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1 Introduction

Let G be a finite group. For a subset S of G, let S™!' = {z7'|z € S},
S = Y iesx(€ C[G]). Let G = Sy U S; U S, be a partition of G of order n?
such that Sy = {1}, 51 = 57", S = S5 and S;S5; = Y k=0t Sk, where pF s
are nonnegative integers (0 < 7, j < 2). The subring ® =< 5, 5,5, > of
Z|GY is called a three-dimensional (3D) Schur ring over G. It is well known
that the concept of a (3D) Schur ring is equivalent to that of a strongly
regular Cayley graph(cf.[1]). We say that R is rational if the eigenvalues
of the corresponding strongly regular Cayley graph are rational. ® is called
primitive if S; generates G for all 4 # 0. R is said to be of (n,r)-type if
|S1] = r(n —1) for some r (1 < r < n). We here note that by definition R is
a Schur ring of (n,7) - type if and only if it is of (n,n — r + 1)-type.
We now give an example.

Example 1 Let G be an group of order n* . Let {Hy,H,,...,H,} (1 <
r < n) be a partial spread of G with degree r. We set Sy = {1},85; =
HiUH,U...H, —{1},S, = G- S,US,. Then < Sy, 5,5, > is a Schur
ring of (n,r)-type over G.

We note that the Schur ring of the example above satisfies an equation

S =r(n-1)S+ (n+r?~3r)8 +r(r— 1)52_ [A]



A Schur ring of (n,r)-type is said to be of Latin square type [2] if it
satisfies [A]. '
We state a conjecture due to [2].

Conjecture 1 Let R =< Sy, Sy, Sy > be a Schur ring of (n,r)-type over an
abelian group G of order n®. Then R is of Latin square type .

Hiramine [2] verified the conjecture for the case n > f'(r), where f'(r) =
4% — 8r1 — 273 —10r? = 3r — 1.

In this note we shall verify the conjecture for the case n > f(r), where
fr)y=r=2rt 4+ 4+3r% —r.
Notation. We follow the notation and terminology of [2].

2 Preliminary results

Assume that ® =< S;, 51, Sp > is a Schur ring of (n, r)-type over a group G

of order n?. By [3] we have

Lemma 1 The following hold.
(i) R is primitive unless r € {1, n}.
(i1) R is rational.

In the rest of paper let us assume that R =< S;, Sy, S, > is a Schur ring
of (n,r)-type over an abelian group G of order n?. We have the following,
which is due to [2].

Lemma 2 Set 5”12 = aSy + bS; + ¢S,, where a,b and ¢ are some nonnegative
integers. Then,

(i) a=r(n—1) and (c—r)n+r*+ (b—c+1)r+c=0.

(i) Ifn > 2r —1, then c is even.

(i) Set m = \/(b —¢)2+4(rn—r —c). Then m is an integer and m|n?.
Lemma 3 ¢ # 0.

Proof. If ¢ = 0, then R is non-primitive. This fact contradicts Lemma 1 (ii).
]
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Lemma 4 Ifr =1, then the cbnjecture 18 true.

Proof. If r =1, then (n—1)> = (n — 1) + b(n — 1) + ¢(n® — (n — 1)). From
this we see that ¢ = 0 and b = n — 2, which show that R is of Latin square
type. ‘ : ‘ |

'3 Sketch of Proof

If c=7r%—r, then b=n+7%—3r and so the conjecture is true. Our proof is
by contradiction. Therefore, we assume that 2 <7 <n-1,and ¢ # r% — 1.

Lemma 5 c # r2.

Proof. See [2]. : o
Lemma 6 2<c¢<r?—1.

Proof. By Lemma 2 (i),

. = T2+r3—2r2—(b+1)7‘
n—r+1

=22 —p

fr)y—r+1

< 1?41

< r*4+

Hence ¢ < 72 — 1 by Lemma 5. Lemmas 3 and 2 show that 2 < c. n

Assume g = r* — ¢, where 1 < g <7 — 2. Set d = g(n + 1)/r. Then d
is a positive integer. After some calculations we have the following lemma,
‘which is due to Hiramine [2].

Lemma 7
(9d+2* = 2rg = g + gm)|2(r — 9)"(* ~ ).

Proof. See [2]. n
We now distinguish two cases.

(i) The case when 2 < ¢ < 72 — 7. The following is a key to our proof of the
conjecture.
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Lemma 8 Ifn > f(r), then

m2—n? = ((r—c/r)>=1)n>+ (2c/r* + 2¢/r +2r — 2r%)n
+ 1-2c+3/r?+2c/r —2r +7°
> 0.
Proof. Set h(n) = r2(m? —n?). Recall that g =72 —c. Sor+1<g <7’ ~1.
Hence
_ r2(1 —2c+ c/r® + 2¢/r — 2r +7%) > 0. (B)
Observe that in case (i)
(r* —c)? - r* > 0. (C)
From (B) and (C) it follows that
h(n) > K(n)=((r*—c)? —r)n®+ (2 + 2cr + 20° —2r")n

= ”[((T2 - 3)2 - 7'2)71 +2¢% 4+ 2¢r + 2r° — 27"4]
> 0, when n > —1(2¢2+ 2er +2r® — 2rY) /((r* — ¢)* — r?).

On the other hand, since r +1 < g < 72 — 1, it follows that 273 — 3r — 1 > '

—1(2¢2 + 2¢r 4213 — 2r") /((r? — ¢)? = r%). Hence if n(> f(r)) > 2r* = 3r -1,
then h(n) > 0. This completes the proof of this lemma. ‘ n
So if n > f(r), then m > n. From this inequality and Lemma 7 we have

gd +2r2 — 2rg — g+ gn < 2(r — g)*(r* — g). (D)
Since gd > gn, substitﬁtion of gn in gd of the inequality (D) yields
2gn < 2(r — g)*(r* —g) = 2r* = 2rg + g.
So

n<|(r—g)*r*-g)—r*—rg+g/2]/9. (E)

Since r + 1 < g < r? — 2, the right hand side of (E) is less than 7% + 7° —
5r2 — 7r — 1/2, which contradicts our assumption. So we complete the proof
of our conjecture in this case.

(ii) The case when 72 — 7 < ¢ < r? — 1. Elaborate arguments show that if
n > f(r), then gn/r < m. From this inequality and Lemma 7 we have a
contradiction, so we complete the proof of our conjecture. n
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