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INTRODUCTION

It is known since a long time that the Hochschild cohomology-is equal to the coho-
mology of the smooth based loop space, if the manifold is simply connected ([Ad]). An
extension to the smooth free loop space is performed in [Ch]. The purpose of this work
is to give a generalization to the case of the Brownian bridge to this classical result of '
Adams, by using the theory of forms and of stochastic Chen forms of [J.L].

Namely, [J.L] have introduced a tangent space over the free Brownian bridge of the
manifold. Let us recall namely that in infinite dimensional analysis, it is known since
[Gry] that the tangent space of a Banach space is a smaller Hilbert space. [Lz] and [F.M]
remark that the tangent space introduced by [J.L] is nothing else than the tangent space
introduced by Bismut in [Bi], in order to get intrinsic integration by parts formulas over
the Brownian motion of a compact Riemannian manifold. [J.L] performed an LP theory
of forms over the loop space such that the Bismut-Chern character belongs to all the L?.

A scalar Sobolev Calculus over the free loop space is performed in [Ls] and [Ls). Ly
does a Sobolev Calculus over the algebraic space corresponding to the Chen forms: it
is shown that the Hochschild coboundary is continuous over the intersection of Sobolev
spaces. [L4] produces a Sobolev Calculus over the set of forms of the free loop space such
that the exterior derivative is continuous over this set of forms. It is strongly related to
the theory of Stochastic anticipative integrals, because the Lie bracket of two vector fields
is not a vector field. The map stochastic Chen iterated integral is continuous.

[Ls] had shown that this result is still true for the free Brownian bridge of an homo-
geneous manifold. [Ls] used deeply the Albeverio-Hoegh-Krohn quasi-invariance formula
over loop group in order to give a stochastic interpretation of the path fibration property of
the path space with fiber the based loop space, which is used in the determm1st1c context
in order to prove this property. ‘

The purpose of this communication is to give a stochastic mterpretatlon of the result |

of Adams, by using Driver’s flow (See [Cr], [Dr] [E.S], H], [N], [L.N}). It is a short version
of [Ls] . 4

ALGEBRAIC PROPERTIES AND STATEMENT OF THE MAIN THE-
OREM
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Let M be a compact Riemannian simply connected manifold of dimension d. Let A
be the Laplace-Beltrami operator. Let p:(z,y) be the associated heat kernel. Let dP) o
be the law of the Brownian bridge starting from z and coming back in time 1 to . Let
dP? be the law of the Brownian motion starting from z. The time interval is [0,1]. We
consider 2 infinite dimensional spaces: _

-)The path space P,(M): it is the space of continuous functions ~s from [0,1] into M
endowed with the measure dPf such that o = z. v

-)The based loop space L. (M): it is the space of continuous functions -, from the
circle S* into M such that yo = z endowed with the measure dP; ;.

Let 7; be the parallel transport from <o to 7; for the Levi-Civita connection over M.
It is almost surely defined. These 2 infinite dimensional curved spaces are endowed with
different tangent bundles. : _

-)For the path space, a tangent vector is of the shape X, = 7,H, where the path H,
takes its values in the linear space T, (M), and has bounded energy. Moreover, since we
consider the based loop space, we have Hy = 0. We take as Hilbert structure

v 1
(1) 11 = [ d/dsha|ds

-)For the based loop space, we suppose moreover that X; =0, and we take the same
Hilbert structure. o
Over the path space, we define the connection V. For X, = 7,H,, we have

(1.2) j |  (VX), =T.VH,
where VH, is the H-derivative of H,. Let us recall brieﬂy the notion' of H-derivative. If

H, is'deterministic over the path space or over the loop. space, we get the integration by
parts for a cylindrical formula: S ‘

(1.3) -  E[<dF,X >]= E[FdivX]"

where

(1.4) divX = / < rod/dsH,, 67, > +1/2 / < Sx., 69 >
0 0 '

S is the Ricci tensor of the Levi-Civita connection, and § denotes the curved It6 integral.
dF exists for cylindrical functionals and can be extended by continuity. dF can be.seen as
a one form over the path space or over the based loop space. dy F is a r-cotensor defined
by induction over the path space or over the loop space. We get:

A5 F (X1, o Xpp1) =< d(dG F (X1, -, Xr)), Xr'e1 >

(L5)
- Zd%F(Xl, ..,X.,;._1, VXT+1X,;,X.¢+1, ..,Xr >
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It can be extended continuously because we have integration by parts (See [L;] and [Ls]
for analoguous con31derat10ns) dy F is given by a kernel k"(sy, .., 8p):

L6  dF(Xy., X)) = / / K'(s1, ., 8,)d/dsHY..d/dsHT dsy..ds,
If we work over the loop space, we have the same formula with the{extra—condition:

(L.7) | - / K" (51, ., 5,)ds; = 0

Let o be an r-form over the path space or over the loop space. ¢ is given by a kernel o,.:

(1.8) o(Xi,. ,X)—///ar(sl, . 8r)d/dsH] ..d/dsH] ds;..ds,

If we work over the loop space, we have moreover f or(81,.., 8r)ds; = 0. We are now ready
to define the Nualart-Pardoux spaces of forms. Let Vo be the covariant derivative of
order [ of a r-form. It has kernels o,(s1, .., 8r; 1, .., t1). We suppose that over all connected
components of the complement subset of the diagonals of [0, 1]” x [0, 1], we have:

(1.9) '

[0 (815 eer Spi 1y ooy 81) = O (81 ooy i Ehy ooy B bllze < Cpu @O 4/ls -s|+Z t; — t])

for I’ < [ and we suppose that
“Jj(sl’ o83ty "tl’)“LP = C, 1(0)'

We call the Nualart-Pardoux norms of order / in L? the quantity Cp, 1(0) +Cpi(0) = ||ollp,-
If ||o||p,s < 0o, we say that o€ (N.P), (Path) or o € (N. P)p,l(Loop) '

Definition I.1: We say that an r-form o is smooth in the Nualart-Pardoux sense
if ¢ € (N.P)p,; for all p,l. We say in that sense that o € (N.P)oo—(Path) or that
o € (N.P)oo-(Loop).

Let us recall what is the meaning of V7;: let X; be a section of the pull-back bundle
of the tangent bundle by the evaluation map v — 7;. Let V! be the pull-back of the
Levi-Civita connection by this evaluation map. We get:

(L11) . VimH:) = (Vn)H, + 7 VH,
Moreover, see [Bi;] and [L3], we have:
t
(1.13) Vxm = Tt/ ‘T;‘lR(d’)’s;Xs)Ts
, _ | v 0 .

where R is the curvature tensor.
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Let X; = 7 H; and let X; = 7:H; be two vector fields over the path space or the loop
space. We recall that:

t . N
(1.14) (X, X’]t =7Vx Hy + Tt/ 77 R(dYe, X1 Hy + antisymmetry
0

Therefore the tangent space of the path space or of the loop spa.ce is not. stable by Lie

bracket.
Let us recall that for a n — 1 form, its exterlor derivative is deﬁned by:

dU(X17 “,Xn) = Z(_l)i—l < da(Xl: '°’Xi—1aXi+1’X’n)’Xi >
(115) + Z('—l)i+j0'([xia Xj]) ooy Xiéla X'i+1, oy Xj~1, Xj+l’ cey X'n,)

i<j

Let us recall ([Ls]):.
Theorem I.2: d is continuous over the set of forms of finite degree smooth in the

Nualart-Pardoux sense over the path space or over the loop space.

Let HE,_(N.P)(Path) be the associated cohomology group of order p over the path
space. We get by [Lg] the following theorem which reflects that the path space retracts
over the constant paths. _

Theorem 1.3: If p > 0, HS, _(N.P)(Path) =0. If p=0, H,_ (N.P)(Path) = C.

We work of course in this paper with C-valued forms.

We get an inclusion from the based loop space into the path space. We deduce a
restriction map 2* from the set of forms over the path space to the set of forms over the
based loop space. Let us recall ([L4]) that i* is continuous from the set of forms smooth
in the Nualart-Pardoux sense over the path space onto the set of forms smooth in the
Nualart-Pardoux sense over the loop space.

One of the main tool of the proof of theorem which is the goal of this work is:

Theoem I.4: i* is a surjection from (N.P)e—(Path) over (N.P)s.(Loop).

Let us recall the following definition which is related to the cobar construction of
forms over the manifold. Let Q(M) be the set of forms over the manifold and let Q. (M)
be the set of differential forms over M of degree > 0. Let @p, = w1 ® .. ® Wp @ Wnt1 an
element of 2 (M)®™ @ Q(M): we suppose it here to be a simple tensor product, but we can
suppose that @, belongs to the tensor product of Hilbert spaces associated to the Hilbert
Sobolev space of k** order involved with the operator d*d + dd* +2 over Q(M). The total
degree of &y, is Y., (degw; — 1) + degwn41, and we decide to keep the total degree of a
given element. The corresponding Sobolev norm is denoted by ||.||2,x- We consider a series
> @n = @ with total degree I, and we introduce the fa.m11y of semi-norms

(1.16) . _¢k,z(‘3). =y %“@nllz,k

We gét an intersection of Banach spaces, when z or k — co. If ¢y, . (&) < oo for all k and
z > 0, we say that @ is smooth. We can do the same considerations if we remove the last .
term Q(M) in the tensor product. : :
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The Hochschild boundary is given by b, = bg + b1,p where

(1.17) bop=dw1 ®.Quwi+ > (1)W1 ®..8dwi®.. ®Wnit
1<j<<n+1 :

ife; = lejg(deg(u}j) — 1) and

(1.18), bl,p =wi Awa ® ud3 ® Wnt1 + Z ,‘—.L)"’U.)O ® wi.. ®wz /\wz+1 @ - ® Wny1
1<ikn .

We can do the same definition if we remove the last term in the considered tensor products
Q(M). We get two operations bg; and by ;.

Si(f) is the following operation: in @&, we introduce f between w; and w;yq, if £
is a smooth function. D!, _ is the closure for the family of norms (1.15) of the linear
space spanned by [by, S;(f)]@n for element of fixed degree I. N. _(C,Q(M ) Q(M)) is the
quotient of the spaces given by the family of norms (1.15) by D!__

We perform the same construction for the based loop space. We_g;et a space called
N (C,Q(M),C) and a Hochschild coboundary operator b, = by + by ; which is contin-
uous. :

‘Let us recall that we get the following commutative diagram:

NL_(C,Q(M),Q(M)) — Ni_(C,0(M),C)
(1.19) ! ! ,
(N.P)'._(Path) — (N.P)._(Loop)

The horizontal arrows are the restriction maps, which are continuous (See [Lg]). The
vertical arrows are the map Chen iterated integrals. Let us recall quickly their definitions.
Let &p, = w1 ® .. ® wp @ Wn41. Ly, is the form over the pathv space:

(1.20) S, = / | 1@y ) A e A (Vo) At
) 0<s1..<8,<1 ) :

if w41 is a form of degree 7, w7 is the form over the path space which to r vectors X ¢
over the path space associates wnt1(y1)(X1,.., XT). If w1 and 15, are two forms of degree
2, L{w: @ wy) is a 2 form over the path space given by th% following formuls:

(1.21) Z(w1®uwz) (X, X?) = / -uud’)’sl‘l'sl o, w2 (dYsq, To HZ )+antzsymmetry
. JO0<s1<2; <1

We can do the same Computations over the loop space, but the contribution of wp41
vanishes. The vertical maps of the commutative dlagram (1.19), which are constituted ot
iterated Chen integrals, are continuous.

Let us recall the following theorem (See [Lz]}:

Theorem 1.5: The first vertical map in 'che commutative umgra,m (1. 19) induces an
isomorphism in cohomology
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Let us denote by H.H L _(C,UM),C) the cohomology group in degree d of the
Hochschild complex b, which acts over N& _(C,Q,C) . Let us denote by Hi,_(Lz(M)
the cohomology group in degree 1 of (N.P)so—(Loop). Let us introduce a small neighbor-
hood U of & which is contractible. Let us denote by Py (M) the space of continuous paths
starting from z and arriving in U.

Let ¢r,u an increasing sequence of functions from U into [0,1] with compact support
and tending to 1. We denote by (N.P){,_ v(Path) the space of forms of degree 1 over

- Py(M) such that ¢, v (o) belongs to (V. P _ (Path) for all k. We can define the stochastic
exterior derivative over (N.P)oo—(Path) with cohomology groups H!__ (x(M ))-

We will show the theorem:

Theorem 1.6: If U is a small contractible ball the stochastic cohomology groups

oo v (Pz(M)) are equal to the stochastic cohomology group H',_ (L (M)).

The proof uses Driver’s flow in reversed time, as well as to justify some formal com-
putations small time asymptotics of diffusions (See [K], [L1] and [Was] for surveys). The
reader can find the proof of this statement in [Lg]. This theorem allows, since M is simply
connected, to repeat the spectral sequence argument of [G.J.P] and of [Ls]. We get the
following theorem, which is the goal of this paper: '

Theorem 1.7: The map which is constituted of stochastic Chen iterated integral
induces an isomorphism in cohomology between H.H!,_(C,Q(M),C) and H.,_(Ls(M)).

Remark: It should be possible to prove the full stochastic Chen theorem by using
Driver’s flow in the two sense of time, as we will see later. Let us indicate how to proof this
generalization. We consider the free loop space L(M) of continuous applications from the
circle S; into M endowed with the B-H-K measure p; (z,z)dz ® dP; ; where p;(z,y) is the
heat kernel associated to the heat semi-group over the Riemannian manifold. We consider
the free path space P(M) of continuous applications from [0,1] into M endowed with the
measure dz @ dFPf. A vector field over the free path space is of the form 7 H with Hy
arbitrarly chosen mstead of being 0 as before. We take the Hilbert norm (1.1) of- [L5] For
the free loop space, we have ToHy = 71 H;. Vector fields of the form (1 —t)Xo+7 th)
with Hilbert norm [[Xo||? are by definition orthogonal to the based loop space tangent
vector fields (See [Ls] after (1.2)). We break the rotational symmetry over the free loop -
space, but it should be possible to take the Hibert norm of [J.L] p106, which leads to
" much more complicated algebraic computations. Over the free path space; we introduce
a connection V. Over the free loop space, we introduce a obvious connection by taking
the restriction of the connection over the free path space to the tangent space of a based
loop (Ho = H; = 0!) and by taking the covariant derivative of Xy over the orthogonal
complement defined before. The stochastic cohomology of the free path space is equal to
the cohomology of the manifold (See [Ls] Theorem 1.2). We can introduce the Hochschild
spaces to the free loop space and the free path space, such that we have a generalization
of the commutative diagramm (1.19) to this context (See [L4], Théoreme II.7). By using
Driver’s flow as in [Lg] Proof of Theorem 1.4, instead of the Albeverio-Hoegh-Krohn quasi-
invariance formulas as in [Ls] Theorem II.1, we can show that the horizontal maps in
the Theorem II.7 of [L4] are surjections. In others words, we get a generalization of the
theorem 1.4 to this new situation. The surjectivity from the space of smooth forms in
the Nualart-Pardoux sense over the free path space to the space of forins smooth in the
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Nualart-Pardoux sense over the free loop space holds by using Driver’s flow in .only one
sense. The surjectivity from the space of forms smooth in the Nualart-Pardoux sense of
the free path space to the spaee of forms smooth in the Nualart-Pardoux sense over the -
based path space holds by using Driver’s flow in only one sense. The others statement of
surjectivities are deduced from the two previous ones.

The fact that the Hochschild cohomology of the free loop space is equal to the stochas—
tic cohomology of the free loop space of a spectral sequence argument as in [G.J.P] and in
[Ls] and of the following 2 theorems:

Let U and V two contractible small open sets of M. Let Pyxy (M) be the set of
continuous paths going from U and arriving in V.. We can define the stochastic cohomology
* groups of Pyxv (M), called H, _uv(P(M)). We get:

Theorem L.8: H.,_ V(P(M )) is equal to the cohomology group H',_(Ly(M)).

We use Driver’s ﬂow in the two senses in order to get this theorem. :

In the same manner, we cons1der the subset of loop LU(M ) going from U. We get
stochastic cohomology groups H,_ y(L(M)).

Theorem 1.9: Hf,o_’U(L(M)) is equal to the cohomology group oo_(L_,E(M)).
We use the fact that H.,_ ;;(L(M)) is equal to the cohomology group H,_ y;(Px(M))

by using Driver’s flow in dlrect sense, and theorem 1.6, whose proof uses Driver’s flow in
the reversed sense.

REFERENCES

[Ad] Adams J.F.: On the cobar construction. Proc. Nat. Ac. Sci. US.A. 42 (1956),
346-373.

[Bi] Bismut J.M.: Large deviations and the Malhavm Calculus. Progress in Math. 45.
Birkhauser (1984).

[Ai] Aida S.: On the 1rreduc1b1hty of certain Dirichlet forms on loop spaces over compact
homogeneous spaces. In "New trends in Stochastic Analysis”. K.D. Elworthy S. Kusuoka '
I. Shigekawa edit. World Scientific. (1997), 3-42.

[Ch] Chen K.T.: Iterated path integrals of d1fferent1a1 forms and loop space homology.
Ann. Maths. 97 (1973), 213-237.

[Co] Connes A.: Entire cyclic cohomology of Banach algebras and characters of ©-summa-
ble Fredholm modules. K-theory 1 (1988), 519-548:

[Cr] Cross C.M.: Differentials of measure-preseving flows on path space. Preprmt

[Dr| Driver B. : A Cameron-Martin type quasi-invariance formula for Brownian motion on
compact manifolds. J.F.A. 110 (1992), 272-376.

[El] Elworthy D.:" Stochastic differential equations on manifolds. L.M.S: Lectures Notes
Serie 20. Cambridge University Press (1982).

[E.S] Enchev O. Stroock D.W.: Towards a riemannian geometry on the path space over a
riemannian manifold. J.F.A. 1996, 134, 392-416.

[Fa] Fang S.: Stochastic antlclpatlve 1ntegrals on a Rlemanman manifold. J.F.A. 131
(1995), 228-252. :



24

[F.M] Fang S. Malliavin P.: Stochastic analysis on the path space of a Riemannian mani-
fold. 1. J.F.A. 118 (1993), 339-373.
[G.J.P] Getzler E. Jones J.D.S. Petrack S.: Differential forms on a loop space and the
cyclic bar complex. Topology 30 (1991), 339-373.

[Gry] Gross L.: Potential theory on Hilbert spaces. J.F.A. 1 (1967) 123-181.

[Gra] Gross L.: Uniqueness of ground states for Schrodinger operators over loop groups
J.F.A. 112 (1993), 373-441.

[H] Hsu P: Quasi-invariance of the Wiener measure on the path space over a compact
Riemann manifold. J.F.A. 134 (1995), 417-450.

[J.L] Jones J.D.S. Léandre R: LP Chen forms on loop spaces. In ” Stochastic Analysis”.
Barlow M. Bingham N. edit. Cambridge University Press (1991), 104-162.

[K] Kusuoka S.: More recent theory of Malliavin Calculus. Sugaku 5:2. (1992). 155-173.
[L1] Léandre R.: Applications quantitatives et qualitatives du Calcul de Malliavin. Col.
Franco Japonais. Métivier M. Watanabe S. edit. L.N.M. 1322 (1988), 109-133. English
translation: Geometry of Random motion. Durrett R. Pinsky M. Contemporary Math. 73
(1988), 173-197. '
[Lo] Léandre R.: Integration by parts and rotationnaly invariant Sobolev Calculus on free
loop spaces. XXVIITI Winter School of Theoretical Physics. Gielerak R. Borowiec edit. J.
Geometry and Physics 11. (1993), 517-528. |

[Ls] Léandre R.: Invariant Sobolev Calculus on free loop space. Acta Apphcandae Math-
ematicae 46 (1997), 267-350..

[L4] Léandre R.: Cohomologie de Bismut-Nualart-Pardoux et cohomologie de Hochschild
entiere. Séminaire de Probabilités XXX in honour of P.A. Meyer and J. Neveu. Azéma J.
Emery M. Yor M. edit L.N.M 1626 (1996), 68-100.

[Ls] Léandre R.: Brownian cohomology of an homogeneous manifold. In ”New trends
in stochastic analysis”. Elworthy K.D. Kusuoka S. Shigekawa I. edit. World Scientific.
(1997), 305-347. B

[Lg] Léandre R. Stochastic cohomology of the frame bundle of the loop space. J. Nonlinear
mathematical physics. 5. 1 (1998), 23-40.

[L7] Léandre R.: Singular integral homology of the stochastic loop space. Infinite Dimen-
sional Ana1y51s, Quantum probability and related topics.1.1 (1998),17-31.

[Lg] Léandre R.: Stochastic Adams theorem for a general compact manifold. Preprint.
[L.N] Léandre R. Norris J.: Integration by parts and Cameron-Martin formulas for the free
path space of a compact Riemannian manifold. Séminaire de Probabilités XXXI Azéma
J. Emery M. Yor M. edit. L.N.M. 1655. (1997), 16-23.

[Ma] Malliavin P.: Stochastic Analysis. Grund. math. Wissens. 313 Springer. (1997).

[N} Norris J.: Twisted sheets. J.F.A. 132 (1995), 273-334.

[Ra] Ramer R.: On the de Rham complex of finite codimensional forms on infinite <imen-
sional manifolds. Thesis. Warwick University. (1974). .

[Sh] Shigekawa. I.: De Rham-Hodge-Kodaira’s decomposition on an abstract Wiener space.
J. Math. Kyoto. Univ. 26 (1986), 191-202. ' '

[Sm] Smolyanov O.G.: De Rham currents and Stoke’s tormula in a Hilbert space. Soviet
Math. Dok. 33.3. (1986) 140-144.



25

[Wa,] Watanabe S.: Stochastic differential equamon and the Malhavm Calculus Tata
Insti. Fundamental Resedch. Springer (1989).

[Way] Watanabe S.: Stochastic analysis and its applications. Sugaku 5.1. (1992), 51-71.



