

	Tryoto diliversity research illiorination repository	
Title	Another proof of Hiramine's theorem on three-dimensional Schur rings (Algebraic Combinatorics)	
Author(s)	Atsumi, Tsuyoshi	
Citation	数理解析研究所講究録 (1999), 1109: 101-105	
Issue Date	1999-08	
URL	http://hdl.handle.net/2433/63306	
Right		
Туре	Departmental Bulletin Paper	
Textversion	publisher	

Another proof of Hiramine's theorem on three-dimensional Schur rings

Tsuyoshi Atsumi(厚見寅司)
Department of Mathematics
Faculty of Science, Kagoshima University, Kagoshima, 890 Japan atsumi@sci.kagoshima-u.ac.jp

1 Introduction

Let G be a finite group. For a subset S of G, let $S^{-1} = \{x^{-1} | x \in S\}$, $\bar{S} = \sum_{x \in S} x \in C[G]$). Let $G = S_0 \cup S_1 \cup S_2$ be a partition of G of order n^2 such that $S_0 = \{1\}$, $S_1 = S_1^{-1}$, $S_2 = S_2^{-1}$ and $\bar{S}_i \bar{S}_j = \sum_{k=0}^2 p_{ij}^k \bar{S}_k$, where p_{ij}^k , are nonnegative integers $(0 \leq i, j \leq 2)$. The subring $\Re = \langle \bar{S}_0, \bar{S}_1, \bar{S}_2 \rangle$ of Z[G] is called a three-dimensional (3D) Schur ring over G. It is well known that the concept of a (3D) Schur ring is equivalent to that of a strongly regular Cayley graph(cf.[1]). We say that \Re is rational if the eigenvalues of the corresponding strongly regular Cayley graph are rational. \Re is called primitive if S_i generates G for all $i \neq 0$. \Re is said to be of (n, r)-type if $|S_1| = r(n-1)$ for some r $(1 \leq r \leq n)$. We here note that by definition \Re is a Schur ring of (n, r) - type if and only if it is of (n, n - r + 1)-type.

We now give an example.

Example 1 Let G be an group of order n^2 . Let $\{H_1, H_2, \ldots, H_r\}$ $(1 \le r \le n)$ be a partial spread of G with degree r. We set $S_0 = \{1\}, S_1 = H_1 \cup H_2 \cup \ldots H_r - \{1\}, S_2 = G - S_0 \cup S_1$. Then $\langle \bar{S}_0, \bar{S}_1, \bar{S}_2 \rangle$ is a Schurring of (n, r)-type over G.

We note that the Schur ring of the example above satisfies an equation

$$\bar{S}_1^2 = r(n-1)\bar{S}_0 + (n+r^2-3r)\bar{S}_1 + r(r-1)\bar{S}_2.$$
 [A]

A Schur ring of (n, r)-type is said to be of Latin square type [2] if it satisfies [A].

We state a conjecture due to [2].

Conjecture 1 Let $\Re = \langle \bar{S}_0, \bar{S}_1, \bar{S}_2 \rangle$ be a Schur ring of (n, r)-type over an abelian group G of order n^2 . Then \Re is of Latin square type.

Hiramine [2] verified the conjecture for the case n > f'(r), where $f'(r) = 4r^5 - 8r^4 - 2r^3 - 10r^2 - 3r - 1$.

In this note we shall verify the conjecture for the case n > f(r), where $f(r) = r^5 - 2r^4 + r^3 + 3r^2 - r$.

Notation. We follow the notation and terminology of [2].

2 Preliminary results

Assume that $\Re = \langle \bar{S}_0, \bar{S}_1, \bar{S}_2 \rangle$ is a Schur ring of (n, r)-type over a group G of order n^2 . By [3] we have

Lemma 1 The following hold.

- (i) \Re is primitive unless $r \in \{1, n\}$.
- (ii) \Re is rational.

In the rest of paper let us assume that $\Re = \langle \bar{S}_0, \bar{S}_1, \bar{S}_2 \rangle$ is a Schur ring of (n, r)-type over an abelian group G of order n^2 . We have the following, which is due to [2].

Lemma 2 Set $\bar{S}_1^2 = a\bar{S}_0 + b\bar{S}_1 + c\bar{S}_2$, where a, b and c are some nonnegative integers. Then,

(i)
$$a = r(n-1)$$
 and $(c-r^2)n + r^2 + (b-c+1)r + c = 0$.

(ii) If n > 2r - 1, then c is even.

(iii) Set
$$m = \sqrt{(b-c)^2 + 4(rn-r-c)}$$
. Then m is an integer and $m|n^2$.

Lemma 3 $c \neq 0$.

Proof. If c=0, then \Re is non-primitive. This fact contradicts Lemma 1 (ii).

Lemma 4 If r = 1, then the conjecture is true.

Proof. If r = 1, then $(n-1)^2 = (n-1) + b(n-1) + c(n^2 - (n-1))$. From this we see that c = 0 and b = n-2, which show that \Re is of Latin square type.

3 Sketch of Proof

If $c = r^2 - r$, then $b = n + r^2 - 3r$ and so the conjecture is true. Our proof is by contradiction. Therefore, we assume that $2 \le r \le n - 1$, and $c \ne r^2 - r$.

Lemma 5 $c \neq r^2$.

Proof. See [2].

Lemma 6 $2 \le c \le r^2 - 1$.

Proof. By Lemma 2 (i),

$$c = r^{2} + \frac{r^{3} - 2r^{2} - (b+1)r}{n - r + 1}$$

$$< r^{2} + \frac{r^{3} - 2r^{2} - r}{f(r) - r + 1}$$

$$< r^{2} + 1.$$

Hence $c \le r^2 - 1$ by Lemma 5. Lemmas 3 and 2 show that $2 \le c$.

Assume $g = r^2 - c$, where $1 \le g \le r^2 - 2$. Set d = g(n+1)/r. Then d is a positive integer. After some calculations we have the following lemma, which is due to Hiramine [2].

Lemma 7

$$(gd + 2r^2 - 2rg - g + gm)|2(r - g)^2(r^2 - g).$$

Proof. See [2].

We now distinguish two cases.

(i) The case when $2 \le c < r^2 - r$. The following is a key to our proof of the conjecture.

Lemma 8 If n > f(r), then

$$m^{2} - n^{2} = ((r - c/r)^{2} - 1)n^{2} + (2c^{2}/r^{2} + 2c/r + 2r - 2r^{2})n + 1 - 2c + c^{2}/r^{2} + 2c/r - 2r + r^{2} > 0.$$

Proof. Set $h(n) = r^2(m^2 - n^2)$. Recall that $g = r^2 - c$. So $r + 1 \le g < r^2 - 1$. Hence

$$r^{2}(1 - 2c + c^{2}/r^{2} + 2c/r - 2r + r^{2}) > 0.$$
(B)

Observe that in case (i)

$$(r^2 - c)^2 - r^2 > 0. (C)$$

From (B) and (C) it follows that

$$h(n) > h'(n) = ((r^2 - c)^2 - r^2)n^2 + (2c^2 + 2cr + 2r^3 - 2r^4)n$$

$$= n[((r^2 - c)^2 - r^2)n + 2c^2 + 2cr + 2r^3 - 2r^4]$$

$$> 0, \text{ when } n \ge -1(2c^2 + 2cr + 2r^3 - 2r^4)/((r^2 - c)^2 - r^2).$$

On the other hand, since $r + 1 \le g < r^2 - 1$, it follows that $2r^3 - 3r - 1 > -1(2c^2 + 2cr + 2r^3 - 2r^4)/((r^2 - c)^2 - r^2)$. Hence if $n(> f(r)) > 2r^3 - 3r - 1$, then h(n) > 0. This completes the proof of this lemma.

So if n > f(r), then m > n. From this inequality and Lemma 7 we have

$$gd + 2r^2 - 2rg - g + gn < 2(r - g)^2(r^2 - g).$$
 (D)

Since gd > gn, substitution of gn in gd of the inequality (D) yields

$$2gn < 2(r-g)^2(r^2-g) - 2r^2 - 2rg + g.$$

So

$$n < [(r-g)^2(r^2-g) - r^2 - rg + g/2]/g.$$
 (E)

Since $r + 1 \le g \le r^2 - 2$, the right hand side of (E) is less than $r^4 + r^3 - 5r^2 - 7r - 1/2$, which contradicts our assumption. So we complete the proof of our conjecture in this case.

(ii) The case when $r^2 - r < c \le r^2 - 1$. Elaborate arguments show that if n > f(r), then $gn/r \le m$. From this inequality and Lemma 7 we have a contradiction, so we complete the proof of our conjecture.

References

- [1] W. G. Bridges and R. A. Mena: Ratinal G-matrices with rational eigenvalues, J. of Combin. Th. (A) 32(1982), 264–280.
- [2] Y. Hiramine: On three-dimensional Schur rings obtained from partial spreads, J. of Combin. Th. (A) 80(1997), 273–282.
- [3] J. J. Seidel: Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3, Linear Algebra Appl.1(1968). 281-298.