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NONSTANDARD METHODS ON REPRESENTATIONS OF THE
CANONICAL COMMUTATION RELATIONS

Z A2 B SRR 1L TFH B (Hideyasu Yamashita)
HEBRFENEEREN LR NEIEE (Masanao Ozawa)

1 NONSTANDARD ANALYSIS

There are several different formulations of nonstandard analysis. This paper
adopts the set-theoretical approach based on superstructures instituted by
Robinson and Zakon [2] and follows the up-to-date description by Chang and
Keisler [3]. v | .
For any set X, let S(X) denote the set of all subsets of X. The superstruc-
ture over X, denoted by V(X), is defined by the following recursion:
VW(X) =X, Van(X) =Va(X)US(Th(X)), V(X)= U ValX),

neN
where N is the set of natural numbers. The set X is called a base set if ) € X
and for all z € X we have z NV (X) = 0.
The language £ which describes V(X) consists of logical connectives —,
A, V, =, qliantiﬁers V, 3, individual variables z’,x", ..., individual constants
C, for all u € V(X), and two binary predicate constants =, €. A formula
of £ is constructed from the above constituents in the usual way. We will
use the following abbreviations, called bounded quantifiers: (Vx € y)¢ means
(Vz)[z € y = ¢], (3z € y)¢ means (3z)[x € y /\ ¢]. A bounded formula is
- a formula in which every quantifier occurs as a bounded quantifier. We will
write ¢[us, ..., up] for ¢(Cy,, ..., Cy,)-
For any formula ¢ in L, the relation V(X) |= ¢ is defined by the following

rules:
(i) V(X) = C, =C, if and only if u and v are identical.
(ii) V(X) E C, € C, if and only if u is an element of v.
(iii) V(X) = —¢ if and only if V(X) = ¢ does not hold.



(iv) V(X |= ¢1 A ¢ if and only if V(X) k= ¢1 and V(X) = 0.

(X)
(v) V(X) E ¢1'V ¢ if and only if V(X) = ¢ or V(X) [= ¢2.
(vi) V(X) k= ¢1 = ¢ if and only if V(X) |= ¢; then V(X) = ¢
(vii) V(X) k= (Vz)¢(z) if and only if V(X)) k= ¢[u] for all u in V(X).
)

(viil) V(X

A nonstandard universe is a triple (V(X),V(Y),*) consisting of super-

}:( z)¢(z) if and only if V(X)) = ¢[u] for some u in V(X).

structures V(X), V(Y), and a map * : V(X) — V(Y) satisfying the following .

conditions (i)—(iii):
(i) X and Y are infinite base sets.

(ii) (Transfer Principle) The map * : a — *a is an injective mapping from
V(X) into V(Y), and for any bounded formula ¢(z1,...,z,) in £,

V(X) = ¢lui,...,u,] ifand only if V(Y) = @[ *ug,. .., "uq]

for any uy,...,u, in V(X).
(ili) *X =Y.

An element u € V(Y) \ Y is called an internal set if there is T € V(X) such
that u € *z. Let o be a cardinal. A nonstandard universe (V(X),V(Y),*) is

said to be a-saturated if it satisfies the following condition:

(iv) (Saturation Principle) Every family of less than o internal sets with

the finite intersection property has nonempty intersection.

In this paper, we always work with a nonstandard universe (V' (X), V(Y), %)
which is a-saturated with card(V (X)) < «; such a nonstandard universe is said
to be polysaturated. We also assume that the base X includes the complex
numbers C and ahy other structures under consideration such as given groups
and Hilbert spéces.

For a set S, let °S = {*s| s € S}. We identify *z with z for all z € C,
Hence, %S = S if S is a subset of C, e.g,, C = C, ‘R = R (the real
numbers), °Z = Z (the integers), and °N = N. Let R*, *Ry, *Re, *RE, and
*N o denote the sets of positivé real numbers, infinitesimal hyperreal numbers,

positive infinitesimal hyperreal numbers, positive infinite hyperreal numbers
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and infinite hypernatural numbers, respectively. It is shown that *N, =
*N\N. We writez ~ coifz € R, and 0 < z < o0 if z € fin*RT = *R*T\*R,.
If r € *R and |r| < oo, the standard part of r is denoted by . If r ~ 00, we
write r = co. Let z,y € *R™*. we say that z is of the order of y, in symbols
rx<y,iff 0 <z/y <ooand 0 < y/zx < co. We write z < y if z/y = 0. For a
hyperfinite (x-finite) set F, let |F'| denote the internal cardinal number of F'.

Let (X,0) be a topological space. Let O, denote the system of open
neighborhoods of z € X. The monad of x € X is the subset of *X defined
by monp(z) = N{*O| O € O,}. The set of near standard points is the subset
of *X defined by ns(*X) = U{mone(z)| z € X}. It is shown that (X, O) is
Hausdorff if and only if z # y implies monp(z) N monep(y) = @. Thus for any
Hausdorff space (X, O), we can define the equivalence relation &» on ns*X

so that axpb iff a € monp(z) and b € monp(z) for some z € X. Let (X, || -||)

be an internal normed linear space. Define the relation =~ on X so that z ~ y -

iff ||z — y|| & 0. The principal galazy of X is the subset of *X defined by
fin(X) = {x € X| ||lz|| < oo}. For z € fin(X), let & denote the equivalence
class & = {y € X| z ~ y}. Let X = {&| « € fin(X)}. Define the (standard)
norm || - || on X by ||&]| = 9|«|| for all z € finX. Then (X, ]|-||) turns out to be
a Banach space, called the standardization of (X - 1)- In a similar way, the
standardization is defined for any internal pre-Hilbert space (X, {-,-)), and it
turns to be a Hilbert space.

For a (standard) normed linear space (X, || -||), we abbreviate *X to X. In
this case, the Banach space (X, ||-||) is called the nonstandard hull of (X,]|-||).

Let ‘H be an internal Hilbert space, and T : H — ‘H an internal bounded
operator such that the bound ||T|| is finite. The bounded operator T : # — #,
called the standardization of T', is defined by the relation T# =Tx.

For further information on nonstandard real analysis, we refer to Stroyan
and Luxemburg [5] and Hurd and Loeb [4].

2 CANONICAL COMMUTATION RELATIONS

Let H be a Hilbert space, and {a;|i € I} a family of linear operators on #,
with dense domains dom(a;), when I is finite or infinite. Let D be a dense
subspace of H. The pair ({a;}, D) is called a representation of the CCR if the
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following conditions are satisfied for all i:
(i) D € dom(a;), D C dom(ay).
(i) D is invariant under a; and q;.
(iif) [@i,a}] = 0ij, [as,a;] =0 on D.
The number n = |I| is called the degree of freedom of the CCR. ‘
Let U(-) and V() be strongly continuous one-parameter unitary groups on
H. The pair (U,V) is a representation of the Weyl CCR (of one degree of

freedom) if

Up)V(q) = e™V(g9)U(p) 1)
for all p,q € R.

Let H; be the group (R x R x R, -) with group law
(pa,t) - (0, ¢,t) = (p+7.q+d,t+1 +pg).

Then, we get a strongly-continuous representation of H; by

(p, g, t) = W(p,q,t) = eV (q)U(p),

where (U, V) is a representation of the Weyl CCR. The representation W is

called a Weyl representation of Hj.
Let U(p) and V/(¢) be the unitary operators on L*(R) defined by

Up)f)(@) =e?f(z),
(V(g)f)(z) = f(z —1).

Then, p(p, q,t) := €V (q)U(p) is a Weyl representation of H;. Let us call this
the Schridinger representation of Hj. '

3 NONSTANDARD REPRESENTATIONS OF THE CCR

Let v € *N be infinite, and {a;|i € N} be a sequence of internal operators on
*C¥, or equivalently, be v x v internal matrices. Let D C fin*C” be an external
subspace, invariant under a; and a} for all i. The pair ({a;}, D) is called a

hyperfinite representation of the CCR if

lllas, a3]€ — 57:_7'6“‘% 0,



for all £ € D.
- We easily see the following:

Lemma 3.1 If¢,n € D and & =1, then a;é ~ a;n and a}é = aln.

This allows us to define the operators a; and a} on the Hilbert space DLt
by
@€ =€,  a;€=ai.

We call a; and a the standard part of a; and af, respectively.

4 HYPERFINITE HEISENBERG GROUP

This section reviews the results given by Ojima and Ozawa [7].
Let K € *N be infinite, and K = (*Z/K*Z,®,®) be a ring of residue

classes modulo K. Define an inner product on *C¥ by

(f,9) =3 f(k)g(k)Az,

kEK

for f,g € *C¥, Az € *R, Az > 0. Define H to be K x K x K equipped with

the group law
(k, L,m)(K,I',m") = (kK ,lel'mem o (kal)).

Let us call H the hyperfinite Heisenberg group. Let W (k,l,m) be the internal
operator on *C¥ defined by W (k,1,m)f(k') = 2 {m+tik")/K (1 g ).

Proposition 4.1 The map W:(k,l,m)— W(k,l,m) is an internal irre-

ducible unitary representation of H.
We call it the hyperfinite Schrodinger representation of H.

Proposition 4.2 The map W is a unitary representation of H on *CK,

Let Az = K~%/2, and A(p, q,t) = (|p/Ax], |g/Ax], |t/ Az)).
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Theorem 4.3 Let fin(H) be the subgroup of H defined by
fin(H) = {(k, 1, m)| |kAz| < 00, |lAZ| < 00, |mAZ?| < 00}.

Then, there is f € fin(*CX) satisfying the following. Let H be the closed
subspace of *CK such that

H = {W(k,1,m)f | (k1,m) e fin(H)}

For any (k,1,m) € fin(H), let W (k,1,m) be the restriction of W(k,l,m) to

H. Then the map (p,q,t) — W(A(p,q,t)) is a strongly continuous unitary

representation of Hy, unitarily equivalent to the Schridinger representation p.
5 HYPERFINITE PARAFERMI OPERATORS

This section reviews the results given by Yamashita [7]. .
Let v € N and d € N. Suppose that by,...,b, € M(d,C) (ie., by, ..., b, are
finite-dimensional matrices). The matrices by, ..., b, are called the annihilation

operators of parafermi oscillators of order p € N if they satisfy

[bk7 [bl*7 bm]] = 25klbm7 _
bk, [0, b "] = 208100 — 25kmbla :
[bk7 [bl> bm]] = O)

and the uniqueness of vacuum |0), and,
bkbl*l()) = (Sk,pIO)

The matrices b], ..., b} are called the creation operators of parafermi oscillators
of order p. The hyperfinite annihilation operators of parafermi oscillators are
the internal matrices defined by substituting *N and *C for N and C in the
above definition, respectively. ‘

Green [8] has given a class of representations of the above commutation
relations of the parafermi creation and annihilation operators. In the so-called
the Green representation for the cases of order p, the parafermi operators by

are expressed by the form

p
by =3 b,
a=1
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where the Green-component operators bfca) satisfy the commutation relations
{0,007y = b, {57,0(7) =0,

b, 6 = B 6P =0 (o # B);

where {4, B} = AB + BA, and the uniqueness of vacuum |0) such that
B0y =0 for all k,a.

The Green representation is essentially equivalent to the tensor product
representation of the Clifford algebra representation of so(2v). In fact, we
easily verify that ey, ..., €5, defined by es,—; = i(bf + bi) and ey, = by — by form
the generators of a Clifford algebra, i.e., e? = —1 and e;e; = —eje; (i # j).
Thus, we can construct a 2P¥-dimensional representation of Green components
by using a spin representation of the Clifford algebré as follows. Let V(a) o~
C?(k=1,..,v,a=1,..,p). The Pauli matrices ai”,?, agk and a3k that act

on V) are represented as

0 1 0 —1 @ 1 0
Ug?;c):(l 0), Jé(jc):(z 0), O'g’k):<0 _1)
Define V(® by
V(a)zvl(a)(@---@Vu(a),

and define &' k and %a) (k=1,..,v, i=1,..,2v) that acts on V(® by

k—1 _
6% =10 ®leryYele---®1, c=1,2,3,

’)é(;:) 1= &éojc)ggo;c)ﬂ T ‘6&3,

T = —S1R0 4 - 55

The operators bgf‘) (k =1,...,v) defined by

p@ = Ly e

— g
2(’}’% 1 Yok )s

satisfy the relations

(6,50} = 6, {007} =0,
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forallk,l=1,..,v
Define V and 135;”) (k=1,...,v) acting on V by

V=vlg. ..V,
a—1

“(a PR N o
=T - 0leb”e1e oL

We see that for all k,l=1,..v,
(5, {9} = 6, {b(") B} =0,

B 5P = 5,591 =0, (a# f).

Let [0){* € V) denote the unit vector satisfying b |0)§f) = 0. Define |0)(®)
and |0) by
0} =10)i” @ -+ @0},

0) = ]0)(00 ®-® |0>(P)

Now, we find that b(a) ., b(® are 2P*-dimensional representations of the Green
components and |0) is the vacuum. Thus, by = ¥2_, 0™, (k =1, ..., v) are 2?*-
dimensional representations of annihilation operators of v parafermi oscillators
of order p. Let us call the above representation of the algebra of the parafermi

“oscillators the spin representation.

Define o) by
ol = (013 i) /2,

and |1){ € V{® by

The set of vectors

{(1f)D - D)D) - ()P 1eP)P) - ef =0, 1)

(®’s are omitted) is a complete orthonormal system of V. We write the vectors

simply as |{e,c )}) .
The number operator N on V and the related operators Nk, N are defined

" as follows:

1 1 0
NP =20+ = (4 o)
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k-1 . v—k
N =Te--eleNele @]
a—1 p—a

~ (o Pt —— o e e,
NY=T® - gleN¥eTe - a1,

P v P
N, = Z nga),. N(a) — Z N,ga), N = Z N(a),
a=1 k=1 a=1
We see that '

Nl{ei}) = ni{ef™}),
where n is the number of efga)’s that is equal to 1. It is easily shown that

T(a)x7 N7 7(a) 7 ()= \7 1 *‘

HOHD = B0, BOR = 1- 6, Ne= 00 +p)

[Nk, Nl] = 0, Nkbk = bk(Nk e 1), Nkb;; = bZ(Nk -+ 1), etc.
Lemma 5.1 Suppose that the hyperfinite parafermi annihilation operators
bi,...,b, are represented by the spin representation, and that their order D
is an infinite hypernatural number (by,...,b, are 2?” x 2P internal matri-

ces acting on *C¥"). If |£) € *C?" satisfies (€|€), (€|N?|€) < oo, and
k#1(k1=1,2,..v), then

(1) 18, BIE) ~ [Be, B71I€) = 0,
(ii) [Bk, Bx*]|€) = |£),
(i) BBz [€) ~ (B By + nB)le),

where B, = p~'/2by, (the normalization of by) and n < oco.

‘Suppose that the number of the parafermi oscillators v and their order p
are infinite hypernatural numbers. When n; is a nonnegative integer for any
1 =1,2,... < oo, and the number of n;’s such that n; # 0 is finite, we will
define |ny,ng, ...) by

| By - |0)
N1, Mgy o) = o )
Im ) = T oy

Since b;"'b3"* - - - is the product of a finite number of operators, it is well-
defined. Ng|ni,ng,...) = nglny, ng,...) is easily shown, and hence, since N,
is hermitian, the set of the vectors of the form |n,ny,...) is an orthonormal

system.
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Lemma 5.2 The following relations hold:
(i) BiBk|n1, na,...) = nglni, na,...),
(ii) BeBting, ng,...) = (ng + 1)|ny, ng, ...),
(i) 1™ B - 0} ~ v/l
(iv) Biln, ng,...) %v.\/ﬁmlnl,ng,...,nk%l, )
(V) Brlni, e, ...) = /Mg|ni, ng, ...,k — 1,...).
Define a set D C *C? by

Bi, -~ Bi,10)
1Bk, -+~ B2 10

Clearly, every vector in D is a normalized eigenvector of the number operator N

'Dz{ |, ks, € N U{]0)}.

with a finite eigenvalue. Let S denote the external subspace of *C*” spanned
by D, ie.,

S={>clé) | ci€e*C,leci| <oo,n e N,¢) € D}.
=1 .
The following theorem follows from Lemma 5.1 aﬁd 5.2.

Theorem 5.3 The pair (0, S) (k € N) is a hyperfinite representation of CCR
of countably-infinite degree of freedom, i.e. S is invariant with respect to [
and B; for every k € N, and

[/Bkn@l“f) ~ Oa
(B, B 1€)== 0mil§),

for any |€) € S. Moreover, the uniqueness of vacuum is satisfied in the follow-
ing sense: if |£) € S, (£|€) =1 and B|€) = 0 for all k € N, then |€) = |0).
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