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0 Introduction

Throughout this paper k stands for the complex number field C. A homogeneous
polynomial f(z,y,z) € k[z,y,2| defines a plane algebraic curve f = 0, or C(f) in the
projective plane P2, A non-singular matrix A € GL(3,k) defines a projectivity (A)
sending a point P with the homogeneous coordinates (z) to a point (A)P with the ho-
mogeneous coordinates (z(*A)). Denote by PGL(3,k) the group of projectivities in P2.
Denote by Aut(f) the projective automorphism group of f, namely Aut(f) = {(4) €
PGL(3,k); fa is proportional to f}, where fa(z,y,2) = f((z,9,2)(*A™")). When C(f)
is non-singular and of degree n, i.e. deg f = n, then C(f) is a compact Riemann surface
of genus g = (n — 1)(n — 2)/2. In this case we can consider the holomorphic automor-
phism group AUT(f) of the Riemann surface C(f). Clearly Aut(f) is a subgroup of
AUT(f). If deg f > 4 and C(f) is non-singular, then Aut(f) = AUT(f) [7, p.372], and
|AUT(f)| < 84(g — 1) [5]. Therefore |Aut(f)| is bounded above when C(f) runs through
non-singular plane curve of degree n > 4, n being fixed. As will be shown in the next
section, the same is true for non-singular plane cubics.

Let an f in k(z,y, z] be homogeneous. We call f singular or non-singular according as
the curve C(f) has a singualr point or not. A non-singular curve C(f) of degree n(n > 3)
is the most symmetric, if it attains the maximum order of the projective automorphism
groups for non-singular plane algebraic curves of degree n(n > 3). We often identify the
polynomial f and the curve C(f).

Our main results are the following Theorems 1, 3, and 5. Theorem 2 is well known [3,
pp.348-349].

Theorem 1 Let f be a non-singular plane cubic.
(1) |Aut(f)] < 54.
(2) |Aut(f)| = 54 if and only if f is projectively equivalent to z* + y* + 2°.
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Theorem 2 Let f be a non-singular plane quartic.

(1) |Aut(f)| < 168.

(2) }Aut( f)| = 168 if and only if f is projectively equivalent to the Klein quartic z3 y +
Y3z + 23z,

Theorem 3 Let f be a noﬁ-singular plane quintic.
(1) JAut(f)| < 150.
(2) |Aut(f)| = 150 if and only if f is projectively equivalent to x° + y°® + 2°.

Theorem 4 ([1]) Let f be a non-singular plane sextic.

(1) |Aut(f)| < 360.

(2) |Aut(f)| = 360 zf and only if f is progectwely equivalent to the Wiman sextic 10x3y3 +
9(z® + y5)z — 45229222 — 135zy2* + 2725.

Theorem 5 Let f be a non-singular plane septic.
1) |Aut(f)| < 294.
(2) |Aut(f)| = 294 if and only if f is projectively equivalent to 7 + y7 + 27.

Our definitions and notaions are as follows. Let A, B € GL(3,k), and f € k[z,, xa, z3).
We define fa € k[z1, 2, 23] as fa(zy, 22, 23) = f([21, 22, T3] CA™Y)) s0 that (fa)s = fpa.
Let G be a subset of the group PGL(3,k) of projectivities of the projective plane P2.
A homogeneous f € k[z,y,z] is called G- invariant, if f4 ~ f for any (A) € G. More
generally, let H be an abstract group. By abuse of notation we call f is H-invariant,
if there is a subgroup G of PGL(3,k) such that 1) G and H are isomorphic, and 2) f
is G-invariant. For a homogeneous f € k[x;.zy, 3] Hess(f) denotes the Hessian of f:
Hess(f) = det[52— o ax fl. It is well known that, if f is non-singular, then the intersection
f N h-coincides with the set of all flexes. Tt is also known that Aut(f) C Aut(Hess(f)).
Finally E3 = [ey, €3, €3] denotes the unit matrix of GL(3, k), where e; stands for the j-th
column of F3. When two quantities a and b such as functions and matrices, a ~ b means
that a and b are proportlonal

The cases of cubics, quintics, and septics are discussed in §1, §2, and §3 respectively.
Proofs are not given in princile to make our report short.

1 Cubics

In this section we will prove Theorem 1. We begin with

‘Theorem 1.1 (8], [6]) Let f =z"+y"+ 2z™(n > 3). Then |Aut(f)| = 6nZ.

Theorem 1.2 Let f be a non-singular plane cubic.
(1) |Aut(f)| < 54.
(2) |Aut(f)| = 54 if and only if f is projectively equivalent to 2 4 y® + 2.
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Proof. As is known, f has a flex P. Without loss of generality we may assume that
P =(0,1,0) and that the tangent there is z. Namely f(z,1,2) = 2+ 2z(az +bz) + Az® +
Bz?z+ Cx2? + D23, or equivalently f = y%z + 2yz(aw +bz) + Az® + Bx?z + Cz2? + D25,
Substituting y for y + ax + bz we get f = y’z + Az® + Bz?z + Cz2? + Dz3. So we
may assume that f = y?z + 2® + Bz?z + Cz22. As can be seen easily, f is non-singular
if and only if C(B% — 4C) # 0. Let Gp = {(A) € Aut(f); (A)P = P}, and assume
(A) € Gp. Since (A) fixes the tangent z at P as well, the rows of A take the form
[a1,0, 1], [az,1, ¢, and [0,0, c3) respectively up to constant multiplication. Since f4-1
contains none of monomials of degree 1 with respect to y, as = ¢co = 0. Now f4-1 ~ f,
if and Ol’lly if a13/03 = ]., 3&1201/63 + Ba12 = B, 3&1012/(33 + 2alclB'+ a10/63 = C
and ¢;3/cs + &1?B + ¢1c3C = 0. From the first and the second equalities of these four
equalities, we get c3 = a;® and ¢; = a;(1 — a;2)B/3. So the third equality can be written
as (a1* — 1)(—B?/3+ C) = 0. If C # B?/3, then |Gp| < 4. If C = B?/3, then the fourth
equality can be written as (1 — a;2)(1 + a1? + a;*) B® = 0. Note that 4?2 + 23 is singular.
Hence, only when C = B?/3 # 0, f is non-singular and |Gp| = 6. Since |f N h| < 9 by
Bezout’s theorem,
|Aut(f)1/|Gel = |Aut(f)P| < 9.

So |Aut(f)| < 54, and the equlity holds, if and only if |Gp| = 6 and |Aut(f)P| = 9. We
have shown that |Gp| = 6 if and only if C = B?/3 # 0, namely f = y?2 + 2® + Bz?z +
B%zz%/3 with B # 0, which is projectively equivalent to f’ = 9%z + 23 + 22z + z22/3.
Consequently, if there exists a non-singular cubic f with |Aut(f)| = 54, then f is pro-
jectively equivalent to f’. This means the uniqueness of non-singular cubics satisfying
|Aut(f)| = 54. On the other hand there exists such a cubic by Theorem 1.1

2  Quintics

In this section we will specify the most symmetric non-singular quintics (Theorems
2.2 and 2.22).

Theorem 2.1 (Hurwitz) Denote by AUT(C) the holomorphic automorphism group of
a compact Riemann surface C of genus g > 2. Let ¢ = g—1. The possszble values of the
order d = |AUT(C)| are

84¢', 48¢', 40¢', 36¢', 30g', 1324 9244, lgﬁg/,
/

5
21¢/, 20¢, 9569', %Gg’, 210149', 18¢g or less.

Proof. The author of [5] cites values down to 36¢’. For our purposes, however, other
possible values are necessary. The idea of the proof given below is entirely due to [5].
According to [5] there exist integers § > 0, s > 3, and m; > mg > ... > m, > 2 such that

29’ = d{2(§ - 1) +Z<1 ~- ——-)}
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Ifg>2thend < ¢ If § =1, then d < 4¢’. Suppose § = 0. Note that 2¢’ > d{—2+s/2}.
Ifs>5,thend <4¢'. If s = 4 then m; > 3 so that 2¢' > d{—-2+(1-1/3)+3/2} = d/6,
namely d < 12¢’. Assume s = 3. _

Suppose m3 > 4. Then 2¢' > d(1 — 3/4) = d/4, namely d < 8¢’. Suppose ms = 3.
Then my > 4. If my > 5, then 2¢' > d(1—-1/5—-1/3 —1/3) = 2d/15, namely d < 15¢. If
my = 4 and my = 4, then 2¢9' = d(1 —1/2 —1/3) = d/6, namely d = 12¢’. If m; = 4 and
my = 3, then 2¢’ = d(1 — 1/4 — 2/3) = d/12, namely d = 24¢’. Suppose m3 = 2. Then
mg 2 3. If my > 6, then 2¢' > d(1 —2/6 — 1/2) = d/6, namely d < 12¢'.

Let my = 5. If my > 6, then 29’ > d(1 —1/6 — 1/5 — 1/2) = 2d/15, namely d < 15¢'.

If m; =5, then 2¢' = d(1 — 2/5 — 1/2) = d/10, namely d = 20¢4'.

Let my = 4. Then my > 5. If my > 8, then 2¢’ > d(1 — 1/8 — 1/4 — 1/2) = d/8, namely
d < 16¢4'.

If my =7, then 29’ = d(1 — 1/7 3/4) = 3d/28, namely d = 56¢'/3.

If my = 6, then 2¢9' = d(1 — 1/6 — 3/4) = d/12, namely d = 24¢'.

If my =5, then 2¢' = d(1 — 1/5 — 3/4) = d/20, namely d = 40¢'. '
Let my = 3. Then my 2 7. If my > 19, then 2¢' > d(1/6 — 1/19) = 13d/114, namely
d < 228¢'/13.

If my = 18, then 2¢’ = d(1/6 — 1/18) = 2d/18, namely d = 18¢'.

If my =17, then 2¢' = d(1/6 — 1/17) = 11d/102, namely d = 204¢'/114'.

If my = 16, then 2¢' = d(1/6 — 1/16) = 5d/48, namely d = 964'/5.

If my = 15, then 29’ = d(1/6 — 1/15) = d/10, namely d = 20¢'.

If my = 14, then 2¢' = d(1/6 — 1/14) = 2d/21, namely d = 21¢'.

If y = 13, then 2¢' = d(1/6 — 1/13) = 7d/78, namely d = 1564’ /7.

If my = 12, then 2¢' = d(1/6 — 1/12) = d/12, namely d = 244

If my = 11, then 2¢' = d(1/6 — 1/11) = 5d/66, namely d = 132¢'/5.

If my = 10, then 2¢’ = d(1/6 — 1/10) = d/15, namely d = 30¢'.

If my =9, then 29’ = d(1/6 — 1/9) = d/18, namely d = 36¢'.

If m; = 8, then 2¢' = d(1/6 — 1/8) = d/24, namely d = 48¢'.

If my =7, then 2¢’ = d(1/6 — 1/7) = d/42, namely d = 84¢'.

Let f be a non-singular plane quintic, hence C(f) is a compact Riemann surface of
genus g = 6. From now on let ¢’ = g — 1 = 5 throughout this section. Then possible
values of |Aut(f)| are

84g'=4-3-5.7, 48¢' =16-3-5, 40¢' = 8- 5% 36g' =4-32.5, 30¢' =2-3 -5 or less.
We will prove the following theorem by showing that |Aut(f)| cannot be equal to none of
84g’, 48¢', 40¢’, and 36¢'.

Theorem 2.2 If f is a non-singular plane quintic, then |Aut(f)| < 150.

A proof of this theorem will be given after a series of lemmas and propositions.

Let ¢ be a primitive n-th root of 1(n > 3). A cyclic subgroup G, of order n in
PGL(3, k) is clearly conjugate to either Gy =< (diag[1, 1,¢]) > or Gi; =< (diag[1, &', &]) >
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for some 1 < i < j < n — 1 satisfying the greatest common divisor (4, j,n) = 1.

Lemma 2.3 Let notations be as above. Suppose that1 <i<j<n—1,1<4 <j <
n—1, and (i,3,n) = (¢,5,n) = 1. Then Gy; is conjugate to Gy if and only if there
ezists an 1 < m < n —1 with (m,n) =1 and a permutation o € Sz such that

dia'g[ea(l)7 Eo(2)) 50(3)] ~ dla'g[]-a Ei,a Ejl];
where [e1, €2, €3] = [1, ™, ™).

Lemma 2.4 Let ¢ be a primitive 7-th root of 1. A subgroup Gy of PGL(3, k) is isomor-
phic to Zy if and only if Gy is conjugate to one of the following subgroups of PGL(3,k) :
Gor =< (diag[1,1,€]) >, Gi2 =< (diag[l,,€?]) >, Gi3 =< (diag[l,¢,€°]) >.

Lemma 2.5 Let fi, ..., fa be non-zero homogeneous polynomials of the same degree
such that fia = \ifi (1 =1,2,...,n) for an A € GL(3, k) with mutually distinct A;. Then
a linear combination f = cifi + ... + cufn # 0 satisfies fa = Af for some X € k if and
only if ¢; # 0 except for fust one value of j.

The following proposition implies that |Aut(f)| = 84¢g' =4-3-5-7 is impossible for
any non-singular quintic f.

Proposition 2.6 A Zy-invariant quintic has a singular point.

Proof. Let € be a primitive 7-th root of 1, and denote by A;(j = 1,2, 3) the matrices
diag[1,1, €], diag[l,¢,€?] and diag(1, ¢, €?] respectively. Then a quintic satisfying f4,-1 =
" f for some 0 < n < 6 turns out to be singular. Indeed, let f'(x,y, z) be a homogeneous
polynomial of degree d > 2. Then (1,0, 0) is a singular point of C(f), if and only if none
of monomials z¢, 2% 'y and 2% 'z appears in f'. We summarize the values 4 such that
my,-1 = e'm for each j and the special nine monomials m in the following table.

2 zly 22|y ylr gt |2 2z Yy
Mo o0 1|0 0 1|5 4 4
@10 1 2[5 4 6]3 1 2
@10 1 35 4 0]1 5 6

From this table we can easily see that a quintic C(f) satisfying fa;~1 = €[ for some
0 < n < 6 has a singular point (1,0, 0), (0,1,0) or (0,0, 1).

A finite group of order 48¢’ or 40¢’ contains a subgroup of order 8. Such a group is
isomorphic to one of the following five groups [4, p.51-52]:
1) Zs
2) ZQ X Z4
3) Zo X Zo X 79y
4) Qs, which is generated by a and b such that a* = 1, b* = ¢?, and ba = a™'b.
5) Dg, which is generated by a and b such that a* =1, ¥* =1, and ba = a™'b.

We may safely omit the proof of
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Lemma 2.7 Lete be a primitive 8-th root of 1. A subgroup Gy of PGL(3, k) is isomor-
phic to Zs, if and only if Gy is conjugate to one of the following 4 subgroups of PGL(3, k) :

Gor =< (diag[1,1,€]) >, G =< (diag[1, e, €%]) >,
Gis =< (diag[l,¢,€%) >, Gi4 =< (diag[l,€,e)) > .

Proposition 2.8 Let f be a Zg-invariant quintic. _

(1) J 1s non-singular if and only if it is projectively equivalent to f' = 25+ Bx®22+a2t+ytz
with B? — 4 # 0. |

(2) JAut(f")| < 148.

Lemma 2.9 Let p # 3 be a prime and € be a primitive p-th root of 1. Then a sub-
group G of PGL(3, k) is isomorphic to Z X Zp if and only if G is conjugate to Gpa =<
(diag[l,¢,1]), (diag[1,1,¢]) >.

The following lemma is due to Hiroaki Taniguchi.

Lemma 2. 10 (Taniguchi) Let p be a prime, let € be a primitive p-th root of 1 and let
Gp2 be as in Lemma 2.9. If f(z,y, 2) is a Gp-invariant homogeneous polynomial of degree
d withp [ d, then [ is reducible.

Proof. Let A = diag[l,¢,1], and B = diag[1,1,¢]. Assume f4 = €'f and fg = &/ f for
some 4,j € {0,1,...,p — 1}. If ¢ > 0, then y divides f. Similarly if 4 > 0, then z divides
f. Ifi=j7=0 then z dives f, becasue f is a linear combination of monomials z%1y92 4
with dy = d3 = 0 mod p so that d; =n — dy — dan # 0 mod p.

Proposition 2. 11 A Z, X Zs-invariant quintic is singular.

Proof. A Zj X Zy-invariant quintic is a Zs X Zp-invariant quintic. Such a quintic is
reducible by Lemma 2.9 and Lemma 2.10.

Proposition 2.12 No subgroup of PGL(3,k) is isomorphic to Zg X Zo X Zs.

Lemma 2.13 Let Gg be a subgroup of PGL(3,k).
(1) Gg is isomorphic to Qs if and only if it is conjugate to

< (diag[l, \% '“1: % "'13])7 ([61)63’62]dia'g[1: % —1: \ —1]) >
(2) Gs is isomorphic to Dy if and only if it is conjugate to
< (diaglL, V=T, V=T")), (fes, 3, e2]) >

Proposition 2. 14 (1) A Qs-invariant quintic, if any, is singualr.
(2) A Dg-invariant quintic, if any, is singualr.

A group of order 36g’ contains a subgroup of order 9 by Sylow’s theorem. Such a
group is isomorphic to either Zg or Z3 x Z3 [4]. By Lemma 2.3 we get



188

Lemma 2.15 Let ¢ be a primitive 9-th root of 1. A subgroup Gy of PGL(3,k) is iso-
morphic to Zg, if and only if it is conjugate to one of the following three subgroups:

Gor =< (diag[1,1,€]) >, Gia =< (diag[l,&,€%) >, Giz =< (diag[l,¢,€%) > .
Proposition 2. 16 A Zg-invariant quintic is singular.

Lemma 2.17 Let w be a primitive third oot of 1. A subgroup Gy of PGL(3,k) is
isomorphic to Zs X Zs if and only if it is conjugate to one of the following two groups:

Gop =< (diag[1,1,w]), (diag[l,w,1]) >, G2 =< (diag[l,w,w?]), ([e2, €3, €1]) > .
Proposition 2. 18 A Zj x Zg-invariant quintic is singular.
Proof of Theorem 2.2 Let f be a non-singular quintic, and let d = [Aut(f)|. Recall that
84g' =4-3-5-7, 48¢'=16-3-5, 40g' =8-25, 36¢g' =4-5-9.

By Proposition 2.6 we get d # 84¢'. The inequalities d # 48¢', 40g’ follow from Propo-
sitions 2.8, 2.11, 2.12 and 2.14. Finally Propositions 2.16 and 2.18 imply d # 369’

We note that 30¢g’ = 2-3-25. A group of order 25 is isomorphic to Zgs or Zs x Zs [4].
Lemma 2.19 Let € be a primitive 25-th root of 1. A subgroup Gaos of PGL(3, k) is
isomorphic to Zas if and only if it is conjugate to one of the following subgroups:

GOl =< (dla'g[l) 1161) > G12 =< (diag[176$62]) >, G13 =< (dia‘g[1>5753]) >,
Gis =< (diag[l,&,€%]) >, Gis =< (diag[l,¢,€%)) >, Gi10 =< (diag[l,€,£Y]) > .

Proof, By Lemma 2.3 we can classify subgroups G;; =< (diag(1,¢%,&7]) >(1 <i < j < 24
with the greatest common divisor (%, 7,5) = 1) up to conjugacy, using computer.
Proposition 2. 20 A Zss-invariant quintic is singualr.

Proposition 2.21 A Zs X Zs-invariant non-singular quintic is projectively equivalent
to z° + 1% + 2°.

Theorem 2.22 A non-singular quintic f satisfying |Aut(f)| = 150 is projectively equiv-
alent to x® + 15 + 25,

Proof. Propositions 2.20 and 2.21 imply the theorem.
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3 Septics

Let g = 15, the genus of non-singular pla.ne septic(i.e. a curve of degree 7), and let
g =g—1=14. By Theorem 1.1 |Aut(z” +y" +2")| =214". If fis a non—smgula.r plane
septic, then |Aut(f)| may take values

84g' =8-3-49, 484 =32-3.7, 404 =16-5-7, 36g'=8-9.7,
309 =4-3:5-7, 249’ =16-3-7, g =8.3.13, 21g'=2-3.49

or less by Theorem 2.1. The eight values above are multiples of 8 except for 30¢’ and
21g". As we remarked in §2, a group of order 8 is isomorphic to one of the following five
groups: Zg, Zo X Zy4, Zy X Zy X Zy, Qg and Dg. No subgroup of PGL(3, k) is isomorphic
to Zg X Zga X Zg by Proposxtlon 2.12. As for a quintic we have following Propositions 3.1
and 3.2

Proposition 3.1 A Zg-invariant septic is singular.
Proposition 3.2 A Zy X Zs-invariant septic is singular.

Proposition 3.3 (1) A Qg-invariant septic, if any, is singular.
(2) A Dg-invariant septic, if any, is singular.

Theorem 3.4 The mazimum value of |Aut(f)| for a noh-singular septic f is equal to
either 30¢’ or 21¢'.

Proof. By Propositions 3.1, 3.2 and 3.3 the order |Aut(f )| does not belong to {84g4', 484, 404,
36¢’, 30¢', 24¢', g’} \ {309} Meanwhile [Aut(z” + 7 + 27)|] = 21¢' by Theorem 1.1.

We will show that |Aut(f)| # 30¢ for any non-singular septic. Note that 30¢' =
4.3-5-7. As we notice in the proof of Proposition 3.2,

. Proposition 3.5 A Zj x Zy-invariant septic is singular.

Suppose that there exists a non-singular septic f’ such that |Aut(f’)| = 30¢". Denote
by G’ the finite group Aut(f'). By Proposition 3.5 Sylow 2-group of G is isomorphic to
Z4. So we can apply the following theorem to G'.

Theorem 3.6 ([4, p.146]) If the Sylow subgroups of a finite group G of order n are all
cyclic, then it is generated by two elements a and b with defining relations:

ad=1, ¥=1, b lab=d",
ij =mn,

r? =1 mod 3.
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For our group G' of order 420 = 4-3-5 7, possible pairs of {4, j} in Theorem 3.6 are
the followings( note that ged(i, 7) = 1 if r > 1):

{1,420}, {4, 105}, {3,140}, {5, 84}, {7, 60}, {12, 35}, {20, 21}, {28, 15}.

In particular G’ has an element of order 10, 12 or 15.

Lemma 3.7 Let € be a primitive 10-th root of 1. A subgroup Gyo of PGL(3,k) is
isomorphic to Zyo if and only if Gy is conjugate to one of the following subgroups:

< (diag[1,1,€]) >, < (diag[l,¢,€%]) >,
< (diag[l,€,€%) >, < (diag[l,e,€%]) >.

‘Proposition 3.8 A Zj-invariant septic f is singular.

Lemma 3.9 Let € be a primitive 12-th root of 1. A subgroup Gia of PGL(3,k) is
isomorphic to Zyy if and only if Gi is conjugate to one of the following subgroups:

< (diag(l,1,e]) >, < (diag[l,¢,€%)) >, < (diagll,¢,€°]) >,
< (diag[l,e,e%]) >, < (diag[l,¢,€%]) >, < (diag[l,e,€%]) > .

Proposition 3.10 If f is a Zj2-invaraiant non-singular septic, then |Aut(f)| # 30g' =
420.

Lemma 3.11 Let € be a primitive 15-th root of 1. A subgroup Gis of PGL(3,k) is
isomorphic to Zis if and only if it is conjugate to one of the following subgroups:

< (diag[l,1,€]) >, < (diag[l,,€%]) >, < (diag[l,¢,€’]) >,
< (diag[l,e,eY])) >, < (diag[l,¢,€%]) >, < (diag[l,e,€%]) > .

Proposition 3. 12 A Z;s-invariant septic f is singular.
Theorem 3.13 |Aut(f)| < 21¢’ = 294.

Proof Propositions 3.8, 3.10, and 3.12 imply that |Aut(f)| cannot be equal to 30g’. By
Theorem 3.4 we get the desired inequality.

Finally we will show that non-singular septics f with |Aut(f)| = 219’ =2-3-49 are
unique.

Lemma 3.14 Let € be a primitive 49-th root of 1. A subgroup Gae of PGL(3,k) is
isomorphic to Zag, if and only if it is conjugate to one of the following subgroups:

< (diag[l,e,€%) >, < (diag[L,¢,€%) >, < (diag[l,e,e”]) >, < (diag[l ") >,
< (diag[l,e,€'®) >, < (diag[l,e,e"]) >, < (diag[l,e,e™]) > .
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Proof. In view of Lemma 2.3 we can classify subgroups < (diag[1,e%,¢9]) > (1 <i < j <
_ 48) up to conjugacy, using computer.

Proposition 3. 15 A Zsg-invariant septic f is singular.

Proposition 3.16 A Z7 X Z7-znvamant septic [ is non-singular if and only if f is
projectively equivalent to 7 + y7 4 27

Proof. Let A = diag[l,1,e] and B = diag[l,¢,1]. By Lemma 2.9 a subgroup G of
PGL(3,k) is isomorphic to Z7 x Zz, if and only if G is conjugate to < (A4), (B) >. A
septic f satisfying f4-1 = €'f and fp-1 = & f, if any, is a singular except for the case
i =7 = 0. In the exceptional case f is a linear combination of z7, 7 and 27.

Theorem 3.17 A non—smgular plane septic f wzth |Aut(f)| = 21¢’ =2-9-2 is projec-
tively equivalent to 7 + y7 + 27

Proof. 'The theorem is a trivial consequence of Propositions 3.15 and 3.16.
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