

Title	A generalization of Calderon-Vaillancourt's Theorem (Harmonic Analysis and Nonlinear Partial Differential Equations)
Author(s)	Tachizawa, Kazuya
Citation	数理解析研究所講究録 (1999), 1102: 64-75
Issue Date	1999-06
URL	http://hdl.handle.net/2433/63184
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

A generalization of Calderón-Vaillancourt's Theorem

東北大・理・数学 立澤 一哉 (Kazuya Tachizawa)

1 Introduction

In this paper we study L^2 boundedness of pseudodifferential operators with Weyl symbols. We give a generalization of Calderón-Vaillancourt's theorem.

For a symbol $\sigma \in \mathcal{S}'(\mathbf{R}^{2d})$ we associate a pseudodifferential operator L_{σ} . If $\sigma \in L^2(\mathbf{R}^{2d})$, then we can easily prove that L_{σ} extends to a bounded operator on $L^2(\mathbf{R}^d)$. On the other hand Calderón and Vaillancourt gave another condition for the L^2 boundedness of pseudodifferential operators([1], [2]). Their condition is about pseudodifferential operators with Kohn-Nirenberg symbols. Similar results hold for the Weyl symbol case([3], [10]). A generalization of their results is known([11]). This generalization does not contain the L^2 symbol case. In this paper we give a generalization of both results.

First we give the definition of pseudodifferential operators with Weyl symbols.

Let W(f,g) be the Wigner transform of $f,g \in \mathcal{S}(\mathbf{R}^d)$, that is,

$$W(f,g)(x,\xi) = \int_{\mathbf{R}^d} e^{-2\pi i \xi \cdot p} f\left(x + \frac{p}{2}\right) \overline{g\left(x - \frac{p}{2}\right)} dp$$

for $x, \xi \in \mathbf{R}^d$.

For $\sigma \in \mathcal{S}'(\mathbf{R}^{2d})$ and $f \in \mathcal{S}(\mathbf{R}^d)$, we define $L_{\sigma}f \in \mathcal{S}'(\mathbf{R}^d)$ as

$$(L_{\sigma}f,g)=(\sigma,W(g,f))$$

for all $g \in \mathcal{S}$, where we use the notation $(F, f) = \langle F, \overline{f} \rangle$ for $F \in \mathcal{S}', f \in \mathcal{S}$. It turns out that L_{σ} is a continuous linear operator from \mathcal{S} to \mathcal{S}' . We call L_{σ} a pseudodifferential operator with Weyl symbol $\sigma(\text{cf.}[10])$.

In Folland [10] it is proved that if $\sigma \in C^{2d+1}(\mathbf{R}^{2d})$ and

$$\sum_{|\alpha|+|\beta|\leq 2d+1}\|\partial_x^\alpha\partial_\xi^\beta\sigma\|_\infty<\infty,$$

then L_{σ} extends to a bounded operator on $L^{2}(\mathbf{R}^{d})$. This is the Calderón-Vaillancourt theorem for pseudodifferential operators with Weyl symbols.

In [11] Gröchenig and Heil proved a generalization of Calderón-Vaillancourt's theorem. If $\sigma \in M_{\infty,1}(\mathbf{R}^{2d})$, then L_{σ} extends to a bounded operator on $L^2(\mathbf{R}^d)$, where $M_{\infty,1}(\mathbf{R}^{2d})$ denotes the set of $F \in \mathcal{S}'(\mathbf{R}^{2d})$ satisfying

$$\int_{\mathbf{R}^{2d}} \sup_{x \in \mathbf{R}^{2d}} |(F, e^{i\xi \cdot -(\cdot - x)^2})| \, d\xi < \infty.$$

In this paper we give a generalization of these results.

Let

(1)
$$\varphi(x) = 2^{d/4} e^{-\pi |x|^2}, \quad x \in \mathbf{R}^d$$

and

$$\phi(x,y) = W(\varphi,\varphi)(x,y) = 2^d e^{-2\pi(|x|^2 + |y|^2)}, \quad (x,y) \in \mathbf{R}^{2d}.$$

For $\sigma \in \mathcal{S}'(\mathbf{R}^{2d})$ and $\alpha, \beta \in \mathbf{R}^{2d}$ we define

$$S_{\phi}(\sigma)(\alpha,\beta) = (\sigma, e^{2\pi i\beta} \cdot \phi(\cdot - \alpha)).$$

For $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2), \alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbf{R}^d$, we set

$$N(\alpha,\beta)=(-\frac{\alpha_1+\beta_1}{2},\frac{\alpha_2+\beta_2}{2},\alpha_2-\beta_2,\alpha_1-\beta_1).$$

For $\xi, \eta \in \mathbf{R}^{2d}$ we set

$$F(\xi, \eta) = |S_{\phi}(\sigma)(N(\xi, \eta))|$$

and

(2)
$$k(\xi) = (1 + |\xi|)^{-2d-1}.$$

For each positive integer n and $a, b \in \mathbf{R}^{2d}$ we set

$$G_{n}(a,b) = \left[\int_{\mathbf{R}^{2d}} \cdots \int_{\mathbf{R}^{2d}} k(a-\eta_{1}) F(\xi_{1},\eta_{1}) k(\xi_{1}-\xi'_{1}) F(\xi'_{1},\eta'_{1}) k(\eta'_{1}-\eta_{2}) \right] \times F(\xi_{2},\eta_{2}) k(\xi_{2}-\xi'_{2}) F(\xi'_{2},\eta'_{2}) k(\eta'_{2}-\eta_{3}) \cdots \times F(\xi_{n},\eta_{n}) k(\xi_{n}-\xi'_{n}) F(\xi'_{n},\eta'_{n}) k(\eta'_{n}-b) d\xi_{1} d\eta_{1} \cdots d\xi'_{n} d\eta'_{n} \right]^{1/n}.$$

Theorem 1.1 We assume

$$G_n(a,b)<\infty$$

for every $n \in \mathbb{N}$, $a, b \in \mathbb{R}^{2d}$ and

$$\sup_{n\in\mathbf{N}}\sup_{a\in\mathbf{R}^{2d}}G_n(a,a)<\infty.$$

Then L_{σ} extends to a bounded operator on $L^{2}(\mathbf{R}^{d})$.

Corollary 1.1 Let $F(\xi, \eta)$ be a function as above. For $1 \le p \le \infty$ and $p^{-1} + p'^{-1} = 1$ we assume

$$\left\{ \int_{\mathbf{R}^{2d}} \left(\int_{\mathbf{R}^{2d}} F(\xi, \eta)^p \, d\xi \right)^{p'/p} \, d\eta \right\}^{1/p'} < \infty$$

and

$$\left\{ \int_{\mathbf{R}^{2d}} \left(\int_{\mathbf{R}^{2d}} F(\xi, \eta)^p \, d\eta \right)^{p'/p} \, d\xi \right\}^{1/p'} < \infty.$$

Then L_{σ} extends to a bounded operator on $L^{2}(\mathbf{R}^{d})$.

Remark 1.1 The case p=1 or $p=\infty$ is mentioned in Gröchenig and Heil [11]. They used this fact to prove their result on L^2 boundedness of pseudodifferential operators. When p=2, the conditions in the corollary is equivalent to saying $\sigma \in L^2(\mathbf{R}^{2d})$. When 1 or <math>2 , our corollary gives a new result.

Remark 1.2 We can prove similar results about the boundedness of pseudodifferential operators on Sobolev spaces.

2 Proof of Theorem 1.1

First we recall the definition of the Weyl-Heisenberg frame. For $a=(x,y)\in \mathbf{R}^d\times \mathbf{R}^d$ and $f\in L^2(\mathbf{R}^d)$ we set

$$\rho(a)f(t) = \rho(x,y)f(t) = e^{\pi i x \cdot y} e^{2\pi i y \cdot t} f(t+x),$$

where $t \in \mathbf{R}^d$.

Let $\varphi(x)$ be the function defined by (1). Let $I = \mathbf{Z}^d \times \frac{1}{2\pi} \mathbf{Z}^d$. Then $\{\rho(a)\varphi\}_{a\in I}$ is a frame of $L^2(\mathbf{R}^d)$, that is, there exist positive constants C_1 and C_2 such that

$$|C_1||f||_2^2 \le \sum_{a \in I} |(f, \rho(a)\varphi)|^2 \le C_2||f||_2^2$$

for all $f \in L^2(\mathbf{R}^d)$. The dual frame of $\{\rho(a)\varphi\}_{a\in I}$ is given by $\{\rho(a)\tilde{\varphi}\}_{a\in I}$, where $\tilde{\varphi}$ is the function in $\mathcal{S}(\mathbf{R}^d)$ which is constructed by φ . Furthermore we have

$$C_2^{-1} \|f\|_2^2 \le \sum_{a \in I} |(f, \rho(a)\tilde{\varphi})|^2 \le C_1^{-1} \|f\|_2^2$$

for all $f \in L^2(\mathbf{R}^d)(\text{cf.}[5])$.

By the frame theory we have the following proposition.

Proposition 2.1 (i) For every $f \in L^2(\mathbf{R}^d)$ we have

(3)
$$f = \sum_{a \in I} (f, \rho(a)\varphi)\rho(a)\tilde{\varphi}$$

$$(4) \qquad \qquad = \sum_{a \in I} (f, \rho(a)\tilde{\varphi})\rho(a)\varphi$$

which converge in $L^2(\mathbf{R}^d)$.

(ii) There exists a K > 0 such that

$$\left\| \sum_{a \in I} c_a \rho(a) \varphi \right\|_2 \le K \left(\sum_{a \in I} |c_a|^2 \right)^{1/2}$$

for all $\{c_a\} \in \ell^2(I)$.

- (iii) For every $f \in \mathcal{S}(\mathbf{R}^d)$ we have the expansions (3) and (4) in \mathcal{S} .
- (iv) For every $f \in \mathcal{S}'(\mathbf{R}^d)$ we have the expansions (3) and (4) in \mathcal{S}' .

The proofs of (i) and (ii) is in [5]. The properties (iii) and (iv) are consequences of Feichtinger and Gröchenig's result([7], [8], [9], [14]).

Let $f \in \mathcal{S}(\mathbf{R}^d)$. By (iii) and (iv) of Proposition 2.1 we have

$$L_{\sigma}f = \sum_{a \in I} (L_{\sigma}f, \rho(a)\tilde{\varphi})\rho(a)\varphi$$

in S'.

If we show

$$\sum_{a\in I} |(L_{\sigma}f, \rho(a)\tilde{\varphi})|^2 < \infty,$$

then we conclude $L_{\sigma}f\in L^{2}(\mathbf{R}^{d})$ and

$$||L_{\sigma}f||_2^2 \le C \sum_{a \in I} |(L_{\sigma}f, \rho(a)\tilde{\varphi})|^2,$$

where we used (ii) of Proposition 2.1.

Here we have

$$\sum_{a\in I} |(L_{\sigma}f, \rho(a)\tilde{\varphi})|^2 = \sum_{a\in I} |\sum_{b\in I} (f, \rho(b)\tilde{\varphi})(L_{\sigma}\rho(b)\varphi, \rho(a)\tilde{\varphi})|^2.$$

If the infinite matrix $\{(L_{\sigma}\rho(b)\varphi,\rho(a)\tilde{\varphi})\}_{a,b\in I}$ is bounded on $\ell^2(I)$, then we conclude that

$$||L_{\sigma}f||_{2}^{2} \leq C \sum_{a \in I} |(f, \rho(a)\tilde{\varphi})|^{2} \leq C' ||f||_{2}^{2} < \infty.$$

Therefore L_{σ} extends to a bounded operator on $L^{2}(\mathbf{R}^{d})$.

Now we use the following lemma to show the boundedness of an infinite matrix on ℓ^2 .

Lemma 2.1 ([4]) Let $A = (a_{ij})$ be an infinite matrix which acts on the sequence space $\ell^2(\mathbf{N})$. Then the boundedness of A from $\ell^2(\mathbf{N})$ to $\ell^2(\mathbf{N})$ is equivalent to the following two conditions.

(a) For every $n \in \mathbb{N}$, $(A^*A)^n$ is well defined.

(b)

$$\sup_{n\in\mathbf{N}}\sup_{i\in\mathbf{N}}|[(A^*A)^n]_{ii}|^{1/n}<\infty,$$

where $[(A^*A)^n]_{ii}$ is the (i,i) component of $(A^*A)^n$.

Remark 2.1 In [4] Crone gave an additional condition. In [13] Maddox and Wickstead showed that the condition is unnecessary(cf.[12]).

We shall show that the infinite matrix $\{(L_{\sigma}\rho(b)\varphi, \rho(a)\tilde{\varphi})\}_{a,b\in I}$ satisfies the conditions of Lemma 2.1. In order to prove this we use the following lemma by Gröchenig and Heil [11].

Lemma 2.2 For $\sigma \in \mathcal{S}'(\mathbf{R}^{2d})$ and $f, g \in \mathcal{S}(\mathbf{R}^d)$, we have

$$(L_{\sigma}f,g) = \int_{\mathbf{R}^{2d}} \int_{\mathbf{R}^{2d}} S_{\phi}(\sigma)(N(\alpha,\beta)) e^{-2\pi i [\alpha,\beta]} (f,\rho(\beta)\varphi)(\rho(\alpha)\varphi,g) \, d\alpha d\beta,$$

where
$$[\alpha, \beta] = \frac{1}{2}(\alpha_2 \cdot \beta_1 - \alpha_1 \cdot \beta_2)$$
 for $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbf{R}^d \times \mathbf{R}^d$.

First we show the condition (a) of the Lemma 2.1.

Let $A = \{(L_{\sigma}\rho(b)\varphi, \rho(a)\tilde{\varphi})\}_{a,b\in I}, n \in \mathbb{N} \text{ and } c,d \in I.$ The (c,d) component of the infinite matrix $(A^*A)^n$ is given by

$$\sum_{\substack{a_1,\ldots,a_n,b_1,\ldots,b_{n-1}\in I\\ \times (L_{\sigma}\rho(b_2)\varphi,\rho(a_2)\tilde{\varphi})}} \overline{(L_{\sigma}\rho(b_1)\varphi,\rho(a_1)\tilde{\varphi})} \overline{(L_{\sigma}\rho(b_1)\varphi,\rho(a_2)\tilde{\varphi})} \times (L_{\sigma}\rho(b_2)\varphi,\rho(a_2)\tilde{\varphi})\cdots \overline{(L_{\sigma}\rho(b_{n-1})\varphi,\rho(a_n)\tilde{\varphi})} (L_{\sigma}\rho(d)\varphi,\rho(a_n)\tilde{\varphi}),$$

where we will show that the series in the above sum absolutely converges.

By Lemma 2.2 we have

$$\overline{(L_{\sigma}\rho(c)\varphi,\rho(a_{1})\tilde{\varphi})}(L_{\sigma}\rho(b_{1})\varphi,\rho(a_{1})\tilde{\varphi})}\overline{(L_{\sigma}\rho(b_{1})\varphi,\rho(a_{2})\tilde{\varphi})}
\times (L_{\sigma}\rho(b_{2})\varphi,\rho(a_{2})\tilde{\varphi})\cdots\overline{(L_{\sigma}\rho(b_{n-1})\varphi,\rho(a_{n})\tilde{\varphi})}(L_{\sigma}\rho(d)\varphi,\rho(a_{n})\tilde{\varphi})}
= \int \int \overline{S_{\phi}(\sigma)(N(\xi_{1},\eta_{1}))}e^{2\pi i[\xi_{1},\eta_{1}]}\overline{(\rho(c)\varphi,\rho(\eta_{1})\varphi)(\rho(\xi_{1})\varphi,\rho(a_{1})\tilde{\varphi})}d\xi_{1}d\eta_{1}
\cdot \times \int \int S_{\phi}(\sigma)(N(\xi'_{1},\eta'_{1}))e^{-2\pi i[\xi'_{1},\eta'_{1}]}(\rho(b_{1})\varphi,\rho(\eta'_{1})\varphi)(\rho(\xi'_{1})\varphi,\rho(a_{1})\tilde{\varphi})d\xi'_{1}d\eta'_{1}\cdots
\times \int \int \overline{S_{\phi}(\sigma)(N(\xi'_{n},\eta_{n}))}e^{2\pi i[\xi_{n},\eta_{n}]}\overline{(\rho(b_{n-1})\varphi,\rho(\eta_{n})\varphi)(\rho(\xi_{n})\varphi,\rho(a_{n})\tilde{\varphi})}d\xi_{n}d\eta_{n}
\times \int \int S_{\phi}(\sigma)(N(\xi'_{n},\eta'_{n}))e^{-2\pi i[\xi'_{n},\eta'_{n}]}(\rho(d)\varphi,\rho(\eta'_{n})\varphi)(\rho(\xi'_{n})\varphi,\rho(a_{n})\tilde{\varphi})d\xi'_{n}d\eta'_{n}.$$

Let $k(\xi)$ be the function defined by (2). Since

$$|(\rho(b)\varphi,\rho(\eta)\varphi)| \le |(\rho(b-\eta)\varphi,\varphi)| \le ck(b-\eta)$$

and

$$|(\rho(\xi)\varphi,\rho(a)\tilde{\varphi})| \le |(\rho(\xi-a)\varphi,\tilde{\varphi})| \le ck(\xi-a)$$

for all $a, b \in I$ and $\xi, \eta \in \mathbf{R}^{2d}$, we have

$$\sum_{a_{1},\dots,a_{n},b_{1},\dots,b_{n-1}\in I}\int \cdots \int |S_{\phi}(\sigma)(N(\xi_{1},\eta_{1}))||(\rho(c)\varphi,\rho(\eta_{1})\varphi)||(\rho(\xi_{1})\varphi,\rho(a_{1})\tilde{\varphi})|$$

$$\times |S_{\phi}(\sigma)(N(\xi'_{1},\eta'_{1}))||(\rho(b_{1})\varphi,\rho(\eta'_{1})\varphi)||(\rho(\xi'_{1})\varphi,\rho(a_{1})\tilde{\varphi})|\cdots$$

$$\times |S_{\phi}(\sigma)(N(\xi_{n},\eta_{n}))||(\rho(b_{n-1})\varphi,\rho(\eta_{n})\varphi)||(\rho(\xi_{n})\varphi,\rho(a_{n})\tilde{\varphi})||S_{\phi}(\sigma)(N(\xi'_{n},\eta'_{n}))|$$

$$\times |(\rho(d)\varphi,\rho(\eta'_{n})\varphi)||(\rho(\xi'_{n})\varphi,\rho(a_{n})\tilde{\varphi})||d\xi_{1}d\eta_{1}d\xi'_{1}d\eta'_{1}\cdots d\xi_{n}d\eta_{n}d\xi'_{n}d\eta'_{n}$$

$$\leq C^{n}\sum_{a_{1},\dots,a_{n},b_{1},\dots,b_{n-1}\in I}\int \cdots \int F(\xi_{1},\eta_{1})k(c-\eta_{1})k(\xi_{1}-a_{1})F(\xi'_{1},\eta'_{1})k(b_{1}-\eta'_{1})$$

$$\times k(\xi'_{1}-a_{1})F(\xi_{2},\eta_{2})\cdots k(\xi_{n}-a_{n})F(\xi'_{n},\eta'_{n})k(d-\eta'_{n})k(\xi'_{n}-a_{n})d\xi_{1}\cdots d\eta'_{n}.$$

Since

$$\sum_{b \in I} k(\xi - b)k(\xi' - b) \le ck(\xi - \xi')$$

for all $\xi, \xi' \in \mathbf{R}^d$, the above quantity is bounded by

$$C^{n} \int \cdots \int k(c - \eta_{1}) F(\xi_{1}, \eta_{1}) k(\xi_{1} - \xi_{1}') F(\xi_{1}', \eta_{1}') k(\eta_{1}' - \eta_{2}) F(\xi_{2}, \eta_{2}) \cdots$$

$$\times k(\xi_{n} - \xi_{n}') F(\xi_{n}', \eta_{n}') k(d - \eta_{n}') d\xi_{1} \cdots d\eta_{n}'$$

$$= C^{n} G_{n}(c, d)^{n} < \infty.$$

Hence we conclude that the (c,d) component of the infinite matrix $(A^*A)^n$ is well defined.

Next we check the condition (b). By similar calculations we have

$$\left| \sum_{\substack{a_1, \dots, a_n, b_1, \dots, b_{n-1} \in I}} \overline{(L_{\sigma}\rho(c)\varphi, \rho(a_1)\tilde{\varphi})} (L_{\sigma}\rho(b_1)\varphi, \rho(a_1)\tilde{\varphi}) \overline{(L_{\sigma}\rho(b_1)\varphi, \rho(a_2)\tilde{\varphi})} \right|$$

$$\times (L_{\sigma}\rho(b_2)\varphi, \rho(a_2)\tilde{\varphi}) \cdots \overline{(L_{\sigma}\rho(b_{n-1})\varphi, \rho(a_n)\tilde{\varphi})} (L_{\sigma}\rho(d)\varphi, \rho(a_n)\tilde{\varphi}) \right|$$

$$\leq C^n G_n(a, a)^n.$$

Hence n-th root of the quantity of the left hand side is bounded by $CG_n(a, a)$. By the assumption we get the condition (b).

3 Proof of Corollary 1.1

We shall prove Corollary 1.1 for 1 . The proof for <math>p = 1 or $p = \infty$ is similar.

We set

$$\left\{ \int_{\mathbf{R}^{2d}} \left(\int_{\mathbf{R}^{2d}} F(\xi, \eta)^p \, d\xi \right)^{p'/p} \, d\eta \right\}^{1/p'} = K_1,
\left\{ \int_{\mathbf{R}^{2d}} \left(\int_{\mathbf{R}^{2d}} F(\xi, \eta)^p \, d\eta \right)^{p'/p} \, d\xi \right\}^{1/p'} = K_2$$

and $K = \max\{K_1, K_2\}$. We shall estimate

(5)
$$\int \cdots \int k(a-\eta_1)F(\xi_1,\eta_1)k(\xi_1-\xi_1')F(\xi_1',\eta_1')k(\eta_1'-\eta_2)F(\xi_2,\eta_2)$$

$$\times k(\xi_2-\xi_2')\cdots F(\xi_n,\eta_n)k(\xi_n-\xi_n')F(\xi_n',\eta_n')k(\eta_n'-b)\,d\xi_1d\eta_1\cdots d\xi_n'd\eta_n'$$

By Hölder's inequality we have

$$\int k(a - \eta_1) F(\xi_1, \eta_1) d\eta_1
\leq \left(\int k(a - \eta_1)^{p'} d\eta_1 \right)^{1/p'} \left(\int F(\xi_1, \eta_1)^p d\eta_1 \right)^{1/p}
\leq C_1 \left(\int F(\xi_1, \eta_1)^p d\eta_1 \right)^{1/p},$$

where we set

$$C_1 = \left(\int k(a-\eta_1)^{p'} d\eta_1\right)^{1/p'}.$$

Hence (5) is bounded by

$$C_1 \int \cdots \int \left(\int F(\xi_1, \eta_1)^p d\eta_1 \right)^{1/p} k(\xi_1 - \xi_1') F(\xi_1', \eta_1') k(\eta_1' - \eta_2) F(\xi_2, \eta_2) k(\xi_2 - \xi_2')$$
$$\cdots F(\xi_n, \eta_n) k(\xi_n - \xi_n') F(\xi_n', \eta_n') k(\eta_n' - b) d\xi_1 d\xi_1' \cdots d\xi_n' d\eta_n'.$$

Now we have

$$\int \left(\int F(\xi_{1}, \eta_{1})^{p} d\eta_{1} \right)^{1/p} k(\xi_{1} - \xi_{1}') F(\xi_{1}', \eta_{1}') d\xi_{1} d\xi_{1}'$$

$$\leq \left\{ \int \int \left(\int F(\xi_{1}, \eta_{1})^{p} d\eta_{1} \right)^{p'/p} k(\xi_{1} - \xi_{1}') d\xi_{1} d\xi_{1}' \right\}^{1/p'}$$

$$\times \left(\int \int k(\xi_{1} - \xi_{1}') F(\xi_{1}', \eta_{1}')^{p} d\xi_{1} d\xi_{1}' \right)^{1/p}$$

$$\leq C_{2} K \left(\int F(\xi_{1}', \eta_{1}')^{p} d\xi_{1}' \right)^{1/p},$$

where

$$C_2 = \int k(t) dt.$$

Hence (5) is bounded by

$$C_1 C_2 K \int \cdots \int \left(\int F(\xi_1', \eta_1')^p d\xi_1' \right)^{1/p} k(\eta_1' - \eta_2) F(\xi_2, \eta_2) k(\xi_2 - \xi_2')$$

$$\cdots F(\xi_n, \eta_n) k(\xi_n - \xi_n') F(\xi_n', \eta_n') k(\eta_n' - b) d\eta_1' d\xi_2 \cdots d\xi_n' d\eta_n'.$$

By repeating this calculation, we can estimate (5) by

$$C_{1}C_{2}^{2n-1}K^{2n-1} \int \left(\int F(\xi'_{n}, \eta'_{n})^{p} d\xi'_{n} \right)^{1/p} k(\eta'_{n} - b) d\eta'_{n}$$

$$\leq C_{1}C_{2}^{2n-1}K^{2n-1} \left\{ \int \left(\int F(\xi'_{n}, \eta'_{n})^{p} d\xi'_{n} \right)^{p'/p} d\eta'_{n} \right\}^{1/p'} \left(\int k(\eta'_{n} - b)^{p} d\eta'_{n} \right)^{1/p}$$

$$\leq C_{1}C_{2}^{2n-1}C_{3}K^{2n} < \infty,$$

where

$$C_3 = \left(\int k(\eta'_n - b)^p \, d\eta'_n\right)^{1/p}.$$

Hence the condition (a) of Theorem 1.1 is satisfied. Furthermore we have

$$\sup_{n\in\mathbb{N}}\sup_{a\in\mathbb{R}^{2d}}G_n(a,a)\leq CK^2.$$

Therefore we proved the L^2 boundedness by Theorem 1.1.

参考文献

- [1] A. Calderón and R. Vaillancourt, On the boundedness of pseudodifferential operators, J. Math. Soc. Japan, 23, 1971, 374-378.
- [2] A. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. USA, 69, 1972, 1185-1187.
- [3] H.O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal., 18, 1975, 115-131.
- [4] L. Crone, A characterization of matrix operators on ℓ^2 , Math. Z., 123, 1971, 315-317.
- [5] I. Daubechies, Ten lectures on wavelets, SIAM 1992.

- [6] H.G. Feichtinger, Atomic characterizations of modulation spaces through Gabortype representations, Rocky Mountain J. Math., 19, 1989, 113-126.
- [7] H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal., 86, 1989, 307-340.
- [8] H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions II, Monatsh. Math., 108, 1989, 129-148.
- [9] H. G. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg Group: Gabor expansion and short time Fourier transform from the group theoretical point of view, C.K. Chui ed., Wavelets-A tutorial in theory and applications, Academic Press Inc., 1992, 359-397.
- [10] G.B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies No. 122, Princeton University Press, 1989.
- [11] K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, preprint.
- [12] I.J. Maddox, Infinite matrices of operators, Lecture Notes in Mathematics, 786, Springer, Berlin, 1980.
- [13] I.J. Maddox and A.W. Wickstead, Crone's theorem for operators, Math. Colloq. Univ. Cape Town XI, 1977, 33-45.

[14] R. Rochberg and K. Tachizawa, Pseudodifferential operators, Gabor frames, and local trigonometric bases, H.Feichtinger and T.Strohmer ed., Gabor analysis and algorithms: Theory and applications, Birkhäuser, 1998, 171-192.

Mathematical Institute

Tohoku University

Sendai 980-8578, Japan

E-mail address: tachizaw@math.tohoku.ac.jp