Title	Algebraic curves and bal anced \＄n\＄－ary designs（A lgebraic Combinatorics）
Author（s）	Fuji－Hara，Ryoh；Shinohara，Satoshi
Citation	数理解析研究所講究録（1999），1109：59－66 Issue Date 1999－08 URL http：／hdl．handle．net／2433／63310 Right
Type	Departmental Bulletin Paper
Textversion	publisher

Algebraic Curves and Balanced n－ary Designs

筑波大学社会工学系 藤原 良（Ryoh Fuji－Hara）
筑波大学社会工学研究科
篠原 聡（Satoshi Shinohara）

Abstract

Let \mathcal{V} be a set of points and \mathcal{B} a collection of multi－subsets（called blocks）of \mathcal{V} each of size k ．A balanced n－ary design is a pair $(\mathcal{V}, \mathcal{B})$ such that each pointt occurs at most $n-1$ times in any block，and each unordered pair of distinct points occurs λ times in the blocks of \mathcal{B} ．Note that in the block $\{x, x, y\}$ ，the pair $\{x, y\}$ is counted twice in the block．We show here some constructions of balanced n－ary designs by using algebraic curves over finite fields．

1 Introduction

Let \mathcal{V} be a set of v points and \mathcal{B} a collection of multi－subsets，called blocks， of \mathcal{V} ．A balanced n－ary design is a pair $(\mathcal{V}, \mathcal{B})$ satisfying
（1）each block is of a constant size k ，
（2）each point occurs at most $n-1$ times in any block $B \in \mathcal{B}$ ，and
（3）each unordered pair of distinct points occurs exactly λ times in the blocks of \mathcal{B} ．

Note that，for example，the block size of $B=\{x, x, x, y, y, z\}$ is 6 since the points x, y and z occur 3 times，twice and once，respectively．And in the
block B the pairs $\{x, y\},\{y, z\}$ and $\{x, z\}$ are counted 6,2 and 3 times, respectively.

Let $N=\left(n_{i j}\right)$ be a $|\mathcal{V}| \times|\mathcal{B}|$ matrix, where $n_{i j}$ is the number of occurrences of the i-th point in the j-th block. We consider N as the incidence matrix of a balanced n-ary design. Using the incidence matrix, the conditions in the definition of a balanced n-ary design can be rewitten as follows:
(1') $\sum_{i} n_{i j}=k$ for any j,
(2') $0 \leq n_{i j} \leq n-1$ for any i, j, and
$\left(\mathbf{3}^{\prime}\right) \sum_{j} n_{i j} n_{i^{\prime} j}=\lambda$ for any unordered pair $\left\{i, i^{\prime}\right\}, i \neq i^{\prime}$.

Example 1.1. Let $\mathcal{V}=\{a, b, c, d, e\}$ and \mathcal{B} be the collection of the following blocks:

$$
\begin{aligned}
& \{a, b, b, d, d, e, e, e\},\{a, a, c, c, c, d, e, e\}, \\
& \{b, b, b, c, c, d, d, e\},\{a, a, b, c, c, d, d, d\} \\
& \{a, a, a, b, b, c, e, e\},\{a, c, c, d, d, d, e, e\}, \\
& \{a, a, b, b, b, c, d, d\},\{b, b, c, c, d, e, e, e\}, \\
& \{a, a, b, b, c, c, c, e\},\{a, a, a, b, d, d, e, e\}
\end{aligned}
$$

Then $(\mathcal{V}, \mathcal{B})$ is a balanced 4 -ary (quaternary) design with 5 points, 10 blocks
and the block size is 8 . The incidence matrix of the above balanced 4 -ary design is

$$
\left[\begin{array}{llllllllll}
1 & 2 & 0 & 2 & 3 & 1 & 2 & 0 & 2 & 3 \\
2 & 0 & 3 & 1 & 2 & 0 & 3 & 2 & 2 & 1 \\
0 & 3 & 2 & 2 & 1 & 2 & 1 & 2 & 3 & 0 \\
2 & 1 & 2 & 3 & 0 & 3 & 2 & 1 & 0 & 2 \\
3 & 2 & 1 & 0 & 2 & 2 & 0 & 3 & 1 & 2
\end{array}\right],
$$

and for any pair $\left\{i, i^{\prime}\right\}, i \neq i^{\prime}$,

$$
\sum_{j} n_{i j} n_{i^{\prime} j}=23=\lambda
$$

Let $\rho_{s}^{(i)}$ be the number of blocks containing the i-th point exactly s times, i.e. the number of the entry s in the i-th row of the incidence matrix. If $\rho_{s}^{(i)}=\rho_{s}$ for all i then the design is said to be regular. If a balanced n-ary design is regular then the replication number R_{i} of the i-th point is a constant number R, since

$$
R_{i}=\sum_{r=0}^{n-1} r \rho_{r}^{(i)}=\sum_{r} r \rho_{r}=R .
$$

Balanced n-ary designs were first introduced by Tocher [3] in a statistical paper. The interested reader is referred to $[1,2]$ for their excellent surveys.

2 Algebraic curves

Let q be a prime power, and $G F(q)$ a finite field of order q. A divisor D on a curve C is a formal sum $\sum_{P \in C} m_{P} P, m_{P} \in Z$. The set of divisors on C is
denoted by $\operatorname{Div}(D)$. The support of a divisor D, denoted by $\operatorname{Supp}(D)$, is the set of points satisfying $m_{P} \neq 0$. A divisor D is said to be efficient if $m_{P} \geq 0$ for all P, and denoted by $D \geq 0$. The degree of D is $\operatorname{deg} D=\sum_{P} m_{P}$. Let $D=\sum_{P} m_{P} P$ and $E=\sum_{P} m_{P}^{\prime} P$. Then $D+E=\sum_{P}\left(m_{P}+m_{P}^{\prime}\right) P$.

Let $\operatorname{Rat}(C)$ be the set of rational functions over a curve C. The divisor of a rational function $f \in \operatorname{Rat}(C)$ is $\operatorname{div}(f)=\sum_{P \in C} m_{P} P$, where m_{P} is the order of f at P. For a divisor D, a divisor E is said to be equivalent to D, denoted by $E \sim D$, if there exists a rational function $f \in \operatorname{Rat}(C)$ satisfying $E=D+\operatorname{div}(f)$.

Let C be a curve defined by $F=0$, where F is a polynomial over a finite field $G F(q)$. The divisor of the curve C is the divisor of F. Note that $\operatorname{div}(C)=\operatorname{div}(F) \geq 0$. When the divisor of C is written as $\operatorname{div}(C)=\sum_{p} m_{p} p$, the intersection multiplicity of a point p on a curve C^{\prime} with the curve C is the order of F at p, say m_{p}.

Let $L(D)=\{f \in \operatorname{Rat}(C): \operatorname{div}(f)+D \geq 0\} \cup\{0\}$. It is well-known that $L(D)$ is a linear space with a finite dimension over an extension field $G F\left(q^{m}\right)$ of $G F(q)$.

3 Algebraic curves and balanced n-ary designs

Let C be an irreducible curve defined over $G F(q)$ and $\mathcal{C}=\left\{C_{1}, \cdots, C_{b}\right\}$ a set of b curves defined over an extension $G F\left(q^{m}\right)$ of $G F(q)$. Let V_{j} be a set of intersection points of $C_{j} \in \mathcal{C}$ with C, and $\mathcal{V}=\bigcup_{j} V_{j}=\left\{p_{1}, \cdots, p_{v}\right\}$.

Let $n_{i j}$ denotes the intersection multiplicity of a point p_{i} with a curve C_{j}. We consider the $v \times b$ matrix $\left(n_{i j}\right)$ as the incidence matrix. To satisfy the conditions of balanced n-ary designs, we have to choose suitable C, \mathcal{C} and \mathcal{V}.

The first condition is required for the block size to be constant, i.e., $\sum_{i} n_{i j}=k$ for any curve $C_{j} \in \mathcal{C}$. Let D be a divisor on C and $\mathcal{D}=$ $\{\operatorname{div}(f)+D: f \in L(D) \backslash\{0\}\}=\left\{E_{1}, \cdots, E_{b}\right\}$. Note that each element of \mathcal{D} is the divisor of a curve.

Lemma 3.1. Let \mathcal{C} be the set of curves such that their divisors are the elements of \mathcal{D}. For any curve of \mathcal{C}, the total number of multiplicities of its intersection points with C is a constant number k.

Proof. The set \mathcal{D} is the set of efficient divisors being equivalent to D, i.e.,

$$
\begin{aligned}
\mathcal{D} & =\{\operatorname{div}(f)+D: f \in L(D) \backslash\{0\}\} \\
& =\{E \in \operatorname{Div}(C): E \geq 0, E \sim D\}
\end{aligned}
$$

It is well-known that if $E \sim D$ then $\operatorname{deg} D=\operatorname{deg} E$. Hence for any j

$$
\sum_{i} n_{i j}=\operatorname{deg} E_{j}=\operatorname{deg} D=k
$$

We assume here that we choose \mathcal{C} as above, and that the point set \mathcal{V} of a design is the set $\mathcal{V}=\bigcup_{E \in \mathcal{D}} \operatorname{Supp}(E)$. The second condition says that each point of the design occurs at most $n-1$ times. Since the intersection multiplicities of points on curves are always positive, this condition is automatically satisfied from Lemma 3.1.

Theorem 3.2. Let C be a curve defined over a finite field, D a divisor on $C, \mathcal{D}=\{\operatorname{div}(f)+D: f \in L(D) \backslash\{0\}\}=\left\{E_{1}, \cdots, E_{b}\right\}, \mathcal{V}=\bigcup_{E \in \mathcal{D}} \operatorname{Supp}(E)$ $E_{j}=\sum n_{i j} P_{i}, P_{i} \in V$. If $\operatorname{deg} C \leq 2$ and $D \geq 0$ then $\left(n_{i j}\right)$ is the incidence matrix of a balanced n-ary design $(\mathcal{V}, \mathcal{D})$.

Proof. We only have to check whether the third condition of balanced n-ary designs is satisfied. Let E_{j} be the j-th element of \mathcal{D}. Assume that D and E_{j} 's have the forms $D=\sum_{i} m_{i} P_{i}$ and $E_{j}=\operatorname{div}\left(f_{j}\right)+D$, respectively. Let $\operatorname{div}\left(f_{j}\right)=\sum_{i} e_{i j} P_{i}$. Then each entry $n_{i j}$ of the incidence matrix $\left(n_{i j}\right)$ is $m_{i}+e_{i j}$, since $\operatorname{div}\left(f_{j}\right)+D=\sum_{i} e_{i j} P_{i}+D=\sum_{i}\left(m_{i}+e_{i j}\right) P_{i}$. For any pair
$\left\{i, i^{\prime}\right\}$, we have

$$
\begin{aligned}
& \sum_{j} n_{i j} n_{i^{\prime} j} \\
= & \sum_{j}\left(m_{i}+e_{i j}\right)\left(m_{i^{\prime}}+e_{i^{\prime} j}\right) \\
= & \sum_{j}\left(m_{i} m_{i^{\prime}}+m_{i} e_{i^{\prime} j}+m_{i^{\prime}} e_{i j}+e_{i j} e_{i^{\prime} j}\right) \\
= & b m_{i} m_{i^{\prime}}+m_{i} \sum_{j} e_{i^{\prime} j}+m_{i^{\prime}} \sum_{j} e_{i j}+\sum_{j} e_{i j} e_{i^{\prime} j} .
\end{aligned}
$$

Let $\lambda(a, b)$ be the number of j satisfying $\left(e_{i j}, e_{i^{\prime} j}\right)=(a, b)$. Then we have

$$
\sum_{j} e_{i j} e_{i^{\prime} j}=\sum_{(a, b)} a b \lambda(a, b) .
$$

When the degree of base curve C is less than or equal to 2 , it can be easily seen that if $a+b=c+d$ then $\lambda(a, b)=\lambda(c, d)$. Moreover we can see that

$$
\sum_{j} e_{i^{\prime} j}=\sum_{j} e_{i j}=\sum_{a} a \lambda(a),
$$

where $\lambda(a)$ is the number of j satisfying $n_{i j}=a$. Since both of $\lambda(a, b)$ and $\lambda(a)$ are independent of $\left\{i, i^{\prime}\right\}$ chosen, we have

$$
\sum_{j} n_{i j} n_{i^{\prime} j}=\lambda
$$

and we can conclude that the third condition in the definition of a balanced n-ary design is also satisfied.

References

[1] E. J. Billington, Balanced n-ary designs: combinatorial survey and some new results, Ars Combin. 17A (1984), $37-72$.
[2] E. J. Billington, Designs with repeated elements in blocks: a survey and some recent results, Congr. Numer. 68 (1989), 123-146.
[3] K. D. Tocher, Design and analysis of block experiments, J. R. Statist. Soc. B14 (1952), 45 - 100.

