

Title	Nonstandard Methods on Representations of the Canonical Commutation Relations
Author(s)	Yamashita, Hideyasu; Ozawa, Masanao
Citation	数理解析研究所講究録 (1999), 1100: 157-167
Issue Date	1999-06
URL	http://hdl.handle.net/2433/63152
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

NONSTANDARD METHODS ON REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS

名古屋大学人間情報学研究科 山下秀康 (Hideyasu Yamashita) 名古屋大学人間情報学研究科 小澤正直 (Masanao Ozawa)

1 NONSTANDARD ANALYSIS

There are several different formulations of nonstandard analysis. This paper adopts the set-theoretical approach based on superstructures instituted by Robinson and Zakon [2] and follows the up-to-date description by Chang and Keisler [3].

For any set X, let S(X) denote the set of all subsets of X. The *superstructure* over X, denoted by V(X), is defined by the following recursion:

$$V_0(X) = X$$
, $V_{n+1}(X) = V_n(X) \cup S(V_n(X))$, $V(X) = \bigcup_{n \in \mathbb{N}} V_n(X)$,

where **N** is the set of natural numbers. The set X is called a *base set* if $\emptyset \notin X$ and for all $x \in X$ we have $x \cap V(X) = \emptyset$.

The language \mathcal{L} which describes V(X) consists of logical connectives \neg , \wedge , \vee , \Rightarrow , quantifiers \forall , \exists , individual variables x',x'', ..., individual constants C_u for all $u \in V(X)$, and two binary predicate constants =, \in . A formula of \mathcal{L} is constructed from the above constituents in the usual way. We will use the following abbreviations, called bounded quantifiers: $(\forall x \in y)\phi$ means $(\forall x)[x \in y \Rightarrow \phi]$, $(\exists x \in y)\phi$ means $(\exists x)[x \in y \land \phi]$. A bounded formula is a formula in which every quantifier occurs as a bounded quantifier. We will write $\phi[u_1, ..., u_n]$ for $\phi(C_{u_1}, ..., C_{u_n})$.

For any formula ϕ in \mathcal{L} , the relation $V(X) \models \phi$ is defined by the following rules:

- (i) $V(X) \models C_u = C_v$ if and only if u and v are identical.
- (ii) $V(X) \models C_u \in C_v$ if and only if u is an element of v.
- (iii) $V(X) \models \neg \phi$ if and only if $V(X) \models \phi$ does not hold.

- (iv) $V(X) \models \phi_1 \land \phi_2$ if and only if $V(X) \models \phi_1$ and $V(X) \models \phi_2$.
- (v) $V(X) \models \phi_1 \lor \phi_2$ if and only if $V(X) \models \phi_1$ or $V(X) \models \phi_2$.
- (vi) $V(X) \models \phi_1 \Rightarrow \phi_2$ if and only if $V(X) \models \phi_1$ then $V(X) \models \phi_2$.
- (vii) $V(X) \models (\forall x)\phi(x)$ if and only if $V(X) \models \phi[u]$ for all u in V(X).
- (viii) $V(X) \models (\exists x)\phi(x)$ if and only if $V(X) \models \phi[u]$ for some u in V(X).

A nonstandard universe is a triple $\langle V(X), V(Y), \star \rangle$ consisting of superstructures V(X), V(Y), and a map $\star : V(X) \to V(Y)$ satisfying the following conditions (i)-(iii):

- (i) X and Y are infinite base sets.
- (ii) (Transfer Principle) The map $\star : a \mapsto {}^{\star}a$ is an injective mapping from V(X) into V(Y), and for any bounded formula $\phi(x_1, \ldots, x_n)$ in \mathcal{L} ,

$$V(X) \models \phi[u_1, \dots, u_n]$$
 if and only if $V(Y) \models \phi[{}^*u_1, \dots, {}^*u_n]$

for any u_1, \ldots, u_n in V(X).

(iii)
$$\star X = Y$$
.

An element $u \in V(Y) \setminus Y$ is called an *internal set* if there is $x \in V(X)$ such that $u \in {}^{\star}x$. Let α be a cardinal. A nonstandard universe $\langle V(X), V(Y), \star \rangle$ is said to be α -saturated if it satisfies the following condition:

(iv) (Saturation Principle) Every family of less than α internal sets with the finite intersection property has nonempty intersection.

In this paper, we always work with a nonstandard universe $\langle V(X), V(Y), \star \rangle$ which is α -saturated with $\operatorname{card}(V(X)) < \alpha$; such a nonstandard universe is said to be *polysaturated*. We also assume that the base X includes the complex numbers \mathbf{C} and any other structures under consideration such as given groups and Hilbert spaces.

For a set S, let ${}^{\sigma}S = \{ {}^{\star}s | s \in S \}$. We identify ${}^{\star}z$ with z for all $z \in \mathbf{C}$. Hence, ${}^{\sigma}S = S$ if S is a subset of \mathbf{C} , e.g., ${}^{\sigma}\mathbf{C} = \mathbf{C}$, ${}^{\sigma}\mathbf{R} = \mathbf{R}$ (the real numbers), ${}^{\sigma}\mathbf{Z} = \mathbf{Z}$ (the integers), and ${}^{\sigma}\mathbf{N} = \mathbf{N}$. Let \mathbf{R}^+ , ${}^{\star}\mathbf{R}_0$, ${}^{\star}\mathbf{R}_0^+$, ${}^{\star}\mathbf{R}_{\infty}^+$, and ${}^{\star}\mathbf{N}_{\infty}$ denote the sets of positive real numbers, infinitesimal hyperreal numbers, positive infinite hyperreal numbers

and infinite hypernatural numbers, respectively. It is shown that ${}^*\mathbf{N}_{\infty} = {}^*\mathbf{N}_{\infty}$. We write $x \sim \infty$ if $x \in \mathbf{R}_{\infty}^+$, and $0 < x < \infty$ if $x \in \mathrm{fin}^*\mathbf{R}^+ = {}^*\mathbf{R}^+_{\infty}$. If $r \in {}^*\mathbf{R}$ and $|r| < \infty$, the standard part of r is denoted by *r . If $r \sim \infty$, we write ${}^*r = \infty$. Let $x, y \in {}^*\mathbf{R}^+_{\infty}$ we say that x is of the order of y, in symbols $x \approx y$, iff $0 < x/y < \infty$ and $0 < y/x < \infty$. We write $x \ll y$ if $x/y \approx 0$. For a hyperfinite (*-finite) set F, let |F| denote the internal cardinal number of F.

Let (X,\mathcal{O}) be a topological space. Let \mathcal{O}_x denote the system of open neighborhoods of $x \in X$. The monad of $x \in X$ is the subset of *X defined by $\operatorname{mon}_{\mathcal{O}}(x) = \bigcap \{{}^*O | O \in \mathcal{O}_x\}$. The set of near standard points is the subset of *X defined by $\operatorname{ns}({}^*X) = \bigcup \{\operatorname{mon}_{\mathcal{O}}(x) | x \in X\}$. It is shown that (X,\mathcal{O}) is Hausdorff if and only if $x \neq y$ implies $\operatorname{mon}_{\mathcal{O}}(x) \cap \operatorname{mon}_{\mathcal{O}}(y) = \emptyset$. Thus for any Hausdorff space (X,\mathcal{O}) , we can define the equivalence relation $\approx_{\mathcal{O}}$ on ns^*X so that $a\approx_{\mathcal{O}}b$ iff $a\in\operatorname{mon}_{\mathcal{O}}(x)$ and $b\in\operatorname{mon}_{\mathcal{O}}(x)$ for some $x\in X$. Let $(X,\|\cdot\|)$ be an internal normed linear space. Define the relation \approx on X so that $x\approx y$ iff $\|x-y\|\approx 0$. The principal galaxy of X is the subset of *X defined by $\operatorname{fin}(X)=\{x\in X|\ \|x\||<\infty\}$. For $x\in\operatorname{fin}(X)$, let \hat{x} denote the equivalence class $\hat{x}=\{y\in X|\ x\approx y\}$. Let $\hat{X}=\{\hat{x}|\ x\in\operatorname{fin}(X)\}$. Define the (standard) norm $\|\cdot\|$ on \hat{X} by $\|\hat{x}\|={}^{\circ}\|x\|$ for all $x\in\operatorname{fin}X$. Then $(\hat{X},\|\cdot\|)$ turns out to be a Banach space, called the standardization of $(X,\|\cdot\|)$. In a similar way, the standardization is defined for any internal pre-Hilbert space $(X,\langle\cdot,\cdot\rangle)$, and it turns to be a Hilbert space.

For a (standard) normed linear space $(X, \|\cdot\|)$, we abbreviate \widehat{X} to \widehat{X} . In this case, the Banach space $(\widehat{X}, \|\cdot\|)$ is called the *nonstandard hull* of $(X, \|\cdot\|)$.

Let \mathcal{H} be an internal Hilbert space, and $T: \mathcal{H} \to \mathcal{H}$ an internal bounded operator such that the bound ||T|| is finite. The bounded operator $\hat{T}: \hat{\mathcal{H}} \to \hat{\mathcal{H}}$, called the *standardization* of T, is defined by the relation $\hat{T}\hat{x} = \widehat{Tx}$.

For further information on nonstandard real analysis, we refer to Stroyan and Luxemburg [5] and Hurd and Loeb [4].

2 CANONICAL COMMUTATION RELATIONS

Let \mathcal{H} be a Hilbert space, and $\{a_i|i\in I\}$ a family of linear operators on \mathcal{H} , with dense domains $dom(a_i)$, when I is finite or infinite. Let D be a dense subspace of \mathcal{H} . The pair $(\{a_i\}, D)$ is called a representation of the CCR if the

following conditions are satisfied for all i:

- (i) $D \subset dom(a_i), D \subset dom(a_i^*).$
- (ii) D is invariant under a_i and a_i^* .
- (iii) $[a_i, a_i^*] = \delta_{ij}, \quad [a_i, a_j] = 0 \text{ on } D.$

The number n = |I| is called the degree of freedom of the CCR.

Let $U(\cdot)$ and $V(\cdot)$ be strongly continuous one-parameter unitary groups on \mathcal{H} . The pair (U, V) is a representation of the Weyl CCR (of one degree of freedom) if

$$U(p)V(q) = e^{ipq}V(q)U(p) \tag{1}$$

for all $p, q \in \mathbf{R}$.

Let \mathbf{H}_1 be the group $(\mathbf{R} \times \mathbf{R} \times \mathbf{R}, \cdot)$ with group law

$$(p,q,t)\cdot(p',q',t')=(p+p',q+q',t+t'+pq').$$

Then, we get a strongly-continuous representation of \mathbf{H}_1 by

$$(p,q,t) \mapsto W(p,q,t) := e^{it}V(q)U(p),$$

where (U, V) is a representation of the Weyl CCR. The representation W is called a Weyl representation of \mathbf{H}_1 .

Let U(p) and V(q) be the unitary operators on $L^2(\mathbf{R})$ defined by

$$(U(p)f)(x) = e^{ip}f(x),$$

$$(V(q)f)(x) = f(x-t).$$

Then, $\rho(p,q,t) := e^{it}V(q)U(p)$ is a Weyl representation of \mathbf{H}_1 . Let us call this the Schrödinger representation of \mathbf{H}_1 .

3 NONSTANDARD REPRESENTATIONS OF THE CCR

Let $\nu \in {}^*\mathbf{N}$ be infinite, and $\{a_i | i \in \mathbf{N}\}$ be a sequence of internal operators on ${}^*\mathbf{C}^{\nu}$, or equivalently, be $\nu \times \nu$ internal matrices. Let $D \subset \text{fin}^*\mathbf{C}^{\nu}$ be an external subspace, invariant under a_i and a_i^* for all i. The pair $(\{a_i\}, D)$ is called a hyperfinite representation of the CCR if

$$||[a_i, a_j^*]\xi - \delta_{ij}\xi|| \approx 0,$$

for all $\xi \in D$.

We easily see the following:

Lemma 3.1 If $\xi, \eta \in D$ and $\xi \approx \eta$, then $a_i \xi \approx a_i \eta$ and $a_i^* \xi \approx a_i^* \eta$.

This allows us to define the operators \hat{a}_i and \hat{a}_i^* on the Hilbert space $\hat{D}^{\perp\perp}$ by

$$\hat{a}_i\hat{\xi}=\widehat{a_i\xi},\qquad \hat{a}_i^*\hat{\xi}=\widehat{a_i^*\xi}.$$

We call \hat{a}_i and \hat{a}_i^* the standard part of a_i and a_i^* , respectively.

4 HYPERFINITE HEISENBERG GROUP

This section reviews the results given by Ojima and Ozawa [7].

Let $K \in {}^{\star}\mathbf{N}$ be infinite, and $\mathbf{K} = \langle {}^{\star}\mathbf{Z}/K^{\star}\mathbf{Z}, \otimes, \oplus \rangle$ be a ring of residue classes modulo K. Define an inner product on ${}^{\star}\mathbf{C}^{\mathbf{K}}$ by

$$\langle f, g \rangle := \sum_{k \in \mathbf{K}} \overline{f(k)} g(k) \Delta x,$$

for $f, g \in {}^{\star}\mathbf{C}^{\mathbf{K}}, \Delta x \in {}^{\star}\mathbf{R}, \Delta x > 0$. Define **H** to be $\mathbf{K} \times \mathbf{K} \times \mathbf{K}$ equipped with the group law

$$(k, l, m)(k', l', m') = (k \oplus k', l \oplus l', m \oplus m' \oplus (k \otimes l')).$$

Let us call **H** the hyperfinite Heisenberg group. Let W(k, l, m) be the internal operator on ${}^{\star}\mathbf{C}^{\mathbf{K}}$ defined by $W(k, l, m) f(k') = e^{2\pi i (m + lk')/K} f(k' \oplus k)$.

Proposition 4.1 The map $W:(k,l,m) \mapsto W(k,l,m)$ is an internal irreducible unitary representation of \mathbf{H} .

We call it the hyperfinite Schrödinger representation of H.

Proposition 4.2 The map \hat{W} is a unitary representation of H on \widehat{C}^{K} .

Let
$$\Delta x = K^{-1/2}$$
, and $\Delta(p, q, t) = (\lfloor p/\Delta x \rfloor, \lfloor q/\Delta x \rfloor, \lfloor t/\Delta x \rfloor)$.

Theorem 4.3 Let fin(H) be the subgroup of H defined by

$$fin(\mathbf{H}) = \{(k, l, m) | |k\Delta x| < \infty, |l\Delta x| < \infty, |m\Delta x^2| < \infty\}.$$

Then, there is $f \in \text{fin}({}^*\mathbf{C^K})$ satisfying the following. Let \mathcal{H} be the closed subspace of $\widehat{{}^*\mathbf{C^K}}$ such that

$$\mathcal{H} = \{\hat{W}(k,l,m)\hat{f} \mid (k,l,m) \in \operatorname{fin}(\mathbf{H})\}^{\perp \perp}.$$

For any $(k, l, m) \in \text{fin}(\mathbf{H})$, let $\tilde{W}(k, l, m)$ be the restriction of $\hat{W}(k, l, m)$ to \mathcal{H} . Then the map $(p, q, t) \mapsto \tilde{W}(\Delta(p, q, t))$ is a strongly continuous unitary representation of \mathbf{H}_1 , unitarily equivalent to the Schrödinger representation ρ .

5 HYPERFINITE PARAFERMI OPERATORS

This section reviews the results given by Yamashita [7].

Let $\nu \in \mathbb{N}$ and $d \in \mathbb{N}$. Suppose that $b_1, ..., b_{\nu} \in M(d, \mathbb{C})$ (i.e., $b_1, ..., b_{\nu}$ are finite-dimensional matrices). The matrices $b_1, ..., b_{\nu}$ are called the *annihilation* operators of parafermi oscillators of order $p \in \mathbb{N}$ if they satisfy

$$[b_k, [b_l^*, b_m]] = 2\delta_{kl}b_m,$$

$$[b_k, [b_l^*, b_m^*]] = 2\delta_{kl}b_m^* - 2\delta_{km}b_l,$$

$$[b_k, [b_l, b_m]] = 0,$$

and the uniqueness of vacuum $|0\rangle$, and,

$$b_k b_l^* |0\rangle = \delta_{kl} p |0\rangle.$$

The matrices b_1^* , ..., b_{ν}^* are called the *creation operators* of parafermi oscillators of order p. The *hyperfinite annihilation operators* of parafermi oscillators are the internal matrices defined by substituting *N and *C for N and C in the above definition, respectively.

Green [8] has given a class of representations of the above commutation relations of the parafermi creation and annihilation operators. In the so-called the *Green representation* for the cases of order p, the parafermi operators b_k are expressed by the form

$$b_k = \sum_{\alpha=1}^p b_k^{(\alpha)},$$

where the *Green-component* operators $b_k^{(\alpha)}$ satisfy the commutation relations

$$\{b_k^{(\alpha)}, b_l^{(\alpha)^*}\} = \delta_{kl}, \ \{b_k^{(\alpha)}, b_l^{(\alpha)}\} = 0,$$

$$[b_k^{(\alpha)}, b_l^{(\beta)^*}] = [b_k^{(\alpha)}, b_l^{(\beta)}] = 0 \quad (\alpha \neq \beta);$$

where $\{A, B\} = AB + BA$, and the uniqueness of vacuum $|0\rangle$ such that

$$b_k^{(\alpha)}|0\rangle = 0$$
 for all k, α .

The Green representation is essentially equivalent to the tensor product representation of the Clifford algebra representation of $so(2\nu)$. In fact, we easily verify that $e_1, ..., e_{2\nu}$ defined by $e_{2k-1} = i(b_k^* + b_k)$ and $e_{2k} = b_k^* - b_k$ form the generators of a Clifford algebra, i.e., $e_i^2 = -1$ and $e_i e_j = -e_j e_i$ $(i \neq j)$. Thus, we can construct a $2^{p\nu}$ -dimensional representation of Green components by using a spin representation of the Clifford algebra as follows. Let $V_k^{(\alpha)} \simeq \mathbf{C}^2$ $(k = 1, ..., \nu, \alpha = 1, ..., p)$. The Pauli matrices $\sigma_{1,k}^{(\alpha)}$, $\sigma_{2,k}^{(\alpha)}$ and $\sigma_{3,k}^{(\alpha)}$ that act on $V_k^{(\alpha)}$ are represented as

$$\sigma_{1,k}^{(\alpha)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2,k}^{(\alpha)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3,k}^{(\alpha)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Define $V^{(\alpha)}$ by

$$V^{(\alpha)} = V_1^{(\alpha)} \otimes \cdots \otimes V_{\nu}^{(\alpha)},$$

and define $\hat{\sigma}_{c,k}^{(\alpha)}$ and $\gamma_i^{(\alpha)}$ $(k=1,...,\nu,\ i=1,...,2\nu)$ that acts on $V^{(\alpha)}$ by

$$\hat{\sigma}_{c,k}^{(\alpha)} = \overbrace{1 \otimes \cdots \otimes 1}^{k-1} \otimes \sigma_{c,k}^{(\alpha)} \otimes 1 \otimes \cdots \otimes 1, \quad c = 1, 2, 3,$$

$$\gamma_{2k-1}^{(\alpha)} = \hat{\sigma}_{2,k}^{(\alpha)} \hat{\sigma}_{3,k+1}^{(\alpha)} \cdots \hat{\sigma}_{3,\nu}^{(\alpha)},$$

$$\gamma_{2k}^{(\alpha)} = -\hat{\sigma}_{1,k}^{(\alpha)} \hat{\sigma}_{3,k+1}^{(\alpha)} \cdots \hat{\sigma}_{3,\nu}^{(\alpha)}.$$

The operators $b_k^{(\alpha)}$ $(k=1,...,\nu)$ defined by

$$b_k^{(\alpha)} = \frac{1}{2} (\gamma_{2k-1}^{(\alpha)} - i\gamma_{2k}^{(\alpha)}),$$

satisfy the relations

$$\{b_k^{(\alpha)}, b_l^{(\alpha)*}\} = \delta_{kl}, \ \{b_k^{(\alpha)}, b_l^{(\alpha)}\} = 0,$$

for all $k, l = 1, ..., \nu$.

Define V and $\tilde{b}_{k}^{(\alpha)}\,(k=1,...,\nu)$ acting on V by

$$V = V^{(1)} \otimes \cdots \otimes V^{(p)},$$

$$\tilde{b}_{k}^{(\alpha)} = \overbrace{1 \otimes \cdots \otimes 1}^{\alpha - 1} \otimes b_{k}^{(\alpha)} \otimes 1 \otimes \cdots \otimes 1.$$

We see that for all $k, l = 1, ..., \nu$,

$$\{\tilde{b}_{k}^{(\alpha)}, \tilde{b}_{l}^{(\alpha)*}\} = \delta_{k \, l}, \ \{\tilde{b}_{k}^{(\alpha)}, \tilde{b}_{l}^{(\alpha)}\} = 0,$$

$$[\tilde{b}_k^{(\alpha)},\tilde{b}_l^{(\beta)*}]=[\tilde{b}_k^{(\alpha)},\tilde{b}_l^{(\beta)}]=0,\quad (\alpha\neq\beta).$$

Let $|0\rangle_k^{(\alpha)} \in V_k^{(\alpha)}$ denote the unit vector satisfying $b_k^{(\alpha)}|0\rangle_k^{(\alpha)}=0$. Define $|0\rangle^{(\alpha)}$ and $|0\rangle$ by

$$|0\rangle^{(\alpha)} = |0\rangle_1^{(\alpha)} \otimes \cdots \otimes |0\rangle_{\nu}^{(\alpha)},$$

$$|0\rangle = |0\rangle^{(\alpha)} \otimes \cdots \otimes |0\rangle^{(p)}.$$

Now, we find that $\tilde{b}_1^{(\alpha)}, ..., \tilde{b}_{\nu}^{(\alpha)}$ are $2^{p\nu}$ -dimensional representations of the Green components and $|0\rangle$ is the vacuum. Thus, $b_k = \sum_{\alpha=1}^p \tilde{b}_k^{(\alpha)}, \ (k=1,...,\nu)$ are $2^{p\nu}$ -dimensional representations of annihilation operators of ν parafermi oscillators of order p. Let us call the above representation of the algebra of the parafermi oscillators the *spin representation*.

Define $\sigma_{\pm,k}^{(\alpha)}$ by

$$\sigma_{+,k}^{(\alpha)} = (\sigma_{1,k}^{(\alpha)} \pm i\sigma_{2,k}^{(\alpha)})/2,$$

and $|1\rangle_k^{(\alpha)} \in V_k^{(\alpha)}$ by

$$|1\rangle_k^{(\alpha)} = \sigma_{+,k}^{(\alpha)}|0\rangle_k^{(\alpha)}.$$

The set of vectors

$$\{(|e_1^{(1)}\rangle_1^{(1)}\cdots|e_{\nu}^{(1)}\rangle_{\nu}^{(1)})\cdots(|e_1^{(p)}\rangle_1^{(p)}\cdots|e_{\nu}^{(p)}\rangle_{\nu}^{(p)}):e_k^{(\alpha)}=0,\,1\}$$

(\otimes 's are omitted) is a complete orthonormal system of V. We write the vectors simply as $|\{e_k^{(\alpha)}\}\rangle$.

The number operator N on V and the related operators $N_k, N^{(\alpha)}$ are defined as follows:

$$N_k^{(\alpha)} = \frac{1}{2}(1 + \sigma_{3,k}^{(\alpha)}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\hat{N}_{k}^{(\alpha)} = \underbrace{1 \otimes \cdots \otimes 1}_{k-1} \otimes N_{k}^{(\alpha)} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{p-\alpha},$$

$$\tilde{N}_{k}^{(\alpha)} = \underbrace{1 \otimes \cdots \otimes 1}_{\alpha-1} \otimes \hat{N}_{k}^{(\alpha)} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{p-\alpha},$$

$$N_{k} = \sum_{\alpha=1}^{p} \tilde{N}_{k}^{(\alpha)}, \quad N^{(\alpha)} = \sum_{k=1}^{\nu} \tilde{N}_{k}^{(\alpha)}, \quad N = \sum_{\alpha=1}^{p} N^{(\alpha)},$$

We see that

$$N|\{e_k^{(\alpha)}\}\rangle = n|\{e_k^{(\alpha)}\}\rangle,$$

where n is the number of $e_k^{(\alpha)}$'s that is equal to 1. It is easily shown that

$$\tilde{b}_{k}^{(\alpha)*}\tilde{b}_{k}^{(\alpha)} = \tilde{N}_{k}^{(\alpha)}, \quad \tilde{b}_{k}^{(\alpha)}\tilde{b}_{k}^{(\alpha)*} = 1 - \tilde{N}_{k}^{(\alpha)}, \quad N_{k} = \frac{1}{2}([b_{k}^{*}, b_{k}] + p),$$
$$[N_{k}, N_{l}] = 0, \quad N_{k}b_{k} = b_{k}(N_{k} - 1), \quad N_{k}b_{k}^{*} = b_{k}^{*}(N_{k} + 1), \quad \text{etc.}$$

Lemma 5.1 Suppose that the hyperfinite parafermi annihilation operators $b_1,...,b_{\nu}$ are represented by the spin representation, and that their order p is an infinite hypernatural number $(b_1,...,b_{\nu}$ are $2^{p\nu} \times 2^{p\nu}$ internal matrices acting on ${}^*\mathbf{C}^{2^{p\nu}}$). If $|\xi\rangle \in {}^*\mathbf{C}^{2^{p\nu}}$ satisfies $\langle \xi|\xi\rangle$, $\langle \xi|N^2|\xi\rangle < \infty$, and $k \neq l$ $(k, l = 1, 2, ..., \nu)$, then

(i)
$$[\beta_k, \beta_l]|\xi\rangle \approx [\beta_k, \beta_l^*]|\xi\rangle \approx 0$$
,

(ii)
$$[\beta_k, \beta_k^*]|\xi\rangle \approx |\xi\rangle$$
,

(iii)
$$\beta_k \beta_k^{*n} |\xi\rangle \approx (\beta_k^{*n} \beta_k + n \beta_k^{*n-1}) |\xi\rangle$$
,

where $\beta_k = p^{-1/2}b_k$ (the normalization of b_k) and $n < \infty$.

Suppose that the number of the parafermi oscillators ν and their order p are infinite hypernatural numbers. When n_i is a nonnegative integer for any $i=1,2,...<\infty$, and the number of n_i 's such that $n_i\neq 0$ is finite, we will define $|n_1,n_2,...\rangle$ by

$$|n_1, n_2, ...\rangle = \frac{b_1^{*n_1} b_2^{*n_2} \cdots |0\rangle}{\|b_1^{*n_1} b_2^{*n_2} \cdots |0\rangle\|}.$$

Since $b_1^{*n_1}b_2^{*n_2}\cdots$ is the product of a finite number of operators, it is well-defined. $N_k|n_1,n_2,...\rangle=n_k|n_1,n_2,...\rangle$ is easily shown, and hence, since N_k is hermitian, the set of the vectors of the form $|n_1,n_2,...\rangle$ is an orthonormal system.

Lemma 5.2 The following relations hold:

(i)
$$\beta_k^* \beta_k | n_1, n_2, \ldots \rangle \approx n_k | n_1, n_2, \ldots \rangle$$
,

(ii)
$$\beta_k \beta_k^* | n_1, n_2, ... \rangle \approx (n_k + 1) | n_1, n_2, ... \rangle$$
,

(iii)
$$\|\beta_1^{*n_1}\beta_2^{*n_2}\cdots|0\rangle\| \approx \sqrt{n_1!n_2!\cdots}$$

(iv)
$$\beta_k^* | n_1, n_2, ... \rangle \approx \sqrt{n_k + 1} | n_1, n_2, ..., n_k + 1, ... \rangle$$
,

(v)
$$\beta_k | n_1, n_2, ... \rangle \approx \sqrt{n_k} | n_1, n_2, ..., n_k - 1, ... \rangle$$
.

Define a set $D \subset {}^{\star}\mathbf{C}^{2^{p\nu}}$ by

$$D = \left\{ \frac{\beta_{k_1}^* \cdots \beta_{k_n}^* |0\rangle}{\|\beta_{k_1}^* \cdots \beta_{k_n}^* |0\rangle\|} \middle| n, k_1, ..., k_n \in \mathbf{N} \right\} \cup \{|0\rangle\}.$$

Clearly, every vector in D is a normalized eigenvector of the number operator N with a finite eigenvalue. Let S denote the external subspace of ${}^*\mathbf{C}^{2^{p\nu}}$ spanned by D, i.e.,

$$S = \{ \sum_{i=1}^{n} c_i |\xi\rangle \mid c_i \in {}^{\star}\mathbf{C}, |c_i| < \infty, n \in \mathbf{N}, |\xi\rangle \in D \}.$$

The following theorem follows from Lemma 5.1 and 5.2.

Theorem 5.3 The pair (β_k, S) $(k \in \mathbb{N})$ is a hyperfinite representation of CCR of countably-infinite degree of freedom, i.e. S is invariant with respect to β_k and β_k^* for every $k \in \mathbb{N}$, and

$$[\beta_k, \beta_l]|\xi\rangle \approx 0,$$

$$[\beta_k, \beta_l^*]|\xi\rangle \approx \delta_{kl}|\xi\rangle,$$

for any $|\xi\rangle \in S$. Moreover, the uniqueness of vacuum is satisfied in the following sense: if $|\xi\rangle \in S$, $\langle \xi|\xi\rangle = 1$ and $\beta_k|\xi\rangle \approx 0$ for all $k \in \mathbb{N}$, then $|\xi\rangle \approx |0\rangle$.

References

- [1] A. Robinson, Non-Standard Analysis (North-Holland, Amsterdam, 1966).
- [2] A. Robinson and E. Zacon, "A set-theoretical characterization of enlargements", in Applications of Model Theory to Algebra, Analysis, and Probability, edited by W. A. J. Luxemburg (Holt, Reinehart and Winston, New York, 1969), 109–122.
- [3] C. C. Chang and H. J. Keisler, *Model Theory*, 3rd edition (North-Holland, Amsterdam, 1990), 262–291.
- [4] K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals (Academic Press, New York, 1976).
- [5] A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis, (Academic Press, Orlando, 1985).
- [6] I. Ojima and M. Ozawa, "Unitary representations of the hyperfinite Heisenberg group and the logical extension methods in physics", Open Systems and Information Dynamics 2, 107–128 (1993).
- [7] H. Yamashita, "Hyperfinite-dimensional representations of canonical commutation relation", J. Math. Phys. 39, 2682–2692 (1998).
- [8] H. S. Green, "A generalized method of field quantization", Phys. Rev. 90, 270 (1953).
- [9] Y. Ohnuki and S. Kamefuchi, *Quantum Field Theory and Parastatistics* (University of Tokyo Press, Tokyo, 1982).