
Title
Lazy Narrowing Calculi : Strong Completeness, Eager Variable
Elimination, Nondeterminism, Optimality (Languages, Algebra
and Computer Systems)

Author(s) Middeldorp, Aart; Okui, Satoshi

Citation 数理解析研究所講究録 (1999), 1106: 161-173

Issue Date 1999-07

URL http://hdl.handle.net/2433/63246

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39196631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lazy Narrowing Calculi: Strong Completeness,
Eager Variable Elimination, Nondeterminism, Optimality

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan

ami@is. tsukuba. $\mathrm{a}\mathrm{c}$. jp
http: $//\mathrm{w}\mathrm{w}\mathrm{w}$. score. is. tsukuba. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{a}\mathrm{m}\mathrm{i}$

Satoshi Okui

Faculty of Engineering
Mie University, Tsu 514-8507, Japan

okui@cs.info.mie-u.ac.jp
http: $//\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{c}\mathrm{s}$.inf 0 .mie-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{o}\mathrm{k}\mathrm{u}\mathrm{i}$

Abstract

Narrowing is an important method for solving unification problems in equational
theories that are presented by confluent term rewriting systems. Because narrowing
is a rather complicated operation, several authors studied calculi in which narrowing
is replaced by more simple inference rules. In this paper we give an overview of the
results that have been obtained by Middeldorp et al. $[19, 18]$ for the lazy narrowing
calculus $\mathrm{L}\mathrm{N}\mathrm{C}$.

1 Introduction

Narrowing [13] is genera,1 method for solving unification problems in equational theories that
are presented by confluent term rewrite systems (TRSs for short). Consider e.g. the TRS \mathcal{R}

consisting of the following three rewrite rules, specifying subtraction on natural numbers:

$0-y$ $arrow$ 0

$x-0$ $arrow$ x

$\mathrm{s}(x)-\mathrm{s}(y)$ $arrow$ $x-y$

数理解析研究所講究録
1106巻 1999年 161-173 161

Suppose we want to solve the equation $\mathrm{s}(\mathrm{s}(x-y))\approx \mathrm{s}(x)$, i.e., we want to find a substitu-

tion for the variables x and y such that both terms become equal in the equational theory

generated by \mathcal{R} . The following rewrite sequence, where in each step the selected redex is

underlined, shows that the substitution $\theta=\{x\vdasharrow \mathrm{s}(\mathrm{O}), y\vdasharrow \mathrm{s}(\mathrm{O})\}$ is a solution:

$\mathrm{s}(\mathrm{s}(\mathrm{s}(0)-\mathrm{s}(0)))\approx \mathrm{s}(\mathrm{s}(0))$ $arrow \mathrm{s}(\mathrm{s}(\underline{0-0}))\approx \mathrm{s}(\mathrm{s}(0))$

$arrow \mathrm{s}(\mathrm{s}(0))\approx \mathrm{s}(\mathrm{s}(0))$

In term rewriting a subterm can be reduced only if it matches a left-hand side of a rewrite

rule. In narrowing unification rather than matching is used, so variables in the term at

hand may be instantiated before a rewrite step is performed. For instance, the equation
$\mathrm{s}(\mathrm{s}(x-y))\approx \mathrm{s}(x)$ cannot be reduced by rewriting but if we substitute $\mathrm{s}(x_{1})$ for x and $\mathrm{s}(y_{1})$

for y then the resulting equation $\mathrm{s}(\mathrm{s}(\mathrm{s}(x_{1})-\mathrm{s}(y_{1})))\approx \mathrm{s}(\mathrm{s}(x_{1}))$ can be reduced by applying

the third rewrite rule to the subterm $\mathrm{s}(x_{1})-\mathrm{s}(y_{1})$. In order to guarantee a finitely branching

search space, variables are instantiated in a minimal way such that a rewrite step can be

performed. Continuing the above example, a possible narrowing computation is

$\mathrm{s}(\mathrm{s}(x-y))\approx \mathrm{s}(x)$
$\sim+_{\theta_{1}}$

$\mathrm{s}(\mathrm{s}(\underline{x_{1}-y_{1}}))\approx \mathrm{s}(\mathrm{s}(x_{1}))$

$\sim*_{\theta_{2}}$
$\mathrm{s}(\mathrm{s}(x_{1}))\approx \mathrm{s}(\mathrm{s}(x_{1}))$

with $\theta_{1}=\{x\vdash+\mathrm{s}(x_{1}), yrightarrow*\mathrm{s}(y_{1})\}$ and $\theta_{2}=\{y_{1}rightarrow 0\}$. Since the two sides of the final

equation are identical, the composition of θ_{1} and θ_{2} gives a solution to the initial equation
$\mathrm{s}(\mathrm{s}(x-y))\approx \mathrm{s}(x)$, as one easily verifies. The property that successful (i.e., ending in an
equation whose sides are syntactically unifiable) narrowing derivations produce solutions is

known as the soundness of narrowing. Narrowing is known to be complete for confluent
TRSs with respect to normalized solutions. (A substitution is normalized if it substitutes

normal forms for the variables.) That $\mathrm{i}\mathrm{s}_{7}$ for every confluent TRS \mathcal{R} , for every equation
$e=s\approx t$, and for every normalized solution θ of e , there exists a successful narrowing

derivation starting from e which produces a substitution $\theta’$ that is, when restricted to the

variables in e , at least as general θ . The restriction to confluent TRSs is essential as shown
by the equation $e=\mathrm{b}\approx \mathrm{c}$ with respect to the non-confluent TRS {a $arrow \mathrm{b},$ $\mathrm{a}arrow \mathrm{c}$ }: the
empty substitution is a solution (as b and c are equal in the induced equational theory) but
narrowing is not applicable to e . The equation $e=x\approx \mathrm{f}(x)$ with respect to the one-rule
TRS $\{\mathrm{a}arrow \mathrm{f}(\mathrm{a})\}$ shows the necessity of the normalization requirement: the non-normalized
substitution $\{x\vdasharrow \mathrm{a}\}$ is a solution of e but narrowing is not applicable.

Narrowing is the underlying computation mechanism of many programming language

that integrate the functional and logic programming paradigms (Hanus [7]). Since narrowing
is a complicated operation, numerous calculi consisting of a small number of more elementary

inference rules that simulate narrowing have been proposed, e.g. by Martelli et al. $[16, 15]$,

H\"olldobler $[10, 11]$, Snyder [20], Dershowitz et al. [3], Hanus $[8, 9]$, Ida and Nakahara [14],

and B\"utow et al. [2]. These calculi are highly nondeterministic: in general all choices of (1)

162

the equation in the current goal, (2) the inference rule to be applied, and (3) the rewrite
rule of the TRS (for certain inference rules) have to be considered in order to guarantee
completeness. In this paper we investigate under what conditions which of these choices
can be eliminated without affecting completeness. So the aim of our work is to reduce the
huge search space by minimizing the nondeterminism while retaining completeness. We do
this for the lazy nawowing calculus ($\mathrm{L}\mathrm{N}\mathrm{C}$ for short), which is the specialization to confluent
TRSs and narrowing of the H\"olldobler’s calculus TRANS ([11]), which is defined for general
equational systems and based on paramodulation. $\mathrm{L}\mathrm{N}\mathrm{C}$ consists of the following five $\inf_{\backslash }\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$

rules:
$[0]$ outermost narrowing

$\frac{G’,f(s_{1},.\cdot.\cdot.,s_{n})\simeq t,G’’}{G’,s_{1}\approx l_{1},.,s_{n}\approx l_{n},r\approx t,G’’}$

if there exists a fresh variant $f(l_{1}, \ldots, l_{n})arrow r$ of a rewrite rule in \mathcal{R} ,
$[\mathrm{i}]$ imitation

$\frac{G’,f(s_{1},\ldots,s_{n})\simeq x,G’’}{(G’,s_{1}\approx x_{1},\ldots,s_{n}\approx x_{n},G’)\theta}$,

if $\theta=\{x\vdash+f(x_{1}, \ldots , x_{n})\}$ with $x_{1},$
$\ldots,$ x_{n} fresh variables,

$[\mathrm{d}]$ decomposition

$, \frac{G’,f(s_{1},\ldots,s_{n}).\approx f(t_{1},\ldots,t_{n}),G’’}{G,s_{1}\approx t_{1},..,s_{n}\approx t_{n},G’’}$,

$[\mathrm{v}]$ variable elimination

$\frac{G’,s\simeq x,G’’}{(G’,G’)\theta}$,

if $x\not\in \mathcal{V}\mathrm{a}\mathrm{r}(s)$ and $\theta=\{x-*s\}$,
$[\mathrm{t}]$ removal of trivial equations

$\frac{G’,x\approx x,G’’}{G’,G’},\cdot$

In the rules $[0],$ $[\mathrm{i}]$, and $[\mathrm{v}],$ $s\simeq t$ stands for $s\approx t$ or $t\approx s$. Contrary to usual narrowing, the
outermost narrowing rule $[0]$ generates new parameter-passing equations $s_{1}\approx l_{1},$

\ldots , $s_{n}\approx l_{n}$

besides the body equation $r\approx t$. These parameter-passing equations must eventually be
solved, but we do not require that they are solved right away. If G and $G’$ are the upper and
lower goal in the inference rule $[\alpha](\alpha\in\{0, \mathrm{i}, \mathrm{d}, \mathrm{v}, \mathrm{t}\})$, we write $G\Rightarrow_{[\alpha]}G’$. This is called an
$\mathrm{L}\mathrm{N}\mathrm{C}$-step. The applied rewrite rule or substitution may be supplied as subscript, i.e., we will
write things like $G\Rightarrow_{[\circ],larrow r}G’$ and $G\Rightarrow_{[i],\theta}G’$. A finite $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation $\grave{G}_{1}\Rightarrow\theta_{1}\ldots\Rightarrow\theta_{n-1}G_{n}$

Inay be abbreviated to $G_{1}\Rightarrow_{\theta}^{*}G_{n}$ where $\theta=\theta_{1}\cdots\theta_{n-1}$. An $\mathrm{L}\mathrm{N}\mathrm{C}$-refutation is an LNC-
derivation ending in the empty goal \square .

163

In the remainder of the paper we summarize the results obtained in $[18, 19]$. In the next

section we address the nondeterminism due to the choice of the equation in the inference

rules. In Sections 3 and 4 we consider the nondeterminism due to the choice of the inference

rule. We make some concluding remarks in Section 5. Due to lack of space, we omit several

results and all proofs. The interested reader is referred to $[18, 19]$ for details.

2 Strong Completeness

Consider again the TRS $\prime \mathcal{R}$ defined in the beginning of the previous section. We have the

following $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation:
$\mathrm{s}(\mathrm{s}(x-y))\approx \mathrm{s}(x)$

$\Downarrow[\mathrm{d}]$

$\mathrm{s}(x-y)\approx x$

$\Downarrow[i]$
$\{xrightarrow \mathrm{s}(x_{1})\}$

$\mathrm{s}(x_{1})-y\approx x_{1}$

$\Downarrow[0]$ $x_{2}-0arrow x_{2}$

$\mathrm{s}(x_{1})\approx x_{2},$ $y\approx 0,$ $x_{2}\approx x_{1}$

$\Downarrow[\mathrm{v}]$
$\{x_{2}rightarrow \mathrm{s}(x_{1})\}$

$y\approx 0,$ $\mathrm{s}(x_{1})\approx x_{1}$

$\Downarrow[\mathrm{v}]$ $\{yrightarrow 0\}$

$\mathrm{s}(x_{1})\approx x_{1}$

$\Downarrow[\mathrm{i}]$
$\{x_{1}\vdasharrow \mathrm{s}(x_{3})\}$

$\mathrm{s}(x_{3})\approx x_{3}$

Since the only applicable inference rule at this point is $[\mathrm{i}]$, it is clear that this derivation will

not produce any solution. To obtain a solution we have to use a different rewrite rule in the
$\Rightarrow 0$-step:

$\mathrm{s}(x_{1})-y\approx x_{1}$

$\Downarrow[0]$ $\mathrm{s}(x_{2})-\mathrm{s}(y_{2})arrow x_{2}-y_{2}$

$\mathrm{s}(x_{1})\approx \mathrm{s}(x_{2}),$ $y\approx \mathrm{s}(y_{2}),$ $x_{2}-y_{2}\approx x_{1}$

$\Downarrow[\mathrm{d}]$

$x_{1}\approx x_{2},$ $y\approx \mathrm{s}(y_{2}),$ $x_{2}-y_{2}\approx x_{1}$

$\Downarrow[\mathrm{v}]$ $\{x_{1}-\neq x_{2}\}$

$y\approx \mathrm{s}(y_{2}),$ $x_{2}-y_{2}\approx x_{2}$

$\Downarrow[\mathrm{v}]$
$\{y\mapsto+\mathrm{s}(y_{2})\}$

$x_{2}-y_{2}\approx x_{2}$

$\Downarrow[0]$ $0-x_{3}arrow 0$

$x_{2}\approx 0,$ $y_{2}\approx x_{3},0\approx x_{2}$

$\Downarrow[\mathrm{v}]$
$\{x_{2}rightarrow 0\}$

164

$y_{2}\approx x_{3},0\approx 0$

$\Downarrow[\mathrm{v}]$ $\{y_{2}\mapsto+x_{3}\}$

$0\approx 0$

$\Downarrow[\mathrm{d}]$

\square

In this refutation, which computes the solution $\{x\vdasharrow \mathrm{s}(\mathrm{O}), y\vdash\Rightarrow \mathrm{s}(y_{3})\}$, the leftmost equation
in every goal is selected. We will later see that is always safe to select the leftmost equation.
In other words, $\mathrm{L}\mathrm{N}\mathrm{C}$ with respect to leftmost selection is complete (for confluent TRSs and
normalized solutions). One may be tempted to think that the selection of equations in goals
never matters, but this is not the case.

Consider the TRS \mathcal{R} consisting of the three rewrite rules

$\mathrm{f}(x)$ $arrow$ $\mathrm{g}(\mathrm{h}(x), x)$

$\mathrm{g}(x, x)$ $arrow$ a
b

$arrow$ $\mathrm{h}(\mathrm{b})$

and the equation $e=\mathrm{f}(\mathrm{b})\approx \mathrm{a}$. Confluence of \mathcal{R} can be proved by a routine induction argu-
ment on the structure of terms and some case analysis. The (normalized) empty substitution
ϵ is a solution of e because

$\mathrm{f}(\mathrm{b})arrow \mathrm{g}(\mathrm{h}(\mathrm{b}), \mathrm{b})arrow \mathrm{g}(\mathrm{h}(\mathrm{b}), \mathrm{h}(\mathrm{b}))arrow \mathrm{a}$

There is essentially only one $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation starting from e in which always the rightmost
equation is selected:

$\mathrm{f}(\mathrm{b})\approx \mathrm{a}$
$\Rightarrow[0],\mathrm{f}(x)arrow \mathrm{g}(\mathrm{h}(x),x)$

$\mathrm{b}\approx x,$ $\mathrm{g}(\mathrm{h}(x), x)\approx \mathrm{a}$

$\Rightarrow[0],\mathrm{g}(x_{1},x_{1})arrow \mathrm{a}$
$\mathrm{b}\approx x,$ $\mathrm{h}(x)\approx x_{1},$ $x\approx x_{1},$ $\mathrm{a}\approx \mathrm{a}$

$\Rightarrow[\mathrm{d}]$
$\mathrm{b}\approx x,$ $\mathrm{h}(x)\approx x_{1},$ $x\approx x_{1}$

$\Rightarrow[\mathrm{v}],\{x_{1}rightarrow x\}$
$\mathrm{b}\approx x,$ $\mathrm{h}(x)\approx x$

$\Rightarrow[\mathrm{i}],\{x\mapsto \mathrm{h}(x_{2})\}$
$\mathrm{b}\approx \mathrm{h}(x_{2}),$ $\mathrm{h}(x_{2})\approx x_{2}$

$\Rightarrow[i],\{x_{2}rightarrow \mathrm{h}(x_{3})\}$

This is clearly not a refutation. (The alternative binding $\{x\vdash\not\simeq x_{1}\}$ in $\mathrm{t}\mathrm{h}\mathrm{e}\Rightarrow[\mathrm{v}]$ -step results
in a variable renaming of the above $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation.) Hence completeness of $\mathrm{L}\mathrm{N}\mathrm{C}$ is not
independent of selection funciions. In other words, $\mathrm{L}\mathrm{N}\mathrm{C}$ lacks the so-called strong complete-
ness property (contradicting H\"olldobler [11, Corollary 7.3.9]). In [19] it is shown that $\mathrm{L}\mathrm{N}\mathrm{C}$

is strongly complete whenever basic narrowing is complete. Basic narrowing (Hullot [13])
is a restriction of narrowing with the property that narrowing steps are never applied to
a subterm introduced by a previous narrowing substitution. Basic narrowing has a much
smaller search space than narrowing. Hence additional requirements are needed to ensure

165

its completeness. Three such conditions are mentioned in the literature (Hullot [13], Middel-

dorp and Hamoen [17] $)$: termination, right-linearity, and orthogonality (under the additional

condition stated below). Hence we obtain the following strong completeness results for $\mathrm{L}\mathrm{N}\mathrm{C}$.

Theorem 2.1 Let \mathcal{R} be a confluent $TRS,$ S a selection function, and G a goal. For every

normalized solution θ of G there exists an $\mathrm{L}\mathrm{N}\mathrm{C}$-refuiation $G\Rightarrow_{\theta}^{*},$
\square respecting S such that

$\theta’\leq\theta[\mathcal{V}\mathrm{a}\mathrm{r}(G)],$ $provi,ded$ one of the following conditions is satisfied:

1. $\prime \mathcal{R}$ is terminating,

2. \mathcal{R} is $right- linear_{f}$ or

3. \mathcal{R} is orthogonal and $G\theta$ has a normal form.
\square

The above counterexample against strong completeness does not refute the completeness

of $\mathrm{L}\mathrm{N}\mathrm{C}$. The goal $\mathrm{f}(\mathrm{b})\approx \mathrm{a}$ can be solved by always selecting the leftmost equation:

$\mathrm{f}(\mathrm{b})\approx \mathrm{a}$
$\Rightarrow[0],\mathrm{f}(x)arrow \mathrm{g}(\mathrm{h}(x),x)$

$\mathrm{b}\approx x,$ $\mathrm{g}(\mathrm{h}(x), x)\approx \mathrm{a}$

$\Rightarrow[\mathrm{v}],\{xrightarrow \mathrm{b}\}$

$\mathrm{g}(\mathrm{h}(\mathrm{b}), \mathrm{b})\approx \mathrm{a}$

$\Rightarrow[\circ],\mathrm{g}(x_{1},x_{1})arrow \mathrm{a}$
$\mathrm{h}(\mathrm{b})\approx x_{1},$ $\mathrm{b}\approx x_{1},$ $\mathrm{a}\approx \mathrm{a}$

$\Rightarrow[\mathrm{v}],\{x_{1}rightarrow \mathrm{h}(\mathrm{b})\}$

$\mathrm{b}\approx \mathrm{h}(\mathrm{b}),$ $\mathrm{a}\approx \mathrm{a}$

$\Rightarrow[0],\mathrm{b}arrow \mathrm{h}(\mathrm{b})$

$\mathrm{h}(\mathrm{b})\approx \mathrm{h}(\mathrm{b}),$ $\mathrm{a}\approx \mathrm{a}$

$\Rightarrow[\mathrm{d}]$

$\mathrm{b}\approx \mathrm{b},$ $\mathrm{a}\approx \mathrm{a}$

$\Rightarrow[\mathrm{d}]$

$\mathrm{a}\approx \mathrm{a}$

$\Rightarrow[\mathrm{d}]$

\square

This is not a coincidence, because we have the following completeness theorem ([19]).

Theorem 2.2 Let \mathcal{R} be a confluent TRS and G a goal. For every normalized solution θ of
G there exists an $\mathrm{L}\mathrm{N}\mathrm{C}$ -refutation $G\Rightarrow_{\theta}^{*},$

\square respecting $S_{1\mathrm{e}\mathrm{f}\mathrm{t}}$ such that $\theta’\leq\theta[\mathcal{V}\mathrm{a}\mathrm{r}(G)]$. \square

Here $S_{1\mathrm{e}\mathrm{f}\mathrm{t}}$ is the selection function that always selects the leftmost equation. So the

nondeterminism of $\mathrm{L}\mathrm{N}\mathrm{C}$ due to the selection of the equation is avoided if we adopt the

leftmost equation, which we do from now on. Hence in the remainder of the paper we
assume that the sequence of equations $G’$ to the left of the selected equation in the inference

rules of $\mathrm{L}\mathrm{N}\mathrm{C}$ is empty.

166

$\mathrm{f}(\mathrm{b})\approx \mathrm{a}$

$\Downarrow[\circ]$

$\mathrm{b}\approx \mathrm{g}(x),$ $\mathrm{a}\approx \mathrm{a}$

$\Downarrow[0]$

$\mathrm{g}(\mathrm{b})\approx \mathrm{g}(x),$ $\mathrm{a}\approx \mathrm{a}$

$\Downarrow[\mathrm{d}]$

$\mathrm{b}\approx x,$ $\mathrm{a}\approx \mathrm{a}$
$\Rightarrow[0]$

$\mathrm{g}(\mathrm{b})\approx x,$ $\mathrm{a}\approx \mathrm{a}$
$\Rightarrow[\mathrm{i}]$

$\mathrm{b}\approx x_{1},$ $\mathrm{a}\approx \mathrm{a}$
$\Rightarrow[0]$

$\Downarrow[\mathrm{v}]$ $\Downarrow[\mathrm{v}]$ $\Downarrow[\mathrm{v}]$

$\mathrm{a}\approx \mathrm{a}$ $\mathrm{a}\approx \mathrm{a}$ $\mathrm{a}\approx \mathrm{a}$

$\Downarrow[\mathrm{d}]$ $\Downarrow[\mathrm{d}]$ $\Downarrow[\mathrm{d}]$

\square \square \square

Figure 1: The $\mathrm{L}\mathrm{N}\mathrm{C}$-refutations starting from $\mathrm{f}(\mathrm{b})\approx \mathrm{a}$.

3 Eager Variable Elimination

Next we turn out attention to the nondeterminism of $\mathrm{L}\mathrm{N}\mathrm{C}$ due to the selection of the inference
rule. The nondeterministic application of the various inference rules to selected (leftmost)
equations causes $\mathrm{L}\mathrm{N}\mathrm{C}$ to generate many redundant derivations. Consider for example the
TRS consisting of the two rewrite rules

$\mathrm{f}(\mathrm{g}(x))$ $arrow$ a
b $arrow$ $\mathrm{g}(\mathrm{b})$

Figure 1 shows all $\mathrm{L}\mathrm{N}\mathrm{C}$-refutations starting from the goal $\mathrm{f}(\mathrm{b})\approx \mathrm{a}$. There are infinitely
many such refutations, all computing the empty substitution. Hence for completeness it is
suffices to compute only one of them. At several places in the literature it is mentioned that
this type of redundancy can be greatly reduced by applying the variable elimination rule $[\mathrm{v}]$

prior to other applicable inference rules, although to the best of our knowledge there is no
supporting proof of this so-called eager variable elimination problem for the general case of
confluent systems.

In $[19, 18]$ it is shown that a restricted version of the eager variable elimination strategy
is complete for left-linear confluent TRSs. The definition of the strategy relies on a notion of
descendants for $\mathrm{L}\mathrm{N}\mathrm{C}$-derivations. The selected equation $f(s_{1}, \ldots, s_{n})\simeq t$ in the outermost
narrowing rule $[0]$ has the body equation $r\approx t$ as only one-step descendant. In the imitation
rule $[\mathrm{i}]$ all equations $s_{i}\theta\approx x_{i}(1\leq i\leq n)$ are one-step descendants of the selected equation
$f(s_{1}, \ldots, s_{n})\simeq x$. The selected equation $f(s_{1}, \ldots , s_{n})\approx f(t_{1}, \ldots, t_{n})$ in the decomposition
rule $[\mathrm{d}]$ has all equations $s_{1}\approx t_{1},$

$\ldots,$
$s_{n}\approx t_{n}$ as one-step descendants. $\backslash \mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$, the selected

equations in $[\mathrm{v}]$ and $[\mathrm{t}]$ have no one-step descendants. One-step descendants of non-selected
equations are defined as expected. Descendants are obtained from one-step descendants

167

by reflexivity and transitivity. Observe that every equation in an $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation descends

from either a parameter-passing equation or an equation in the initial goal. For example,

in Figure 1 the equation $\mathrm{b}\approx x$ descends from the parameter-passing equation $\mathrm{b}\approx \mathrm{g}(x)$

introduced in the $\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}\Rightarrow[\circ]$ -step.
An equation of the form $x\simeq t$, with $x\not\in \mathcal{V}\mathrm{a}\mathrm{r}(t)$, is called solved. An $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation is

called eager if the variable elimination rule $[\mathrm{v}]$ is applied to all selected solved equations that

are descendants of a parameter-passing equation.

Theorem 3.1 Let \mathcal{R} be a lefl-linear confluent TRS and G a goal. For every normalized

solution θ of G there exists an eager $\mathrm{L}\mathrm{N}\mathrm{C}$-refutation $G\Rightarrow_{\theta}^{*},$ $such$ that $\theta’\leq\theta[\mathcal{V}\mathrm{a}\mathrm{r}(G)]$.

4 Other Nondeterminism

In this section we address the remaining nondeterminism between the inference rules of $\mathrm{L}\mathrm{N}\mathrm{C}$.

First we consider descendants of parameter-passing equations. Consider the TRS \mathcal{R} :

$\mathrm{f}(\mathrm{a})$ $arrow$ $\mathrm{f}(\mathrm{b})$

$\mathrm{g}(\mathrm{f}(\mathrm{b}))$ $arrow$ c

and the goal $\mathrm{g}(\mathrm{f}(x))\approx \mathrm{c}$. Only the outermost narrowing rule $[0]$ is applicable to this goal,

resulting in the new goal $\mathrm{f}(x)\approx \mathrm{f}(\mathrm{b}),$ $\mathrm{c}\approx \mathrm{c}$. To the parameter-passing equation $\mathrm{f}(x)\approx \mathrm{f}(\mathrm{b})$

we can either apply the decomposition rule $[\mathrm{d}]$ followed by the variable elimination rule $[\mathrm{v}]$ or
apply $[0]$ followed by $[\mathrm{v}]$. In the former case we obtain the solution $\{x-t\mathrm{b}\}$ and in the latter

the solution $\{x\}arrow \mathrm{a}\}$. Since these solutions are incomparable (with respect to subsumption

modulo \mathcal{R}), we cannot eliminate the nondeterminism between the outermost narrowing rule
[o] and the decomposition rule $[\mathrm{d}]$ while retaining completeness.

The above situation cannot occur when we are dealing with left-linear constructor sys-

tems. A constructor system (CS for short) is a TRS with the property that the arguments
$l_{1},$

$\ldots,$
l_{n} of every left-hand side $f(l_{1}, \ldots , l_{n})$ of a rewrite rule are constructor terms. The

set of function symbols F of a TRS \mathcal{R} is partitioned into disjoint sets F_{D}, and F_{C} as fol-
lows: a function symbol f belongs to $\mathcal{F}_{\mathcal{D}}$ if there is a rewrite rule $larrow r\in \mathcal{R}$ such that
$l=f(l_{1}, \ldots , l_{n})$, otherwise $f\in \mathcal{F}_{C}$. Function symbols in \mathcal{F}_{C} are called constructors, those
in F_{D} defined symbols. A term built from constructors and variables is called a constructor
term. Observe that the above \mathcal{R} is not a CS because the defined symbol f occurs in the
argument of the left-hand side $\mathrm{g}(\mathrm{f}(\mathrm{b}))$.

In [18] it is shown that for left-linear confluent CSs all nondeterminism between the
inferences rules of $\mathrm{L}\mathrm{N}\mathrm{C}$ can be eliminated for descendants of parameter-passing equations.

The proof is a consequence of the following lemma.

168

Table 1: Selection of inference rule for descendant $s\approx t$ of parameter-passing equation.

root
$(s)\backslash ^{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{t}(t)}$

$\mathcal{V} F_{C} F_{D}$

\mathcal{V}

$\mathcal{F}_{D}F_{C}$

$[\mathrm{v}] [\mathrm{v}] \cross$

$[\mathrm{v}] [\mathrm{d}] \cross$

$[\mathrm{v}] [0] \cross$

Lemma 4.1 Let \mathcal{R} be a lefl-linear CS and $G\Rightarrow^{*}G’,$ $s\approx t,$ G^{n} an $\mathrm{L}\mathrm{N}\mathrm{C}$-derivation. If the
equation $s\approx t$ descends from a parameter-passing equation then $\mathcal{V}\mathrm{a}\mathrm{r}(G’, s)\cap \mathcal{V}\mathrm{a}\mathrm{r}(t)=\emptyset$ and

t is a constructor term. \square

The first part of Lemma 4.1 implies in particular that for every descendant $s\approx t$ of a
parameter-passing equation, s and t have no variables in common. Hence we can forget about
the occur-check in the variable elimination rule $[\mathrm{v}]$ when dealing with such equations. The
second part of the lemma implies that the outermost narrowing rule $[0]$ is only applicable
to the left-hand side of descendants of parameter-passing equations. Moreover, if $[0]$ can
be applied, then the decomposition rule $[\mathrm{d}]$ is not applicable. Combining these observations
with Theorem 3.1 yields complete determinism in the choice of inference rule for descendants
of parameter-passing equations, provided of course we are dealing with left-linear confluent
$\mathrm{C}\mathrm{S}\mathrm{s}$. Table 4 shows how the inference rule is completely determined by the root symbols
of both sides of the selected descendant $s\approx t$ of a parameter-passing equation. The case
root $(t)\in \mathcal{F}_{D}$ is impossible according to the second part of Lemma 4.1. Observe that the
imitation rule $[\mathrm{i}]$ is never applied to descendants of parameter-passing equations. This is
because if $[\mathrm{i}]$ is applicable then, according to the first part of Lemma 4.1, so is the variable
elimination rule $[\mathrm{v}]$ and by Theorem 3.1 the latter is given precedence.

Next we turn our attention to descendants of equations in the initial goal. The following
example shows that the restriction to left-linear confluent CSs is insufficient to remove all
non-determinism in the choice of inference rule for descendants of initial equations. Consider
the (left-linear $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{l}_{11}\mathrm{e}\mathrm{n}\mathrm{t}$) CS

$\mathrm{f}(\mathrm{a})$ $arrow \mathrm{f}(\mathrm{b})$

and the goal $\mathrm{f}(x)\approx \mathrm{f}(\mathrm{b})$. This goal has the two incomparable solutions $\{x\vdasharrow \mathrm{a}\}$ and
$\{x-+\mathrm{b}\}$. The first solution can only be obtained if we apply the outermost narrowing rule
$[0]$. The second solution requires an application of the decomposition rule $[\mathrm{d}]$. There is also
non-determinism in the outermost narrowing rule $[0]$ itself. Consider for example the CS

$\mathrm{f}(\mathrm{a})$ $arrow$ $\mathrm{g}(\mathrm{a})$

$\mathrm{g}(\mathrm{b})$ $arrow$ $\mathrm{f}(\mathrm{b})$

and the goal $\mathrm{f}(x)\approx \mathrm{g}(x)$. The solution $\{xrightarrow \mathrm{a}\}$ can only be obtained if we apply the

169

Table 2: Selection of inference rule for descendant $s\approx t$ of initial equation.

root
$(s)\backslash ^{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{t}(t)}$

$\mathcal{V} F_{C} F_{D}$

\mathcal{V}

F_{C}

F_{D}

$[\mathrm{v}]/[\mathrm{t}] [\mathrm{v}]/[\mathrm{i}]^{a} [0]$

$[\mathrm{v}]/[\mathrm{i}]^{b} [\mathrm{d}] [0]$

$[0] [0] [0]^{c}$
$a[\mathrm{v}]$ is applied if and only if $t\in \mathcal{T}(F_{C}, \mathcal{V})$ and $s\not\in \mathcal{V}\mathrm{a}\mathrm{r}(t)$.
$b[\mathrm{v}]$ is applied if and only if $s\in \mathcal{T}(F_{C}, \mathcal{V})$ and $t\not\in \mathcal{V}\mathrm{a}\mathrm{r}(s)$.
$c[0]$ is applied to the left-hand side s .

outermost narrowing rule $[0]$ to the left-hand side of $\mathrm{f}(x)\approx \mathrm{g}(x)$, but in order to obtain the

incomparable solution $\{xrightarrow \mathrm{b}\}$ it is essential that we apply $[0]$ to its right-hand side.

In functional logic programming it is customary to consider two expressions to be equal

if and only if they reduce to the same ground constructor normal form. This so-called strict

equality is adopted to model non-termination correctly $[4, 1]$. If we interpret \approx as strict

equality then the non-determinism in the above examples disappears: neither $\{xarrow+ \mathrm{a}\}$ nor
$\{xrightarrow \mathrm{b}\}$ are (strict) solutions of the goals $\mathrm{f}(x)\approx \mathrm{f}(\mathrm{b})$ and $\mathrm{f}(x)\approx \mathrm{g}(x)$. A substitution θ

is said to be a strict solution of a goal G if for every equation $s\approx t$ in G there exists a
constructor term u such that $s\thetaarrow^{*}u$ and $t\thetaarrow^{*}u$.

Note that we do not require that the constructor term u in the above definition is ground.

Also note that a strict solution may substitute non-constructor terms for variables. In [18]

it is shown that for confluent TRSs all nondeterminism between the inference rules of $\mathrm{L}\mathrm{N}\mathrm{C}$

can be eliminated for descendants of initial equations with strict semantics. We would like

to stress that the restriction to left-linear CSs is not needed here. Table 2 shows how the

inference rule depends on the selected strictly solved equation $s\approx t$. It is interesting to note
that the resulting strategy is almost the opposite of eager variable elimination: conflicts
between the variable elimination rule $[\mathrm{v}]$ and the outermost narrowing rule $[0]$ are always

resolved by giving preference to the latter and often the imitation rule $[i]$ is selected even if
$[\mathrm{v}]$ is applicable.

5 Concluding Remarks

The results of the preceding two section can be directly incorporated into the inference
rules of $\mathrm{L}\mathrm{N}\mathrm{C}$. This gives rise to the deterministic lazy narrowing calculus, $\mathrm{L}\mathrm{N}\mathrm{C}_{\mathrm{d}}$ for short,

whose inference rules can be found in [18]. In $\mathrm{L}\mathrm{N}\mathrm{C}_{\mathrm{d}}$ there is no nondeterminism between the
inference rules. In other words, at most one inference rule is applicable to every goal.

Theorem 5.1 Let $\prime \mathcal{R}$ be a lefl-linear confluent CS and G a goal. For every sfrict normalized
solution θ of G there exists an $\mathrm{L}\mathrm{N}\mathrm{C}_{\mathrm{d}}$-refutation $G\Rightarrow_{\theta}^{*}$, –such that $\theta’\leq\theta[\mathcal{V}\mathrm{a}\mathrm{r}(G)]$. \square

170

In [18] it is further shown that substitutions computed by different $\mathrm{L}\mathrm{N}\mathrm{C}_{\mathrm{d}}$ derivations are
incomparable, provided we are dealing with orthogonal $\mathrm{C}\mathrm{S}\mathrm{s}$. Hence for this subclass of TRSs
solutions to goals are computed only once by $\mathrm{L}\mathrm{N}\mathrm{C}_{\mathrm{d}}$.

A similar result has been obtained for needed narrowing. Antoy et al. [1] define and prove
the completeness of needed narrowing for inductively sequential TRSs. They present two op-
timality results for needed narrowing. First of all, only incomparable solutions are computed
by needed narrowing. Since the class of inductively sequential TRSs coincides with the class
of strongly sequential ([12]) orthogonal $\mathrm{C}\mathrm{S}\mathrm{s}$, our result shows that strong sequentiality is not
essential for obtaining the incomparability of computed solutions. The second optimality
result presented in [1] states that needed narrowing derivations have minimal length. This
result has no counterpart in $\mathrm{L}\mathrm{N}\mathrm{C}_{\mathrm{d}}$.

We refer to [18] for a more thorough discussion of related work. We conclude this paper
by mentioning that some of the results presented above have been extended to the more
complicated setting of conditional term rewriting, see [5] and [6] for details.

References

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proceedings
of the 21st ACM Symposium on Principles of Programming Languages, pages 268-279,
1994.

[2] B. B\"utow, R. Giegerich, E. Ohlebusch, and S. Thesing. Semantic matching for left-linear
convergent rewrite systems. Journal of Functional and Logic Programming, 1999. To
appear.

[3] N. Dershowitz, S. Mitra, and G. Sivakumar. Decidable matching for convergent systems.
In Proceedings of the 11th International Conference on Automated Deduction, volume
607 of LNAI, pages 589-602, 1992.

[4] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-leaf: A logic plus func-
tional language. Journal of Computer and System Sciences, $42(2):139-185$, 1991.

[5] M. Hamada and A. Middeldorp. Strong completeness of a lazy conditional narrowing
calculus. In Proceedings of the 2nd Fuji International Workshop on Functional and
Logic Programming, pages 14-32. World Scientific, 1997.

[6] M. Hamada, A. Middeldorp, and T. Suzuki. Completeness results for a lazy condi-
tional narrowing $\mathrm{c}\mathrm{a}\dot{\mathrm{l}}$culus. In Combinatorics, Computaiion $\sim\backslash and\dot{L}_{\backslash }ogic$: Proceedings of
2nd Discrete Mathematics and Theoretical Computer Scie.$nce\grave{C}$onference and the 5th
Australasian Theory Symposium, pages 217-231. Springer-Verlag Singapore, 1999.

171

[7] M. Hanus. The integration of functions into logic programming: From theory to practice.

Journal of Logic Programming, 19&20:583-628, 1994.

[8] M. Hanus. Lazy unification with simplification. In Proceedings of the 5th European

Symposium on Programming, volume 788 of LNCS, pages 272-286, 1994.

[9] M. Hanus. Lazy narrowing with simplification. Computer Languages, $23(2-4):61-85$,

1997.

[10] S. H\"olldobler. A unification algorithm for confluent theories. In Proceedings of the 14th

International Colloquium on Automata, Languages and Frogramming, volume 267 of

LNCS, pages 31-41, 1987.

[11] S. H\"olldobler. Foundations of Equational Logic Programming, volume 353 of LNAI.
Springer Verlag, 1989.

[12] G. Huet and J.-J. L\’evy. Computations in orthogonal rewriting systems, I and II. In

J.-L. Lassez and G. Plotkin, editors, Computational $Logic_{f}$ Essays in Honor of Alan

Robinson, pages 396-443. The MIT Press, 1991.

[13] J.-M. Hullot. Canonical forms and unification. In Proceedings of the 5th Conference on
Automated Deduction, volume 87 of LNCS, pages 318-334, 1980.

[14] T. Ida and K. Nakahara. Leftmost outside-in narrowing calculi. Journal of Functional
Programming, $7(2):129-161$, 1997.

[15] A. Martelli, C. Moiso, and $\mathrm{G}.\mathrm{F}$. Rossi. Lazy unification algorithms for canonical rewrite
systems. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic
Structures, Vol. II, Rewriting Techniques, pages 245-274. Academic Press, 1989.

[16] A. Martelli, $\mathrm{G}.\mathrm{F}$. Rossi, and C. Moiso. An algorithm for unification in equational

theories. In Proceedings of the 1986 Symposium on Logic Programming, pages 180-186,

1986.

[17] A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable

Algebra in $Engineering_{f}$ Communication and Computing, 5:213-253, 1994.

[18] A. Middeldorp and S. Okui. A deterministic lazy narrowing calculus. Journal of Sym-
bolic Computation, $25(6):733-757$, 1998.

[19] A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing: Strong completeness and eager
variable elimination. Theoretical Computer Science, $167(1,2):95-130$, 1996.

[20] W. Snyder. A Proof Theory for General Unification. Birkh\"auser, 1991.

172

Solutions Week 2
2. No, the $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\subset \mathrm{i}\mathrm{s}$ not irreflexive. Consider for instance the infinite sequence $\mathrm{t}=\mathrm{a}$,

$\mathrm{f}(\mathrm{a}),$ $\mathrm{f}(\mathrm{f}(\mathrm{a})),$

\ldots . Since t_{i} is a proper subterm of t_{i+1} for all $i\geq 1$, we have $\mathrm{t}\subset \mathrm{t}$ by
definition.

3. Consider a signature F consisting of a constant 0 , a unary function symbol s , and
an n-ary function symbol c . We code natural numbers as terms in $\mathcal{T}(\{0, \mathrm{s}\})$ via the
following mapping ϕ :

$\phi(n)=\{$
0 if $n=0$,
$\mathrm{s}(\phi(n-1))$ if $n>0$.

This mapping is extended to n-tuples of natural numbers by defining

$\phi((x_{1}, \ldots,x_{n}))$ $=$ $\mathrm{c}(\phi(x_{1}), \ldots, \phi(x_{n}))$.

Now consider an infinite sequence e of n-tuples of natural numbers. By construction
$\phi(\mathrm{e})$ is an infinite sequence of terms in $\mathcal{T}(\{0, \mathrm{s}, \mathrm{c}\})$. According to Kruskal’s bee Theo-
rem there exist $i<j$ such that $\phi(e_{i})\underline{\triangleleft}_{\mathrm{e}\mathrm{m}\mathrm{b}}\phi(e_{j})$. It is not difficult to see that the latter
is equivalent to $e_{i}\leq_{n}e_{j}$.

4. Because not every infinite sequence of arbitrary terms is self-embedding. The simplest
counterexample enumerates the countably infinite set of variables: $x_{1},$ $x_{2},$ $x_{3},$ \ldots .

5. Consider e.g. the TRS $\mathcal{R}=\{\mathrm{f}(\mathrm{f}(x))arrow \mathrm{g}(x), \mathrm{g}(x)arrow \mathrm{f}(x)\}$. Its termination cannot be
shown by the lexicographic path order since the first rule requires $\mathrm{f}\succ \mathrm{g}$ and the second
rule requires $\mathrm{g}\succ \mathrm{f}$. Since all function symbols are unary, there is no difference between
the lexicographic path order and any other order in the family of recursive path orders.
The polynomial interpretations $\mathrm{f}_{\mathrm{N}}(x)=x+2$ and $\mathrm{g}_{\mathrm{N}}(x)=x+3$ for all $x\in \mathrm{N}$ show
that \mathcal{R} is polynomially terminating.

6. (a) Let \mathcal{R} be alooping TRS. So $s\prec_{\mathcal{R}}^{+}t$ for some terms s and t such that t encompasses
s , i.e., $t=C[s\sigma]$ for some context C and substitution $\sigma.$ Since $\prec_{\mathcal{R}}^{+}$ is a rewrite
relation, we obtain the infinite rewrite sequence $s\prec_{R}^{+}C[s\sigma]\prec_{\mathcal{R}}^{+}C[C[s\sigma]\sigma]\prec_{\mathcal{R}}^{+}$

$C[C[C[s\sigma]\sigma]\sigma]arrow_{\mathcal{R}}^{+}\cdots$.
(b) Consider the TRS

$\mathcal{R}=\{$

$\mathrm{f}(0,y)$ $arrow$ $\mathrm{f}(\mathrm{s}(y), 0)$

$\mathrm{f}(\mathrm{s}(x),y)$ $arrow$ $\mathrm{f}(x, \mathrm{s}(y))$

We show that \mathcal{R} is not terminating. Define for every $i\geq 0$ the term $t_{i}=\mathrm{f}(0,\mathrm{s}^{i}(0))$.
We have $t_{i}arrow+t_{i+1}$ by one application of the first rewrite rule followed by $i+$
1 applications of the second rewrite rule. Hence \mathcal{R} admits the infinite rewrite
sequence $t_{0}arrow^{+}t_{1}arrow^{+}t_{2}arrow\dashv-\ldots$. The proof that \mathcal{R} is non-looping will be given
next week.

173

