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A generalization of Calderén-Vaillancourt’s Theorem

ALK - B - ¥ 3 —#k (Kazuya Tachizawa)

1 Imtroduction

In this paper bwe study L? boundedness of pseudodifferential ‘operators with Weyl
symbols. We give a generalization of Calderén-Vaillancourt’s theorem.

For a symbol ¢ € S'(R?¥) we associate a pseﬁdodifferential operator L,. If o €
L*(R?), then we can easily prove that L, extends to a bounded operator on L2(R%).
On the 6ther hand Calderén and Vaillancourt gave another condition for the L? bound-
edness of pseudodifferential operators([1], [2]). T'hveir condition is about pseudodifferen-
tial oberators with Kohn-Nirenberg symbols. Similar results hold for the Weyl symbol
case([3], [10]). A generalization of their results is known([11]). This generalization does
not contain the L? symbol case. In this paper we give a generalization of both results.

First we give the definition of pseudodifferential operators with Weyl symbols.

Let W(f, g) be the Wigner transform of f,g € S(R?), that is,

W00 = [0t (+5)o (s 5) o

for z,£ € R4

For 0 € S'(R??) and f € S(RY), we define L, f € S'(RY) as

(Lo f,9) = (0, W (g, )
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for all g € S, where we use the notation (F, =(F,f)for Fe€&, feS. Itturns out
that L, is a continuous linear operator from S to S'. We call L, a pseudodifferential
operator with Weyl symbol o(cf.[10]).

In Folland [10] it is proved that if o € C?¢*1(R2%) and

Z 1|a:a§a||m < 00,
|lo+|B|<2d+1

then L, extends to a bounded operator on L?(R%). This is the Calderén-Vaillancourt
theorem for pseudodifferential operators with Weyl symbols.

In [11] Grochenig and Heil proved a generalization of Calderén-Vaillancourt’s the-
orem. If 0 € Mu,1(R?), then L, extends to a bounded operator on L?(R¢), where

Moo,1(R??) denotes the set of F € S'(R2%) satisfying

F,e¢= (=) 4 :
\/:I‘.deSEI;“I;dIK € )l §<oo

In this paper we give a generalization of these results.

Let
(1) o(x) = 2472 2 e RY
and 7
o(2,9) = W(p, ¢)(z,y) = 2% 271+ (5 1) € R

For o € 8'(R*) and «, 8 € R* we define
Sp(0) (e, B) = (0,™ ¢(- — ).

For a = (ala 012),16 = (ﬁl)ﬂ?): Qy, Qa, /817 /62 € Rd» we set

Nof) = (-2 50 2 th

, Qg — ﬂ27 Q) — 61)

For £, € R* we set

F(&n) = |S4(0)(N(€,m))]
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and
(2) k(&) = (L + e~
For each positive integer n and a,b € R?¢ we set
Gn(a,b) = [/de e /de k(a — m)F (&, m)k(& — &) F (&, m)k(n — m2)
X F (&2, m)k (&2 — &) F (&3, mo) k(i — 713) - -+

1/n
X F(&n, ) K(En — £,)F (&, M)k (1, — b) d€ady - - -déédn;} .

Theorem 1.1 We assume

Gn(a,b) < 0o

for every n € N,a,b € R? and
sup sup Gn(a,a) < oo.
neEN gcR2d

Then L, extends to a bounded operator on L?*(R?).

Corollary 1.1 Let F(£,n) be a function as above. For 1 < p < oo and pl4pl=1

{/!:t?d (/de F(g,n)l’ dg)p’/p dﬂ}l/pl < o0

{/Ru (L Fenran)” dg}w <o,

Then L, extends to a bounded operator on L?(R?).

we assume

and

Remark 1.1 The case p =1 or p = co is mentioned in Grochenig and Heil [11]. They
used this fact to prove their result on L? boundedness of pseudodifferential operators.
When p = 2, the conditions in the corollary is equivalent to saying o € L*(R®). When

1<p<2or 2 < p < 00, our corollary gives a new result.
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Remark 1.2 We can prove similar results about the boundedness of pseudodifferential

operators on Sobolev spaces.

2 Proof of Theorem 1.1

First we recall the definition of the Weyl-Heisenberg frame. For a = (x,y) € R¢ x R4

and f € L>(RY) we set

p(a)f(t) = p(z,y) f(t) = €™V f(t + x),

where t € R4,
Let ¢(x) be the function defined by (1). Let I = Z¢ x %—T—Zd. Then {p(a)p}ecr is a

frame of L?(R9), that is, there exist positive constants Cy and C, such that

Cllf1I3 < 21, p(@)e)? < CallF113

a€l
for all f € L*(R?). The dual frame of {p(a)p}scs is given by {p(a)@}ecs, where @ is

the function in S(R?) which is constructed by ¢. Furthermore we have

CoM I3 < 2o1(F p(@)@) < CTIFIIE

acl
for all f € L2(R4)(cf.[5]).

By the frame theory we have the following proposition.

Proposition 2.1 (i) For every f € L*(R%) we have

3) f = Zl(f,p(a)w)p(a)cﬁ
(4) | = z;<f,p(a)¢>p<a)so

which converge in L*(R9).
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(ii) There exists a K > 0 such that

Z cap(a)y

a€l

2 <K (E Ica|2)1/2

acl

for all {c,} € £2(1).
(iii) For every f € S(RY) we have the ezpansions (3) and (4) in S.

(iv) For every f € S'(R%) we have the ezpansions (8) and (4) in S'.

The proofs of (i) and (ii) is in [5]. The properties (iii) and (iv) are consequences of
Feichtinger and Grochenig’s result([7], [8], [9], [14]).
Let f € S(RY). By (iii) and (iv) of Proposition 2.1 we have
Lof =3 (Laf, pla)@)pla)y
acl
in §'.
If we show

> I(Lof, p(a)@)* < o,

a€l

then we conclude L, f € L*(R%) and

IZof1} < C 3 [(Lofs p(a) )P,
acl
where we used (ii) of Proposition 2.1.
Here we have
(Lo, p@)P)* =321 D _(f, p() @) (Lap (D), p(a)w)l2
a€l a€l bel

If the infinite matrix {(L,p(b)p, p(a)@)}aper is bounded on ?%(I), then we conclude

that

ILo£12 < C X |(f p(@)@)2 < C'lI£113 < 0.

acl



Therefore L, extends to a bounded operator on L2(R4).

Now we use the following lemma to show the boundedness of an infinite matrix on
2.
Lemma 2.1 ([4]) Let A = (a;;) be an infinite matriz which acts on the sequence space
£?(N). Then the boundedness of A -from £2(N) to £2(N) is equivalent to the following

two. conditions.
(a) For everyn € N, (A*A)" is well defined.

(b)
sup sup |[(A*A4)"]:]™ < oo,
neN €N

where [(A*A)");; is the (i,7) component of (A*A)".

Remark 2.1 In [{] Crone gave an additional condition. In [13] Maddox and Wickstead

showed that the condition is unnecessary(cf.[12]).

We shall show that the infinite matrix {(L,p(b)p, p(a)@) }aper satisfies the conditions

of Lemma 2.1. In order to prove this we use the following lemma by Grochenig and

Heil [11].
- Lemma 2.2 For o € §8'(R*) and f,g € S(R?), we have

(Loti9) = [, .. So(@) (e, B)eA(f, p(B)¢) ()0, ) dad,
where [a, 1 = }a - i a1 - ) for a = (o1,05), B = (B, ) € RY x R,

First we show the condition (a) of the Lemma 2.1.

Let A = {(L,p(b)y, p(a)P)}aper, n € N and ¢,d € I. The (c,d) component of the

infinite matrix (A*A)™ is given by

> (Lop(c)p, p(a1) @) (Lop(bi)p, p(a1)@)(Lsp(br)e, plaz) @)

Q1 yeresr bl yeeisbn_1 €T

X (Lo p(bs)0s p(02)@) - - (Lo pBm 1), h(an)@(%p(d)% p(an)P),
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where we will show that the series in the above sum absolutely converges.

By Lemma 2.2 we have

(Lop(c)e, p(a1))(Lap(br)e, p(a1)P)(Lap(br) e, p(az) @)

X (Lop(b2)p, p(az)@) - - - (Lo p(bn-1)p, plan) @) (Lo p(d)p, p(an)P)

= //qu(g)(N(fh771))€2m[61’"11(l’(c)<‘0aP(771)S0)(P(§1)90, p(a1)d) d&1dm
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X / / Ss(0) (N (&1, m))e 2l (p(by ), p p(m)e)(p(E1)¢: p(ar)9) dgydn; - -

x [ [ S i)™ ol 235, Pl 2) (P& s Pan)D) dnil
/ / Sp(0) (N (&, 1)) (p(d)p, p(11,)0) (p(80) s p(an) B) dEy.

Let k(£) be the function defined by (2). Since

[(0(b), p(Mep)| < 1(p(b—n)p, @)| < ck(b - n)

and

|(p(€) @, p(@)@)] < |(p(€ — a)p, )| < ck(& — a)

for all a,b € I and &, € R*, we have

> / e / 156(@)(V (&1, m)I(p(e)e, pm) @)l (p(E1) 2, pla1) )]

Q150-18n 01 50e0sbn—1ET

x[S(a)(N (&L m)(p(0r1)e, p(m) )1 (p(E1) 0, p(a1)@)] - -+

X156(0) (Y (€ns 1) [(0(ba-1)2, p )N [(9(En), an) ) 10N (N €y 7))
x| (p(d)e, p(1) )| (0(€4) s P(an) B) | dbrdmdgidn, - - - dndndydn,
SR > B L {GR AL CRATGRIAECRATORA

k(& = a1)F(€2,m2) - - k(n — an) F (&, ) k(d — mp) (€, — an) dEy - - - dr.

Since

Y k(€ — k(€ —b) < ck(€—-¢)

ber
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for all £,¢' € R, the above quantity is bounded by

C" [+ [ ke —m)F (€, mk(es — E)F (& mi)k(rh — ma)F (€2, ) -
Xk(&n — &) F (& Tin)k(d — 117) d€s - - - dnp,
= C"Gh(c,d)" < oo. |

Hence we conclude that the (c,d) component of the infinite matrix (A*A)" is well

defined.

Next we check the condition (b). By similar calculations we have

> (Lop(c)p, p(a1)d)(Lep(by)p, par1) @) (Lep(br) e, plaz)p)

Q1 yeens@n,ybi s b1 €T

X (Lo p(b2)p, p(az)@) - - - (Lo p(bn-1)@, plan) @) (Lep(d)p, plan) @)

< C"Gpla,a)™.

Hence n-th root of the quantity of the left hand side is bounded by CGr(a,a). By the

assumption we get the condition (b).

3 Proof of Corollary 1.1

We shall prove Corollary 1.1 for 1 < p < oo. The proof for p = 1 or p = oo is similar.

We set
1/p’

{/n (o F67 df)p'/p d’ﬂ} =K,
{/;{24 (/RM Fig,n) dn)p'/p dg}l/:o’ _ K?

and K = max{K}, K»}. We shall estimate
6 [ [ Ba=mFE,mk(E — E)FE, )k, — m)F(Ea )

k(€2 — €3) -+ F(Eny M)k (En — EL)F (€D, )k (), — b) d€adlmy - - - dEdy,
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By Hélder’s inequality we have

f‘k(a — m)F (&, m) dm
< (/ k(a —m)” dm)l/p’ </ .F(fly’fh)p d’h) v
< Gy (/ F(&,m)? dm)l/p ;

where we set

'

A\
Cl = (/ k(a - ’f]l)p dnl) !
Hence (5) is bounded by
1/ _
O [ [ ([ Plempn) ke —E)FE mkh — m)F (€ mk(E - &)

-« F(ny i)k (En — &) F (&, mp) (1, — b) d§ad€y - - - ddimy,

Now we have

([ Femyan) ke - )R derde,
= {/ [([Fempan)™ we-&) dfldf;}l/p'
x ([ [ b~ €)F (€L niy desdet) "
< ([ Py i),
where

Gy = / k(t) dt.
Hence (5) is bounded by
Y
0102K/ : / (/ F(&,m) dfi) pk(ﬂll — M) F (&2, m2)k (€2 — &)

. F (& M)k (En — E)F (&5, 1) k(n), — D) dmydEs - - - dEpdmy,.

By repeating this calculation, we can estimate (5) by



1/p
ook [ ([ R de,) ke, —b) d
Plv 1o 1/
<acpxm | [ ([ ey de) an} " (f v - v ane)
< 010221@—103}{271 < 00,

where
1/p
Co= ([ ke~ an,) "

‘Hence the condition (a) of Theorem 1.1 is satisfied. Furthermore we have

sup sup Gp(a,a) < CK?2.
nEN gcR24

Therefore we proved the L2 boundedness by Theorem 1.1.
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