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Introduction

During the last decade the white noise calculus, launched out by T. Hida [8] in 1975, has
developed considerably keeping much contact with various research fields and applications,
see e.g., [10], [18], [22]. This short note is concerned with the recent achievements of operator
theory on white noise spaces, in particular, from the viewpoints of quantum stochastic
analysis and harmonic analysis on Gaussian space. Some open questions are also mentioned -
throughout the paper.

In Section 1 we give a quick survey of white noise distribution theory based on the
recent work of Cochran, Kuo and Sengupta [6]. In Section 2 we report recent results [5] on
white noise operators and their regularity property. We believe that our discussion can be
improved according to the recent works by Asai, Kubo and Kuo [1], [2], where a new aspect
is given to a method of constructing the space of white noise functions. Section 3 contains
some results on differential equations for white noise operators in normal-ordered form. This

~ class of differential equations includes quantum stochastic differential equations of Hudson—
Parthasarathy type and those having singular coefficients such as higher powers of quantum
white noises. In Section 4, we introduce a CKS-space over the complex Gaussian space and
prove resolution of the identity via coherent states. Then, we discuss decompositions of a
white noise function and of a white noise operator in terms of coherent states. These are
infinite dimensional extensions of the well known results in quantum mechanics [7], [12], [30].

1 White Noise Distribution Theory
1.1 Weighted Fock Space

Let H be a Hilbert space and denote by H & the n-fold symmetric tensor power of H.
For a sequence o = {a(n)}, of positive numbers we put

IL(H) = {¢ (Fa)io; fo € HE", |6 —Zn' | fal? <oo}

where | - | stands for the norm of H®". In an obvious manner I'y(H) becomes a Hilbert space
and is called a weighted Fock space. The (Boson) Fock space is by definition the speaal case
of a(n) =1 and is denoted by I'(H).



For two sequences o = {a(n)} and § = {B(n)} we write § < « if there exists a positive
number C' > 0 such that #(n) < Ca(n). In that case we have a natural inclusion map
I'y(H) — I's(H) which is continuous and has a dense image. In particular, I',(H) — I'(H)
for1 <a. :

1.2 CKS-Space

Although further abstraction is possible, for simplicity we consider the usual Gelfand
triple:
E=SR)C H=L*R,dt) C E*=8'(R), . (1.1)

where S(R) is the space of rapidly decreasing functions and S'(R) the dual space, i.e., the
space of tempered distributions. It is well known that

E = projlim E,,, E*=indlimE_,,

p—o0 p—00
- where Ey, is the Hilbert space obtained by completing E with respect to the norm

d2

— | A% —
Jflip"Apé.lH) A= 1+t2 dtz

Definition 1.1 A sequence a = {a(n)}22, of positive numbers is called a CKS-sequence if
it satisfies the following three conditions:

(Al) a(0) =1and 1 < « (set 7, = sup, o~ (n) < 0o0);

(A2) the generating function G4(t) = Z %t” has an infinite radius of convergence;

n=0

| G
(A3) the power series Go(t) = E t" v {inf a(s)} has a positive radius of conver-
o a >0 gn

gence.
Given a CKS-sequence o = {a(n)}22, we put

I'o(E) = projlim I',(E,).

P30

It is proved that I',(F) is a nuclear space, the topology of which is given by the family of
norms:

1812, = Zn'a | falts b= (fa), p>0.

n=0

By a standard argument we see that

To(E)” & indlim I (E-,),

where I, (E)* carries the strong dual topology and = stands for a topological isomorphism.
For simplicity we write W = W, for I',(E). Thus we come to a-Gelfand triple:

W C I'(Hc) € W, | (1.2)



which is referred to as the Cochran-Kuo-Sengupta space [6]. The canonical bilinear form on
W* x W is denoted by (-, -). Then -

(@, 8) =D nl(Fu, fo), S=(F)eW, ¢=(f.) €W, (1.3)

and it holds that
{2, h | < 121, N Dl s

where
o0

“¢“2—P,* Z (n) | B |—p’ = (F,) e W".

The Hida-Kubo-Takenaka space [16] denoted by W = (F), and the Kondratiev-Streit space
[14] denoted by W = (E)s, 0 < 8 < 1, are the CKS-spaces corresponding to a(n) = 1 and
a(n) = (n!)?, respectively.

Another concrete example of a CKS-spaces is constructed by means of the k-th order
Bell numbers {By(n)} defined by

k—times
-

exp(exp(--- (expt) ) _ <= By(n)
GBell(k)( ) exp(exp( (exp0) - - )) = Z n!

o (1.4)

n=0

see [6], [15]. In operator theory the second order Bell numbers play an important role.

1.3 Wiener-It6—Segal Isomorphism

Let 4 be the standard Gaussian measure on E* and L?(E*, ) the Hilbert space of C-
valued L2-functions on E*. The celebrated Wiener-It6-Segal isomorphism is the unitary
isomorphism between I'(Hc) and L?(E*, 1) uniquely determined by the correspondence

(1 ¢ g é@ﬁ > & e(z) = 2O/ E€E
EY) 21 3 ) nl ’ 3 3 C:

The above element is called an ezponential vector. It is known that {¢¢; € € Ec} spans
a dense subspace of W = I',(Ec) for any CKS-sequence o. The subspace of L2(E*, u)
corresponding to W in (1.2) is, by construction, consists of equivalence classes of L2-functions
on E*. Nevertheless, since each equivalence class contains a unique continuous function on
E*, we may regard W as a space of continuous functions on E*. More detailed properties of
functions in W are examined in a similar manner as in [19], [29]. In this context elements of
W and W* are called a white noise test function and a white noise distribution, respectively.

1.4 Norm Estimates of Pointwise Multiplication

That the space of test functions is closed under pointwise multiplication is an important
property and the norm estimate of ¢ is interesting to study. In case of the Hida—Kubo—
Takenaka space we proved in [22, Section 3.5] the followmg estimate: For any a,(3,p > 0
with p?® + p*+A+2 4 pzﬂ < 1 it holds that

Igwl, < — YI= P

P—1-— P — pa+,3+2p - p2ﬂ H ¢ Hp+a ” "p l,|p+57 ¢a 1/) € (E), ;(1.5)




which seems to be the sharpest result up to now. However, it is believed that a further
improvement is possible. In fact, in case of p = 0 a very sharp result is known in connection
with Gaussian hypercontractivity [20] and is not covered by inequality (1.5). Moreover, a
similar question for a general CKS-space remains open.

2 White Noise Operator Theory

" A general theory for operators in £(W, W*) has been extensively developed in [4], [22],
[23], [27]. Since operators in L(W, W*) are something like distributions, their regularity
properties are of great interest. Here we survey the most recent results.-

2.1 Weighted Fock Spaces Interpolating CKS-Space
Consider another Hilbert spaces K* which interpolate the Gelfand triple (1.1):

E=SR)CKtcH=L*R)c K- c 8 (R) = E, (2.1)

where K* are dual each other in such a way that the canonical bilinear form on K~ x KV is
compatible to the inner product of H. The norms of K* is denoted by |- |,. Moreover, we
assume that the imbedding K* — H is a contraction: |¢[; < |£],, £ € K*. For example,
K™* = E, has this property for any p > 0. In that case, the natural inclusion I'(K*) C I'(H)
is defined and becomes a contraction again. Then we have the following

Lemma 2.1 Let o be a CKS-sequence and (3 a positive sequence such that 1 < 8 < . Then
we have continuous inclusions:

W, C I's(KE) € I'(Hg) C I'g-1(Kg) CTWe. (2.2)
Moreover, ['3(K{&) and I'g-1(KG) are dual each other. |

For simplicity the norms of s+ (Kg) are denoted by || - ||., namely,

loll =D _nlpEm) | fall, 6= (fa) € [p=(KE).

n=0

2.2 Integral Kernel Operators

An integral kernel operator with kernel distribution x;,, € (E®(l+m) )* admits a formal
integral expressmn

':l,m(ﬁ"l,m) = /l Kl,m(sh 8L tla v >tm)a’:1 e a’:zatl e a’tmdsl te dsldtl e dtma (23)
Ri+m

for the precise definition see [22]. We first recall that for any kernel k;,, € (ES!T™)* the
integral kernel operator =, (ki) always belongs to L(W, W*). It is thus natural to answer
regularity questions about such an integral kernel operator by indicating a space I's-1(Kg)
such that S m(kim) € LW, [p-1(Kg)), see (2.2).

In addition to (A1)-(A3) we need another condition for the weight sequence o = {a(n)}:



(A4) there exists a constant Cy, > 0 such that a(n)a(m) < C™™a(n + m) for any n,m.

Then we have the following result, for the proof see [5].

Theorem 2.2 Let o, § be two sequences of positive numbers such that 1 < 8 < a. Assume
that o satisfies (A1)-(A4) and (3 satisfies (A4). Then for k € (E®(1+m )* the following three
conditions are equivalent:
(1) Zym(k) € LW, [g-1(Kg));
(ii) &€ (Kg)® @ (EE™)";
(iil) K®m € LIEE™, (Kg)®);

Let {ez} C E be the orthonormal basis of H = L*(R) such that Ae; = (2i + 2)e; for
i=0,1,2,--- as usual, and let {f;} be an orthonormal basis of K*. For simplicity we put

fA)=fi,® - f, e(j) =€, ® - Qe;,,

and, for p € R we define

|5 s = ZI(f$ @l le@, e ES® o (EE),

where (-, -}, stands for the inner product of (K3)®' ® HE™. With these notation conditions
(i)—(iii) are also equivalent to

(iv) there exists p > 0 such that | s —p < 0O

The above condition is very useful together with Theorem 2.2 in many practical questions
about convergence of operators. -

2.3 Fock expansion

One of the most significant features of our approach is that every operator = € L(W, W*)
admits the Fock expansion:

= Z Sy m(Fim), (2.4)
I,m=0
where the series converges in L(W, W*).-
Although the class L(W, W*) contains all bounded operators on I'(Hc), we do not know
how to characterize bounded operators in this context. In this connection we only mention
the following.

Proposition 2.3 Let x € (E®(l+m)) Then Eim(k) € LW, I'(Hg)) if and only if k €
H@l ® (E®m)

This is obtained by specializing Theorem 2.2 to the case of Kg = Hgc and 8 = 1. For
a general £ as in (2.4) we need control the convergence in terms of the weight sequence a.
On the other hand, argument in [21] might be relevant to this question.



2.4 Wick Products and Wick Exponentials
The Wick product (or normal-ordered product) is to be defined for white noise operators
as a unique extension of the relations:

Us O Gy = AsGyy, Gs O Gy = Q304 Qs © Q) = A;aAg, y © 0 = Qy0;.

In fact, for two integral kernel operators =5, m, (k) and =y, y, (A) the Wick product is defined
by
Ellaml (K’) ° Elzsmz ()‘) = Ell+l2,m1+m2 (K ° /\)’

where ko A € (ESHHltmtmys io given by

- Ko A(Sh Ty 511+l2at17 e 7tm1+m2)
= ’{‘(317 Tty Sllatla ot ,tml))\(sl1+1‘7 cety Sli4lg tm1+1a e )tm1+m2)'
Let Lg denote the space of finite sums of integral kernel operators. We note that Lg C
L(W,, W) for any CKS-sequence a. The Wick product is defined in Lg by linearity. Note

also that the Wick product is commutative.
With the help of Theorem 2.2 we obtain

Lemma 2.4 Assume that two sequences «, 3 satisfy the same conditions as in Theorem 2.2.
Let = € Lg be given by

finite

E=Y Emlfm),  fm € (BEEHTM).

l,m=0
Then E € LOW,, Ts-1(KZ)) if and only if kym € (KC)‘X” (EZ™)*.

Let £1¢ C Lg denote the subspace of operators which are of the form:

finite finite
== Z EO,m(K:O,m) + Z El,m(”fl,m)v
m=0 m=0

i.e., each term of the Fock expansion of = involves at most one creation operators.
In [5] we discussed conditions under which the Wick exponential:
wexp = = Z — Zon (2.5)

|
ne0 n!

converges. Here we mention the following two results.

Theorem 2.5 Let = € Ly be of the form:

k

[1]

um1 lhml Hli,mi € (K6)®li ® (Egml)*‘ (2'6)



Assume that the weight sequence o satisfies (A1)-(A4). If
- . 1/n :
lim sup RZ =0, ‘ (2.7

n—>oo

where

' mm 120,720 :

—); Tt +rp=n , (2.8)
o(m m=miry + -+ Mgl

then the Wick exponential (2.5) converges in L(OW,, ['(Kg)).

Theorem 2.6 Let = € Lg be of the form:

Rn = Rn(ml,---,mk) = max

k
E= SimFim)y i € (K5)® ® (EE™)". (2.9)
’ =1 .

Assume that the weight sequence o satisfies (A1)-(A4). If
' - e 1/2n
lim sup {Rn (lla ’ lk:)Rn(mla ’ mk)}

n—00 n

where Ry (ly,---,1t) and Ry(my,---,my) are defined as in (2.8), then the Wick exponential
(2.5) converges in LWy, a-1(Kg)). :

Simple sufficient conditions for (2.7) and (2.10) are stated in the following

=0, (2.10)

Lemma 2.7 Let {a(n)} be a positive sequence. If there exist constant numbers C > 1 and
N > 1 such that :

n™ < (Clogn)"a(n), n > N, . (2.11)
then condition (2.7) for any choice of finitely many my, -+, my > 0 and condition (2.10) for
any choice of finitely many ly,- -, lx,my,- -+, my > 0 are satisfied.

It is obviously necessary to simplify the above argument and to find sharper conditions.
Nevertheless, as is proved in [6], for ¥ > 2 the k-th order Bell numbers satisfy condition
(2.11) and, therefore we have

Theorem 2.8 Let o = Bell(2) be the second order Bell numbers. Then, for any = € Lg
the Wick ezponential wexp = converges in L(Wa, I'p-1(Kg)). If in addition = € Ly, then
wexp Z' converges in L(W,, I'(Kg)).

3 Normal-Ordered White Noise Equations

3.1 Wick Product in General

In order to formulate our initial value problem we need extend the Wick product for

general operators. This is performed by means of the operator symbol. The operator symbol
of 2 € L(W,W*) is defined by

§(€7n) = «5¢£7 ¢7)» ’ f’ ne EC-

Any operator £ € L(W, W) is uniquely determined by its symbol since {¢¢;¢ € Ec}
spans a dense subspace of W. The next result is known as the characterization theorem for
operator symbols, see [4], [22].



Theorem 3.1 Assume that the weight sequence a satisfies (A1)~(A4) and that o is nonde-
creasing. Then, a function © : Ec x Ec — C is the operator symbol of a certain operator
in L(W,, W2) if and only if

(O1) For each &,&,n,m € Ec, the function (z,w) — O(2€ + &, wn + m) is an entire
holomorphic function on C x C;

(O2) There ezist constant numbers K > 0 and p > 0 such that

0N < KGa(|ER)Gallnly),  &n€ Ec.

It follows from Theorem 3.1 that for two operators =i, 5 € L(W, W) there exists a
unique = € L(W, W*) such that

~
—

(67 7]) = e“(&!ﬂ)él(f, 77):2(&7 77), 57 ne EC- (31)

The operator = defined by (3.1) is called the Wick product of Z; and =3 and is denoted by

- =
= =510 5.

)

3.2 Unique Existence Theorems

Now we consider an initial value problem for a normal-ordered white noise differential
equation:

—
b
~—

= =LheE Sl

where ¢ runs over an interval containing 0. Since the formal solution is given by

t 00 1 ot on
Z, = wexp (/0 Lsds>=z;ﬁ(/0 Lsds) , (3.3)

n=0

=1 (identity), (3.2)

our task is to prove the convergence of (3.3) in L(W, W*), where W = W, is properly chosen
according to the coefficient {L;}. Here we mention some results obtained in [24], [26]. For
L € Lg we put

’ o0
deg L = max{l +m; Zjm(kim) # 0}, L= Z Elm(Kim)-
l,m=0

Theorem 3.2 Consider the initial value problem (3.2). Ifdeg Ly < 2/(1—03), 0 < < 1,
for all t, then the unique solution lies in L((E)g, (E)3). In particular, if deg Ly < 2 for all
t, then the unique solution lies in L((E), (E)*). :

For a general coefficient {L;} the Bell numbers play a role. -

Theorem 3.3 Consider the initial value problem (3.2). If t = L; € L(Waeuk), Waen(x)) is
continuous, the unique solution lies in L(Waeli(k+1), Wgen(k +1)).



3.3 Regularity of Solutions

We continue the study of the initial value problem (3.2), where the coefficient {L,} has
the following form: .

. |
Li= )" Sim(m() € Ls. (3.4)
Im=0

Assume that t — X, (t) € (Eg(wm))* is continuous and put

imlt) = fo Am(s) ds.

Note that k;,,(t) € (Eg(l”m"))*. With these notations we may state

Theorem 3.4 Let o = Bell(2) be the second order Bell numbers. Let L, € Lg be given as
in (8.4) such that t — Kkym(t) € (Kg)® @ (EE™)* is continuous for any l,m. Then the
unique solution to (3.2) lies in L(Wha, I'y-1(Kg)). If in addition Ly € Lq¢, the solution lies
in LW, I'(Kg)). ‘

The above is a direct consequence of Theorem 2.8.

Here are some examples. Let o = Bell(2) be the second order Bell numbers. A quantum
stochastic differential equation of Hudson~Pa,rthasarathy type is equivalent to the initial
value problem (3.2) with

Lt Llat a; + Lgat + Lgat + L4

It then follows from Theorem 3.4 that the solution lies in L(W,, I'(Hc)). More generally,
the solution to the initial value problem (3.2) with

finite finite
— E n E : N )
n=0 n=0

lies in L(W,, I'(Hc)), see also [5]. Next consider {L;} involving higher-derivatives of quan-

- tum white noises such as

finite finite
- — E : n § : 2 vil)
n=0 _ n=0

In that case the solution to the initial value problem (3. 2) lies in L(W,, I'(E_,)) for some
p > 0. Finally, the solution to the initial value problem (3.2) with {L;} involving higher
powers of quantum white noises such as

finite

E : *l _m
Ll mat at

l,m=0
lies in L(Wy, [o-1(E-p)) for some p > 0. In particular, the solution to
=
. dt
lies in E(Wa, a-1(E_p)) for p>1/2.

= (a?+a}?) o =, Eli=o =1,
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4 Complex White Noise and Coherent State Representations
4.1 Complex Gaussian Space

Going back to the Gelfand triple E C H C E*, we introduce the Gaussian measure on
E* with variance 1/2, denoted by u,,,/5, through the characteristic function:

2 .
g€/t = /;J* e’(”’a,uufz(dx), ek
Then, in view of the topological isomorphism E§ 22 F* x E*, we define a probability measure
V= flyyys X phyyz on EG by |
v(dz) = py5(de)py,s(dy), 2=z +iy € Eg.

Following Hida [9, Chapter 6] the probability space (E&,v) is called the complez Gaussian
space. The complex white noise has been discussed from various aspects in [11], [17], [31].
The following formulas are useful:

/E €O, s(de) = e®OM ¢ e B, (4.1)
1
/ (z, m) €=y 5(dn) = o (€, M) et £ € Eo, (42)
/ (% )+ (zm) v(dz) = 6(6,"7), ¢,n € Eg, (4.3)
Eg

where Z = z — iy for 2 = z 4+ iy € E* +1E*. Notice that (-, -) is the canonical C-bilinear
form on Eg x Ec. '
4.2 CKS-Space over Complex Gaussian Space

As before let I'(Hc) be the Boson Fock space over He. Then, through the celebrated
Wiener-It6-Segal isomorphism we have

L?(E*, iy 3) & T'(Ho), | (44
where the isometric isomorphism is uniquely determined by the correspondence:
®2 ®n
¢§(x) = e\/i(w,f)-—@,{)/? AN ¢E = (1 f’ §—7 e i’l—‘, ot ') 3 E € EC (4 5)

The above ¢¢ is the usual ezponential vector and is also called a coherent state (up to a
normalizing fctor). In view of (1.2) we obtain

WW C I'(Hg) ® I'(He) C (W W)*. ’ (4.6)
On the other hand, identifying a function on E& with one on E* x E* in such a way that
| $®Y(z+iy) = $(2)Y(y), wYEE", 9 € LE* uy,),
we see from (4.4) that
I'(Hc) ® I'(Hg) 2 L*(E*, iy, 5) ® L*(E*, pj5) =2 L}(Eg, v). (4.7)
The Gelfand triple obtained by combining (4.6) and (4.7) is denoted by
D C L*(Eg,v) C D*. | (4.8)
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4.3 Resolution of the Identity via Coherent States

For any z € E§ the same formula as in (4.5) is applied to defining an exponential vector
¢, € W*. We then put

Q:0 =z, PN b2, PEW.
As is easily verified, @, € L(W, W*) and its symbol is given by

Q:(&,1) = (Q:de, dn) = (D5, Be) (b D) = BTN (4.9)

Note also that both maps z — ¢, € W* and z — @, € L(W, W*) are continuous.

Theorem 4.1 Itlholds that
' I= Q. v(dz), (4.10)

where the integral is understood through the canonical bilinear form on W* x W.

Proor. It follows by a standard argument that there exists an operator = € L(W, W*)
such that

(=600 = [ (@b v pvew,

for a precise argument see the proof of Lemma 4.4. Then, by using formulas (4.9) and (4.3),
the symbol of = is computed as follows: '

53]}

€n) = (Zoc 0 = [ (Qube, 8a) v(d2)

= / BT 1 (dy) = & = (e, b)) -
Eg

Then the uniqueness of an operator symbol implies‘ that = = I. (General results on operator

symbols in CKS-space are obtained in [4], [5], [27]. See also [22].) |

Theorem 4.1 is a infinite dimensional generalization of the well known formula:

1 2
I= ;/C|z)(z|d - (4.11)

where |z) is the (normalized) coherent state. As an application of (4.11) one may prove that
quantum mechanical density operators are represented as integrals over projection operators
|2)(z|. We shall discuss an infinite dimensional analogue.

4.4 Decomposition of White Noise Functions via Coherent States

Let £ € Ec and consider the exponential function z + e/*€, 2 € E&. As is easily
verified, e\ € = b 5(2)¥;/3(y) for z = + iy, and hence "% = ¢, 5 ®@ i/ 5 belongs
to W® W = D. Then by virtue of the characterization theorem for the S-transform in
CKS-space [6] we come to the following
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Theorem 4.2 For any w € D* there exists a unique & € W* such that
(@, de) = (w, -9 (4.12)
Since (¢, ¢e)) = €4, identity (4.12) suggests us to adopt a formal integral expression:
¢ = w(z)¢, v(dz). (4.13)
Ey .

Conversely, it is not difficult to see that any & € W* admits an expression as in (4.13). More-
over, it is noteworthy that (4.13) gives the inversion formula for the S-transform. Originally,
the S-transform S@ for & € W* is a function on Ec. However, for ¢ € W the S-transform
S¢ is naturally extended to a function of Eg by

Sé(2) = (¢., ),  z€ Ec.
Theorem 4.3 For ¢ € W it holds that

o= [ So@0.o) ECED

PROOF. Write ¢ for the right hand side of (4.14). It is easy to see that ¥ € W and the
S-transform is computed as '

SY(g) S6(2)Se,(£) v(dz)

Eg

[ 65 0 (@2 000 wd) = [ (@u 06) wtd),
By By

where we used (4.9). It then follows from Theorem 4.1 that the last expression is equal
to (@, d¢) = Sé(€). Then by the uniqueness of S-transform we conclude that ¢ = 1 as
desired. i

The inversion formula for the S-transform was discussed in a different context by Kon-
dratiev [13], see also [3, Chapter 2.5].

4.5 Diagonal Coherent State Represenations of Operators

We go back to the operator symbol of Q,, see (4.9). Given &,1 € Ec we put

Qg,n(z) = «Qz¢£’ QSn» = e(E’EH(z’ﬂ)’ z € Eg. (4.15)
Then, for z =z + iy we obtain
Gen(T +iy) = (B (U, i(=64m)) — e(&m)wwn) / \'/i(x),/,i (—4m) /(). (4.16)

Therefore g¢, = e<5”7>1/1(5 +m)/v3 ® Vi(—e4n)/va and belongs to W@ W = D.
" Lemma 4.4 For w € D* there is a unique operator 5 € L(W, W*) such that ;
(S6e, o) = (. ), Em€ Fo e
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PROOF. By definition we have

2

|{w, QE,n»|2 = |efm (w, '¢’(g+17)/\/§® wi(__g-q-q)/\/i»

. 2 :
S T L [ E A

= N w2, Ga(| (€ +m/V2E) Gali(-€+n)/VEE),

where p > 0 is chosen as ||w||_, < co. Then, after usual estimates fitting the generating
function G, we conclude with the basis on characterization theorem of operator symbols
(e.g., [22, §4.4], [27]) that the right hand side of (4.17) is the symbol of an operator £ €
E(W, wWr). . i

The operator = defined as in (4.17) is written in a formal integral:

5:/'m@@w@) (4.18)
B

and is called a diagonal coherent state representation.

Theorem 4.5 Every operator in L(W, W*) admits a diagonal coherent state representation.

PrOOF. Given = € L(W,W*) we consider

O(&,0) = (EPerinyva Pe—inyvalle M €€ Ee.

It then follows from the characterization theorem for operator symbols that there exists
W € L(W, W*) such that

O, ) = (Woe, ¢, &€ Ee.

Then, changing the parameters, we have

«E¢E7 ¢77» = <<W¢(§+n)/\/§’ (bi(*f‘*"l)/ﬁ» e<€’n)? | 57 RS EC'

In view of the canonical isomorphism (W ® W)* =2 LW, W*), we choose w € (W @ W)*
such that

(Zde 8u) = (0, Sieamyva ® Bampyad €7 (419)

Now, taking (4.5) into account, we consider the functional realization of the right hand side-
of (4.19). As is seen already in (4.15) and (4.16), we have

Yietny/val®) i £+n)/vV2\Y 2(1)e™ = gz + zy) = (Q.9¢, ¢n» z=1x+1y.

Hence (4.19) is written in a formal integral

(S0 bn) = [ 06) (@ute, ) ), (420)

C
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which means that = admits a diagonal coherent state representation as in (4.18). i

Here is a simple example. For e € E let D, denote the differential operator along the
direction e, that is,

D, = Z,(e) = / e(t)a; dt.

R
The diagonal coherent state representation is given by

D, = (z, ) Q, V(d%),

Eg
which is verified by a direct computation or by observing
DeQz = <Z, 6> Qz-

Similarly, we have
D= | (z¢ Q.v(dz), D.D;=[ (7 €z e) Q.v(d2).
B, _ By

Since the exponential vectors {¢,} are overcomplete, the uniqueness of a diagonal coher-
ent state representation does not hold. In fact, in view of (4.15) and (4.17) we see that for
w € D* :

/ w(z)Q,v(dz) =0 << w(2)e®O@My(dz) =0 forall & 1n € Eg.
Eg Eg

Relation between the diagonal coherent state representation and the Fock expansion of
a white noise operator has not yet discussed satisfactorily.

4.6 Some Applications

In harmonic analysis on Gaussian space rotation-invariant operators are interesting to
investigate. For example, by using the Fock expansion we characterized the number operator
and the Gross Laplacian by their rotation-invariance [22]. In this connection we only mention
the following

Lemma 4.6 Let w € D* and assume that I'(g")w=w for any g € O(E; H). Then,

== /E* w(2)Q, v(dz)

C

18 rotation-tnvariant.

The diagonal coherent state representation seems useful in computing the trace of an
operator =. Note first that for z € Ec we have ¢, € W and @, € L(W,W). Then, by the
definition of the trace we have _ ‘

rQ. = Z((ﬁ, Q:fi)) ='Z((¢z, FY(Fis 92) = (¢, 0:)) = 57,
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where {f;} is a complete orthonormal ba81s Slnce Qz(f, 77) = O+ by (4.9), applying
(4.3) we have

Q(€€) v(de) = / e<7’3>+<z,£> v(dg) = e,
By s
Therefore, : |
r_[\I'Qz = L* @z(ga €) V(d§)1 z e EC- | (421)

It is an interesting question to extend (4.21) to a larger class of operators. In this context
one may hope that the trace class operators on I'(Hg) are characterized.
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