N}’$ . One also $h$as

$(id\otimes(\overline{\delta^{N}})’)(R)=\mathcal{R}_{13}\mathcal{R}_{12}$ , $((\overline{\delta^{N}})’\otimes id)(R)=\mathcal{R}_{13}R_{23}$ .

For any $x\in\hat{N}’$ , we have $\sigma \mathrm{o}(\overline{\delta^{N}})’(x)=\mathcal{R}(\overline{\delta^{N}})’(x)\mathcal{R}^{*}$ . Moreover, it satisfies $t\mathrm{A}e$

$qu$antum Yang-Baxter equation: $\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23}=\mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}$ .
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