-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

An Estimate on the Heat Kernel of Magnetic Schrodinger
Title Operators and Uniformly Elliptic Operators with Non-negative

Potentials (Harmonic Analysis and Nonlinear Partial
Differential Equations)

Author(s) | Kurata, Kazuhiro

Citation O00ob00oboOobDOD (1999),1102: 112-127

Issue Date | 1999-06

URL http://hdl.handle.net/2433/63181

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39196566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0000000000 -
11020 19990 112-127 . 112

An Estimate on the Heat Kernel of
Magnetic Schrodinger Operators
and Uniformly Elliptic Operators Wlth
Non- negatlve Potentlals

ALK -} EEI 5FD¥;:. (Kazulnro Kurata)

Abstract

In this paper we show an estimate of the heat kernel to the Schrédinger oprator

- with magnetic fields and to uniformly elliptic operators with non-negative poten-

tials which belongs to the reverse Holder class. We also give a weighted smoothing
‘estimates for the semigroup generated by the operators above.

1 Introduction and Main Results

We consider the uniformly elliptic operator Ly = —~V(A(z)V)+V(z) with certain
non-negative potential V and the Schrédinger operator Ly = (i7'V —a(x))2+V ()
with a magnetic field a(z) = (al(a:) ++,aa()),n > 2. We use the notation L;
for J = E or J = M. The purpose of this paper is to glve an estimate of the
fundamental solution (or heat kernel) I';(z,t : y,s) to ,

 @tLue) =0, @HERTXO0), (1)

namely I';(z,t; y, $) satisfies
(at + LJ)PJ(xst; Y, 5) =0, z¢€ Rﬂa t>s, ‘ | (2)
. ;EI}FJ($,t; y,8)=6(x—vy). , (3)



For the elliptic operator LE, we assume the following conditions for A(z) =
(aij(2)). .

AssUMPTION (A.1): a,,](:c) is a real-valued measurable function and satisfies
, a,,(a:) = aji(z) for every 4,5 =1,--.,n and z € R". ‘
AsSUMPTION (A.2): There exists a constant A > 0 such that

Al < Z au(l")ﬁ'é’ SATYEP, E=(€- e eR (4).

4,J=1

To state our a,ssumptlons on V and a, we prepare some notations. We say
- U€(RH) if U € L (R™) and satisfies

- Sup U dy, 5
yeB(:Ic)r)l (y)l - IB( , )| JB(ayr )I (9)] dy (5)
and say U € (RH),if U ¢ Li.(R™) and satisfies
1 1/q 1
(B o, o0l ) " < BT ooy V@I ©

for some constant C' and for every z € R" and r > 0, respectively. We can define
the function m(z,U) for U € (RH), with ¢ > n/2 as follows:
1 2
m(z,U) = sup{r > 0 " 1B(z,7)| /B Uy
We note that if there exist positive constants K; and K5 such that K WUi(z) <

Uz(z) < KaUi(z), then it is easy to see that there exist positive constants K1 and
K}, such that

dy < 1}. (7)

K{m(a: Ul) < m(a: UQ) < sz(l‘ Ul)

When n > 3, since it is known U € (RH)p2 actually belongs to (RH ),1/24_E for
some € > 0, m(z,U) can be defined for U € (RH ),/ ([Sh1]). For other properties
of the class (RH)q, see, e.g., [KS]. We denote by B(z) = (B;i(z)) the magnetic
field defined by Bji(z) = 8;ar(z) — Ora;(x). We use the notation my(x):

me(z) =m(@,V),  my(z) = m(z,|B| + V)

for the operator Ly, J = E or M, respectively. We assume the following conditions
for V(z) and a(z) = (a1(x), -+, an(x)).
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ASSUMPTION(V a B) For each j = 1,---,n, ai(z) is a real-valued C'(R")-
function, V' is non-negative. _—
(i) For n > 3, we assume V(z) and a(:c) satisfy

V+|B|e (RH.)n/z, IVB(z)| < Cm(z,V +|B|)*.
(i) Forn =2, we assufne V(z) and a(z) satisfy |
V+ |B| € (RH),, | |VB(z)| g Cm(z,V +|B|)®
for some ¢ > 1. | |

Remark 1 For n = 2, we may assume the condition (ii’) instead of (ii) by em-
ploying Lemma 1 (b).
- (@) V e L (R2), B(z) > 0 and that my(x) satzsﬁes

c, . my(x)
(1 + |z — ylmy(x))ke/kot1) =

<my(y) < Co(l + |z — ylmJ(m))komJ(x) (8)

for some positive constants Cy,Cs, ko and for every z,y € R?, where mg(z) =

VV(z) and my(z) =4/V(z) + B(z).

We remark that it is known that my(z) satisifies (8) under the assumption
(V,a, B) for n > 3(|Sh1]) and even for n = 2 in the same way. We also note that
if |B| +V € (RH)o, then it is easy to see that |B(z)| + V(z) < Cm(z,|B| +V)?
holds. For example, the condition |B| +V € (RH), is satisfied for any a;(z) =
Q;(x),V(z) = |P(x)|*, where P(z) and Q;(z),j = 1,---,n, are polymonials and
‘a is a positive constant. In this case, under the assumption (V, a, B) (i) or (ii), we
" see that there exists a positive constant mg such that m;(z) > my, although in
general we cannot say |B| +V is strictly positive for imhomogeneous polynomials.
To state our main result, we introduce the notation: -

1 |z — y|?
T )

. FCo(x7t; Y, 3) =

for some positive constant Cj.
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Theorem 1 (a) Suppose A(x) and V (z) satisfy the assumptions (A.1), (A.2) and -

(V,0,0). Then, there exist positive constants og and C; (j = 0,1,2) such that

(0 Tu(z,t;,5) < Cy exp <—02(1 + mp(@)(t - s)/ 2)e0/ 2) Teo(z,t9,5)  (9)

forz,y e R" andt > s > 0.

-~ (b) Suppose V(z) and a(x) satisfy the assumption (V,a B) Then, there egist

positive constants ag and C; (j = 0,1,2) such that

ITa(z,t;9,8)] < Crexp (‘Cz(l +m(z)(t — 5)Y 2)“°/2')F00(w,t; y,5)  (10)
formyeR”.andt>s>0 '

‘The number «q is actually deﬁned by ag =2/(ko + 1), where ko is the constant
~in (8). The exponent ap/2 would not be sharp. If we restrict for the case CBy >
|B(z)| > By > 0, the following sharp estimate is known ([Ma], [Er1,2] for n > 3
and [LT] for n = 2):

II‘M(xat; Y, 5)[ S Dl exP(—DZBOt)FDo ('Tat; Y, 5)'

More detail informations on the constants D; (j = 0,1,2) can be seen in those
papers. By using the parabolic distance:

dr((2,1), (,8)) = max(je — g, |t - 5'/%),

we have the‘fellowing decay estimafe_.

Corollary 1 (a) Under the same dssumptions as in Theorem 1 , there exist positive

~ constants C; (j = 1,2) and Cy such that

IFJ('TJ L Y, S)I < Cl exp (_Cz(l + mJ(m)dP((x7 t)? (y7 s)))2a0/(a0+4)) FCO (CL”,t, Y, S).

forJ=E andM for every z, y€R" andt > s > 0.
(b) Under the same assumptions as in- Theorem 1, for eack k >0 there exist
positive constants Cr, and Cy such that .
Cr :
r t; < e I t;y,
N (R ¥ T (CEIN 5 i
for J=FE and M.
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Remark 2 Actually we can show the estimate in Theorem 1 for the operators
Ly = =V(A(z,t)V) + V(z,t) with time-dependent coefficients, if we assume the
uniform ellipticity (4) of A(z,t) and the existence of constants Cj,5 = 1,2, such
that C,U(z) < V(z,t) < CoU(z) and U satisfies the condition (U,0,0). For the
magnetic Schrodinger operator Ly = (i7V — a(z,t))? + V(z,t), the estimate in
Theorem 1 still holds, if there exists positive constants C;,j = 1,--+,5, such that
CiU(z) < V(z,t) < GU(s), ColB'(x)] < |B(x,8)] < Ci|B'(«)], and |VB(z,1)| <
Csm(z, |B'| + U)3, where a(x,t) is C* and Bj(z,t) = 8;a(z,t) ~ dpaj(z,t) and
U(z) and B'(x) satisfy the AsSUMPTION (U, a, B') (except [VB'(z)| < Cmy(x)3(=
Cm(z,|B'| + U|)®)), and if the upper bound :

Tu(z,t;y,8) < CI‘CO(a: t; y,s)
holds for some constants C and Cy.

Remark 3 In particular, Corollary 1 (b) yields

Cr
. < «
Fatetiondll < @l — s+ ma @l s &)
Ck

(14 my(z)|z — y|)*
for J=E or M. Letn > 3. Then this implies

+o0 :
ICs(e,u)= [ Tolatiy,s)de] <

FCo(xat;y7 3) (11)

| (1 +my(z)|z - y|)Flz — y|*2

where T ;(x,y) is the fundamental solution to Lyu = 0. This estimate for the elliptic
operator was proved by Shen [Sh1, 2] Thus, Corollary 1 (b) is a generalization of
his estimate.

Remark 4 Recently we are informed by Z.Shen that he obtained the following
shape estimate[Sh3] for the elliptic operators: under the assumption V € (RH In/2
forn >3 and V € (RH), with ¢ > 1 forn=2,

Cy exp(—~Co(a, ) — o < Ts(z,9) < Caexp(~Cadla,u)lo — P

holds for some positive constants C; (j = 1,2,3,4), where d(z,y) is defined by

da,9) = inf [ mCr(,VI(5T) o at.



Here the infimum is taken over all curves v such that ’y(O) =z and ¥(1) = y.
Moreover he gave the following estimate: :

Ci(1+m(z)lz — y))*/? < d(z,y) < Cy(1 +m(z)|z ~ y|)
for some positive constants Ci(4 = 1,2) and By. In particular, it follows
Ts(z,y) < Csexp(=Co(1 + mu(z)|z — y|)*/?)|z — y|*

for some positive constants Cs and Cs. We remark that this decay estimate also
can be shown for the fundamental solution Tum(z,y) to Ly in a similar way. On
the other hand, it follows from Corollary 1 (a) a somewhat weaker decay estimate:

ICs(2,y)| < Cexp(=C(1+my(z)|a — y|)?*/ D)z — y[>~

for J = E or M. We do not know whether his sharp estimate can be generalized
to heat kernel estimates or not.

We denote by e~ *£7 the semigroup generated by L;. Here we also denote by Lj
the self—adjoint operator determined from the form associated with

Ly( see, e.g., [Si], [LS]). We obtain the followmg weighted smoothing estimate by
using Corollary 1 (b).

Theorem 2 Assume the same assumptions as in Theorem 1. Let J = F or M.
Suppose 1 < p < g < 400 and1/p—1/q <1 and puty = n(1/p—1/q). Then for
each 1 € [0,(n — v)/2] there exists a constant C; such that
_ : C . '
Iy (2)* e~ f|| pagmny < a1 s, >0 (12

Corollary 2 Suppose the additional condition |B)| + V € (RH)o. Then we have
the following estimates:

(1Bl + V) e ™™ fll emny < e ||f||Lr(Rn), t>0 (13)

holds for 1 < p < +o0 and l € [0,n/2], and

- G - |
(1B + V)'e™ f|| peorny < 7tz 1 ey, >0 (14)

holds for 1 < p < 400 andl € [0,n/(2p")]. Herel/p' = 1—1/p and C, is a constant
depending on l and p.

117
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Corollary 2 is an eagy consequence of Theorem 2 by using the inequality (]B | +
V)(z) < Cmy(z)2 Note that (14) for the case I =0 is a classical result.

Theorem 1 yields a weighted smoothing estimate with an exponentlal decay in
time.

Theoi'emt3 Assume the same assumptions as in Theoren_i 1 and the additional
assumption mj(z) > mg > 0. ,
(a) Let1<p< +00 andl € [0,n/(2p')]. Then we have

llm ($)2l tLJfHDm(R") < Cexp(—-C(1+ motl/z) )tl+(n/2p) “f“LP(R")a t>0.

(b) Let 1<p<2andle [0 n/(2p )] Then we have

1
lImJ(w)2’ T fllpome) < Cexp(—C(1+ mﬁt))tH(n/Q,,) I fllzemny, ¢ > 0.
Especially, for the case CBy > |B(:v)| > By > 0, Theorem 3 (b) yields an exponen-
tial decay estimate in time:
' _ | C
le™ fll peo(rry < WlaeXP(—CzBotle“Ll(R"){ t>0 (15)

for some positive constant C; and Cy, which is known (see, e.g., [Ma], [Er1,2], [Ue],
[LT]).. Indeed, in this case mp(z) ~ /By holds. Note that Theorem 3 (a) gives
weaker decay rate e"CVBol gince ko = 0 and ap = 2. We also emphasize that
Theorem 3 can be applied to any polynomlal like magnetic field B(:z:) which may
be zero somewhere

Definition 1 We say u(z, t).is a complex-valued weak solution to

(O + Lap)u=0 in  Q.(zo,t0),
if u € L((to — 72, to); LA(B(o, ); C)) 0 E((to — 12, to); H (B(o, 7); C)) and sat-
isfies ‘ : .

t)¢(z,t) dz — $)0.3 N g
/B(xo,r) u(z, t)p(z,t) dz s /B(xw) u(z, 5)0s9(x, s) dzds

t .
o Diu(z,s)D%(x,s) drds
/;ﬂﬂmm§;,< )D74(z,5)

to—

L) Veueadeadds=0 (o)
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Jor everu ¢ € C = {¢ € L((ty—7r2,1y); HI(B(zg, r); C)) 8 5@ € L*((to—r2,t0); L%(B(zo,7); C)),
&(z,to — r2) = 0}, -where ¢ is the complez conjugate of .

Here, we used the notation Df =719, — a;(z) and
Qr(@0,t0) = {(,2) € R* X (0, +00); |z — zg| < 1,89 — 12 < t < tg};

A real-valued weak solution u to (8; + Lg)u = 0 in Qr(z0,%0) can be defined in a
sumla,r way. Our proof of Theorem 1 is based on the followmg subsolutlon estimate.

Theorem 4 Let u(z,t) be a weak solution to dwu + Lyu = 0 4n Qg,.(:cg,to) Then
there exits positive constants Cj,j = 1,2, such that

1 : ’ 1/2
sup. IU(m,t)IS01eXP(—Cz(1+7"m.r(xo))“°/2)-( ) ), luPdsat)
(2:t)€Qy/2(x0,t0) g _ e r(20,t0)
(17)

‘Throughout this paper, we use the folloWing notation: D =471V —q,

B(‘TD) T) = {y € Rn? ly - "I;OI <.T}7 (AVU7 VU) Z a’]kax]uamku
],k—l»

Qr(ﬂio,to)-—- {(JJ t) € R" x (0 +OO) I.TL‘—.’EQI <r to—-T‘ <t<t0}

2 Proof of Theorem 4

We use the following inequalities.

Lemma 1 (a) ([Sh2]) Suppose n > 2 and V(z) and a(z) satisfy the condition
(V, a, B). Then there exists a constant Cy such that

/ m(z, |B| + V)2|u|2d:c <G / 1V — a(:t:))ulz +V(2)|u|? de

forue Ce(R™;C).
~ (b) ([AHS]) Suppose n =2,V >0,V € LIOC(RZ), a € CY(R?), and B(a:) > 0.
- Then the inequality

[(B(@) +V(@)up dz < / (i7'v - a(a:))u[2 + V(@ ds

holds for uw € C§°(R™; C).



We also prepare the following Caccioppoli-type inequality.

Lemma 2 Let0 < o < 1. Letu be a weak solution to (8s+Ly)u = 0 in Q2-(2¢,%0)
for J =E or J = M. Then there exists a constant C such that

su u(z,t)|?de + // i1V — a)ul® + V|u|? dzds
p /B(W)I (z,1)| [ Yul2 + Vlul

to—(or)?<t<to
< dxdt.
- (1 —_ 0')27"2 //T(wo,to) IU| v

ProoF: Although the proof is standard, we give it here for the sake of completeness.
~ We show the estimate for a weak solution u to (9 + Lg)u = 0 in Q2.(%o,?0). Since
we can show the esimate for a weak solution to (9; + Ly )u = 0 in the similar way,
we just mention some modifications we need at the end of this proof. Take functions
x(z) € C(B(xo,7)) and n(t) € C°(R') satisfying 0 < x(z) < 1, x(#) =1 on
B(zg,0r) and |Vx(z)| < C/(1—o0)r,and 0 < n(t) <1, n(t) =1L ont >ty — (ar)?
n(t) = 0 on t < to — 12, |9m(t)] < C/r3(1 — 02). For the sake of simplicity,
we also assume dyu € L*(Qa.(7o,t0)). Actually, we can remove this additional
assumption by using the argument as in [AS]. Fix t € [to — (o7)?,t5]. Multiplying
n%(t)x%(z)u(z,t) to the equation and integrating over B(zo,r) X [to —r?,t], we have
1
2 JB(zor)

| + ‘/tot—r? /B(aco,r)(A(x)vu(x’ S)’ VU(ZL‘, 3))”(5)2)((3’1)2 dzds
+ ‘/to ;rz »/B(:;:o,r) V(x)u(a:, 8)277(3)2)((-'13)2 dxds
= /tt_ /B(xo,,,) u(z, 5)°x(x)*n(s);n(s) dzds

— /t:_ﬂ /B(xo,r)<A(:L“)Vu(:r,S),V(X2($)>)n(s)2u(x,3) dzds. (18)

u(z,t)ix(x)? dz

Because of the ellipticity of A(x) and the positivity of V', we obtain by (18)

2 2 ’
sup /B(mo,r) u(z,t)*x(z)” dx | (19)

to—(or)2<t<to

< // u?|8,n| dzds
T(-'L'Oato)

120
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+ // |Vu||u|n2x|VX| dxds
/ r(%0,t0) :

c (1 ) |
_~ [ dzd // 22| Vul? dad }
(1—-o0 {7‘2//T(mo,to)u as + T(zo,to)x 7| Vul* deds

By using (18) again, we have

: A//( ')|Vu]2x2n2dxds+//( )VuQXZnZ’da:ds
i r(Zo,to r(Zo,to

< // (AVu, Vu)akux2n2dxds+/‘/’ Vulx?n? dzds
/Qr(20,t0) . , r(20,t0)

C |
< ———————// uzdmds—i—// Vul|V ?|u| dzds
=2 J Jorwonn) ooy | ¥ VXX ]

C : A
< 2 Jrd _// Vul2 22 .
B (1 - U)T2 ‘//r(wOvtO) b vas + 2 r(:vo;to) | UI X n dxds (20)

It follows

SLL o v dedst [ [ v dads
2 r(zo,t0) ) r(wO,tO).

C 9
———— dzds.
(1 - 0)2T2 //r(fﬂoato) e (21)

(19) and (21) yield the desired result. For Ly, we can prove in a similar way by
noting the following identities:

D¢ (ux) = (Dfu)x +u(i V), /Dj‘ubdx = /uDj_vdx

O ,
Proof of Theorem 3: Let k € N and define pi (j=1,2,---,k+1) by p; =
2/3+ (G = 1)/k)(1 — (2/3)). Let x,(w) € C3*(B(zo, 7)) and n(t) € C=(R) be
- the functions satisfying 0 < x; < 1, x;(z) = 1 on B(zo, pj_17), |Vx;(z)| < Ck/r,
and 0 < n; < 1,m(t) = 1Lont > tg— (pj—1r)?, ni(t) = 0 on t < o — (pjr)?,
|Vn;(t)] < Ck/r?. By Lemma 2 (see also (21)) , we have

/ /Q (20 m(l(ﬁV — a)ul’ X +V lu12x§+1n§+1) dzds
24170

Ck?

< = // |u|? dxds.
r Qpjyqr(zosto)
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We write just x = ;41 and 7 = 17]+1, for simplicity. Since I(z“lv - (Jc)(unx)l2
2|(i71V — a)ul*x*n? + 2u?|Vx|*n?, it follows that

/] (1677 = a)omxwlPxe? + ViuPx’n?) dads
Qpj 117 (%05to)
: 2
< Ck // - |uf*dzds
Qp,+1r($'o,to) ‘

N forAj =1,-.-,k. By using Lemma 1, we obtain

/ (/ my(z)? [nxu] dx)dt < S // |u| dzds.
to—(pj+17)? \J B(zo,pjt17) Qp +1r($o’t0)

By using my(z) > C(1 + pjparmy(xo))” "’0/(1+k°)mJ(x0) on |z — zo| < pj+1r and
noting 2/3 < pj+1 < 1 (see (8) and the remark after that), we have

1
// |u|? dxdt < ' (/ |nxu|2) dxdt
Qp;r(zosto) Jto—(pj+17)? \IYB(mo,pj417)

Ck” —————(1+ rmJ(mO))2k"/(k°+1)// |u|? dzdt.

sz (SC ) pJ_,_lr(-’Co,to)
Ck?
< / zdmdt 22
> (1+rmJ(w0))2/(k°+l)/ QPj+1r(wo,to)|u' i ’ ( )

for each j = 1,2,---,k. Here we used a trival inequality S Ja, (wo,10)(- 1) dzdt <
pyT 9 2
I o, - ae(®0 1)( * *) dzdt for the case rm 7(zo) < 1. By this proceedure, we can obtain
7 7
the following: there exists a constant C such that for every k € N

/ /  |ulPdedt < CHk2) / f |u|? dzdt (23)
. Q2+ /3(z0,t0) - (1+7"m.](-130))ka° Qr(zo5to) _ o ,

where g = 2/(ko + 1). Since V(z) > 0, the well-known subsolution estimate (see,
e.g., [AS)]) yields

" v
sup  |ul < ( / / 2d:cdt> 24
Q. /2(113 o) I l rnt2 Q2r/3(1‘0,t0) ] I ) ( )

for some constant C. For the magnetic Schrodmger operator case, we have used

Kato’s 1nequa11ty Combining (23) and (24), we arrive at

) _ Ck/zkk ) /2 '
sup |u| <C ( / / u da:dt) 95
Qr/z(w{:)tﬂ) ' | (1 + ij(.’l?g) kaO/z rn+2 T(xO’tO) I I ( )
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for every k € N. Note that, by Stirling’s formula k* ~ e*k!(1/v/27k) as
k — oo, there-exists a constant Cp such that k¥ < CyeFk! for k& > 1. Multlplymg
¢* /k! and taking the summation, we obtain

(e(1 + rmy(mg))e/2)k
sup _[ul) 3 (AT @) )
Qr/z(-’vo,to) k=1

. . 1. /2
Ef_L 2
< CGCy 1}:1(66\/ C) (r“+2 -//r(-'l»‘o,to) |u| da:dt)
Take € > 0 so that eev/C < 1. Then we have | |

, , . 1 1/2
sup |u| < Cexp(—e(l+ TmJ(xo))ao/z)(r_nﬁ// (w0t )|u|2 dxdt) )
r(Zg,t0

QT/Z(:CO 7t0)'

This complete the proof. O A

3 Proof of Theorem 1

To show Theorem 1 we prove the following proposition.

Proposﬂ;lon 1 Under the assumptions as in Theorem 1, there exist posztwe con-
stants Cy and Cy such that
1

T, 5)] < Cr exp(~Ca(l + my(a)]t — S|1/2)“°/2)m

(26)
forz,y e R® andt>s>0

PROOF: Assume t—s > 2|ly—z|%. Take r? = |t——s|/8 Then u(z,u) = T;(z,u;y,s)
- satisfies (at +Lj)u(z,u) =0in QZT(x t). Hence by applying Theorem 4 to u(z, u),
we obtain

ITy(z,t9,8) < sup |u
: Qr/2(m7t)

B 1 1/2
< Cexp(=C1+my@lt =l 1) (g [ [ Iy, o) dedu)

- By using the maximum principle for Lg and the diamagnetic inequality (see, e.g.,
[AS], [LS], [AHS]) for Ly, we have

(u —i)n/z exp(_CLz__—ylz) | _ 27)

- Tz, w5y, 8)| <



for some constant C = C(n,\). Since t —s > u—s > Tr? > (7/8)(t - s) on
(z,u) € Q,.(m t), it is easy to see

0 1/2 | C
(m/‘/Qr(z,t) IFJ(Z, us Yy, S)I dZd’LL) _<_ m

This yields the desired estimate. O :
Proof of Theorem 1: The positivity of I'r(z,t;y, s) is a consequence of V' > 0
and the maximum principle. Hence Proposition 1 and (27) imply

1 |y — wlz)
exp| —C—=—
=) p( -3
for some constant C. This concludes the desired estimate. O

Proof of Corollary 1: Let f(t) = (my(z)t/2)*/2 +|z — y|?/t for t > 0. The, an
easy computation shows that

[Ty, 9, ) < Cexp(~C(1+ [t — 5| /my(2))™/?)

inf f() > Cmy(a)|z — yl)?oe/*?

for some positive constant C. Thus, we obtéin
' 1 Clz —yf?

r t; < Co——rs = I

l J(.’E, ayas)l = (t S)"’ )

x  exp(—C(my(z)(t — S)l/2)ao/2)
< CTay(2,t;y, s) exp(—C(my(z)|a — y[)?>/(+?)

x exp(—C(my(x)t/2)™/2).

- exp(~Cf(t — 5)) exp(~
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This proves the part (a) since 2aq/(co + 4) < ap/2. The part (b) is an easy

consequence of the part (a). O

4 Proof of Theorem‘ 2,3

To show Theorem 2, we prove the following inequality.

Theorem 5 Lety € [0 n). Then there exists a constant C such that

ImJ(fv)2’(e""LJf)(x)I < W(Méylfl)(w) (28)
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holds for every 0 <1 < (n —)/2. Here M L[ is the fractional ma:czmal function
deﬁned by

(va)(ﬂf) = iggwfg | f] dy,
where the supremum is taken all balls B containing x.
Theorem 2 is a conseqﬁencevof Theorem 5 and the following lemma, (Seez e.g., [St]).

Lemma 3 Let 0 < v < n. There exists a constant C such that

1My flle < ClFll,
forl<p<Lg<+ooandl/qg=1/p—v/n.
Proof of Theorem 5: Let 7 = 1 /m(z). By C‘ofollary 1 (b) we have

Ima(2)* (e £)(a)|
Cm(z)?

IA

HOIR exP('_CI’” - ylz) dy

1+ ma(a)|z — gFer? i
¢ ¥ |£(9)] C(@iry?
r2gn/2 jgoo /{2"‘1r<lx—4y1523'r} (1 + 2j—1)k_ €xXp (_ : ) dy. (29)

By the assumption on [,-we take o > 0 such that 2a = n — v — 2. Put C, =
SUp,s 5%€™* < +oo for o > 0. Then the right hand side of (29) is dominated by

C = S C(2971r)2\ = '
CO.‘W Z /{21-1T<|m_y|s2jr} ,,«21(1+2j—1)k( n ) [f(¥)| dy

j=—o00

CLC e (2} 1 Y
< e 2 (1+ 2i-1)k(2i-1y2a ((2;[:,-)71.—7 /{lw_yls%}lf(y)fdy)-_

]‘QO

< e +z°° (1+2§?3);2, AT O (30)

Now, since n — 7 — 20 = 21 > 0, by taking k£ > 2] we have

+o0 (2j)n—*y +o00

c
. . L) Y-
E (1 + 2]——{[)’6(2]—‘-1)2.0 - ]_;1 23 (k-21)

=1

< +00,
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and .
0 _ (zj)n—'r'
2 T

j=—c0

0 _
< > C(29)% < +o0.
_ j=—o0.
Thus, we obtain the desired result. O :
Proof of Theorem 3: First, the estimate for the case [ =0 and p = 1is classical
except the exponential factor in time. Under the assumption, by Corollary 1 (a)
- we have

Tie,ty,8)| < CToy(zty,8)exp(~=C(1+ my(@)lw — y)2e /(D)
‘ X exp(—C(1 4 mgt!/2)20/2) ‘ (31)

- for some positive constants C' and Cy. Then by using this esﬁmate we can prove
the part (a) of Theorem 3 in a similar way as in the proof of Theorem 2. To show
the part (b), we use the semigroup property and Theorem 2 and get

- c .-
lmg(z)*e™ £ lzcam) < g le CIE £l o)

for some constant C. Note that under the assumption my(z) > my, Lemma 1
yields inf o(L;) > C'm for some positive constant C. Here o(Ly) is the spectrum
of the operator L;. So, we have S

”e—(l/3)tLJ —-Cm3

9l 2wy < €7 gl ey

Using this estimate, we obtain

- C  _om L
lms(z)?e ™ fl|po@mny < eyl Cmt|| (/LT £l 12 iny
C ~Cm2t C | ‘
= t’+(n/4)e "O tn/2(1/p-1/2) ,”f”LP(R")-

In the last inequality, we used p < 2 and Theorem 2.
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