-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title A Study of Abramsky's Linear Chemical Abstract Machine

Author(s) | Mikami, Seikoh; Akama, Yohji

Citaton (0000000000 (1999), 1096: 68-83

Issue Date | 1999-04

URL http://hdl.handle.net/2433/63002

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39196487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0oooo0O0oooo
1096 0 1999 0 68-83 , ' 68

A Study of Abramsky’s Linear Chemical
Abstract Machine*

Seikoh Mikami® and Yohji Akama? (= EIRTE,RFR\FR =)

! Department of Information Science, Tokyo University,
Hongoh, 7-3-1, Tokyo, Japan, 113-0033
2 Department of Information Science, Tokyo University,
Hongoh, 7-3-1, Tokyo, Japan, 113-0033 akama@is.s.u-tokyo.ac.jp

Abstract. Abramsky’s Linear Chemical Abstract Machine (LCHAM) is a
term calculus which corresponds to Linear Logic, via the Curry- Howard
isomorphism. We introduce a translation from a linear A-calculus into
LCHAM. The translation result can be well regarded as a black box with
the i/o ports being atomic. We show that one step computation of LCHAM
is equivalent to that of the linear A-calculus. Then, we prove the principal
typing theorem of LCHAM, which implies the decidability of type checking.

1 Introduction

There are attempts to regard concurrent computations as chemical reactions.
Chemical Abstract Machine (CHAM) [5] is a model of concurrent computation
in this line. CHAM influenced on various concurrent calculi such as w-calculus,
ambient calculus [6] and join calculus [8].

The points of CHAM is the following;:

~ once a multiset of objects is applied by a rewriting rule, then the multiset will
be consumed and will be transformed to a multiset of objects (in chemistry,
a solution of molecules will changes according to chemical reaction laws). In
fact, CHAM is resource-sensitive, like Linear Logic (LL).

— a multiset of objects is again an object (in chemistry, a solution encapsulated
by a membrane often acts like a molecule). Inside the multiset, computations
go through independently. This mechanism may enable us to describe com-
putations inside a sub-network and/or dynamic structuring of networks. The
‘membrane’ plays an important role in mobile calculi such as ambient cal-
culus and join calculus. CHAM’s encapsulation mechanism of computation
reminds us of the boxing operation of proof net (Girard [9}).

So, we are concerned with Linear Chemical Abstract Machine (Abramsky [1}),
which corresponds to LL through Curry-Howard isomorphism. Linear Chemical
Abstract Machine (LCHAM) consists of not only rewriting rules but also typing
rules.

* The preliminary version will appear in the proceedings of TLCA’99.

To investigate computational properties of LCHAM, we introduce a translation
from a linear A-calculus into LCHAM. A linear A-calculus is a resource-sensitive
refinement of A-calculus. It is employed for analyzing functional programming
languages with respect to evaluation strategy [13],[4] and/or resource alloca-
tion [7]. We are concerned with a linear A-calculus which is introduced by Bier-
man [3], and we translate the terms into proof nets. Then we prove that one step
reduction in the linear A-calculus corresponds to one step reduction in LCHAM
modulo a bisimulation.

To investigate type-theoretic properties of LL, we prove the principal typing
theorem of LOHAM. The principal typing theorem is an indispensable theorem
for implementing a functional language that has a polymorphic type-inference
system, such as a programming language ML.

Related Work There are various versions of linear A-calculi. Abramsky intro-
duced a call-by-value linear A-calculus [1], Chirimar-Gunter-Riecke introduced a
linear A-calculi with a fix point operator for non-linear function [7].

The linear A-calculus of this paper was introduced in Bierman et al [3]. Their
calculus does not suffer from the coherence problem. Furthermore it has a stable
notion of commuting conversions. The commuting-convertible linear A-terms is
translated by our translation into the same proof net. Under the presence of the
fix point operator, we don’t know how to define the commuting conversion, and
how the commuting conversion is related to the structure of proof net.

We introduce a translation from the linear A-calculus into proof nets, and the
translation satisfies the following property: The resulting proof nets can be well
regarded as a black box with the i/o ports being ‘atomic’. So, such black boxes
can be easily connected through their ports. It is not the case in most translation
of their multiplicative A-calculus into proof nets (Bellin-Scott [2], Mackie [11],
etc.)

Mackie [12] proved the principal typing theorem of Abramsky’s linear \-
calculus. We prove the same theorem for LCHAM in this paper. In proving the
principal typing theorems, the reconstruction algorithm of a derivation of a given
typing assertion is essential. In the case of linear A-calculus, the reconstruction
algorithm will be deterministic. The type assertions are two-sided sequents I -
t: A, and we can only decompose ¢ on their antecedents in reconstructing the
derivations. '

However, in the case of LCHAM, the reconstruction algorithm will be non-
deterministic. Because the type assertions are one-sided sequents like - ¢; :
Aj,...,tn i Ag, the reconstruction algorithm choose non-deterministically ¢; to
decompose. Furthermore, some type-inference rules of LCHAM is another source
of non-determinism. So, the existence proof of principal type is not trivial.

Organization In the next section, we review LCHAM [1], a rewriting system for
a proof expression, which is a representation of a proof of LL. In Section 3, we
review the linear A-calculus (Benton et al [3]). We introduce a translation from
the linear A-calculus to LCHAM, and show that one step S-reduction in the linear
A-calculus ‘roughly’ corresponds to one step reaction rules in LCHAM. In Section

69

4, we prove the principal typing theorem of LCHAM. To prove this theorem, we
introduce locally correct assertions, which correspond to proof structures in LL
[9], (ordinary type assertions correspond to proof nets of LL).

2 Linear Chemical Abstract Machine

We begin by reviewing Linear Chemical Abstract Machine (LCHAM) [1], a rewrit-
ing system representing the cut-elimination procedure of a proof in LL.

A proof expression (PEXP) is an object to rewrite in LCHAM. Proof ezpressions
are defined together with terms and coequations as follows. Letters P, @, . .. stand
for PEXPs, t,u,... for terms, z,y,z2,... for names, and Z,9,Z,... for lists of
names. Terms are defined as ‘

t::=x|*|®|t1 ®t2lt128 t2|lﬂ'(t)|lﬂf(t)|fi?(P” Q)l?tl_ltl@tz‘i(P).

We call a term of the form Z(P) or Z(P || Q) a closure and Z of &(---) binding
names. Coequations have the form ¢ 1 u, where ¢t and u are terms. Proof ex-
pressions have the form ©; f, where @ is a finite sequence of coequations and is
called the coequation part. T is a finite sequence of terms and is called the term
part.

2.1 Type inference

Types, ranged over by A,B,C,..., are exactly the formulas of LL. For every
formula A, its linear negation is denoted by A+. We sometimes write £ : I" for
t1: Ay, ..., th : A, wheret =t,...,t, and I' = A,,..., A,. Different names
are introduced for each instance of the Aziom, With and OfCourse rules.

F O;Iu:At: B/A Exch Axiom
Fe;It:Au:B,A xchange F;z:AL, z: A

FO; It:A FE; Aju: AL

Fe. 5. tlu T A Cut
Foe; I’
19 Fe Lol
FO; It:A FE;, A,u:B FO, I,t:A,u:B

FO.E LA iou ASB ™ [0 TrtBu:ABB =
FO;t:t:A FE;a: T u: B

F; Z: 1, 2(0;4,t|| Z;8,u): A& B With
FO; It: A Fo; I,t: B
Fo; L) AeB ! Fo, L)) AeB w2
_I"—G;_I:'__ ‘Weakening F6; t:1, t.-: A OfCourse
O, T _:74 F; 7T £(0;1,t) 1A
FO, It:7A,u:7A Fe;, It: A

FO. [, tQu 74 Contraction Fo: T, 7 7A Dereliction

70

Remark 1. Note that we obtain the rules of LL from the type inference rules by
ignoring PEXPs. We can say that F ©; ¢ : I' corresponds to a proof net [9] such
that

— the lowest nodes are I,
— the Cut-links are represented by ©, and
— the closures are represented by the boxes.

For example, - Z(P || Q) L inl(y); Z : I, y : A represents the following proof
net.

X - ’
O .
—T——A&B — —Eé—l_?}— A

2.2 Réductiops

Our discussion is limited to linear PEXPs, which we define slightly different from

the ones in Abramsky [1]. In our definition, we consider occurrences of names in

PEXP only outside closures and not ones in PEXPs inside closures. We consider
binding names to be outside the closure.

Definition 1. A PEXP ©;t is linear if and only if

— Each name occurring in ©;t, does so ezactly twice;

— If a closure Z(--+) occurs in ©;, then none of the other occurrences of & are
binding names; and

— Each PEXP inside a closure is linear.

We say a PEXP O;1 is typable if and only if - ©;f : I" is derivable for some I".
We note that every typable PEXP is linear. Intuitively, the linearity condition of
a PEXP means that the PEXP can represent a skeleton of some proof structure
[9].

Rewriting rules in LCHAM are classified into reaction rules and a cleanup rule.
The reduction relation determined by the reaction rules is written as —,. The
reduction relation determined by the cleanup rule is written as —.. The reaction
rule rewrites only the ‘coequations part’ of a PEXP. '

We regard © of a PEXP ©;t as a multiset of coequations, and identify co-
equations ¢ L u and u L t. We write © = @' if @ and @’ are equal in the sense
described above. (This corresponds to the “structural rules” in Abramsky [1].)
Hereafter, we simply identify © and @' if @ = ©'. The cleanup rule represents
a contraction of a Cut-link involving an Axiom-link.

71

Cleanup rule.
e,z Lt 4—. 0; ut/z]
where z is outside of closures and not a binding variable.

Reaction rule.

Communication tlz,zlu—,tLu

Unit *x L O

Pair tQu it/ Bu =, tLt,uld
Case Left} (0L, t] Z;8,u) Linl(v) 2, 0,2 L, t Lo

Case Right 204t E5a,u) Linr(w) 2, E,Z L@, ulv
Read z(0;f,t) L7u—,0,z L% tLlu
Discard Z(P) L_—, :1:1_1._,...,:1:-,1_!__
Copyt Z(P) Lu@Qu—,z L (z@z"), z(P) Lu, Z(P)" Lv
(t) ZLidenoteszy Lty,..., 20 Lt if Z=121,...,2n and E=11,...,tn.
(1) #' denotes a list of new names z,...,z} if £ = 21,...,%,, and Z(P)! denotes

a term where small I’s are attached to all names in Z(P). Z" and Z(P)" are
defined in the same way.

3 Translation From Linear A-calculus to LCHAM

This section begins with a review of a linear A-calculus which was introduced by
Benton et al[3].

3.1 The Linear A-calculus

We only consider the (—o,®, !)-fragment of intuitionistic linear logic (ILL).
Types are either a type variable, A; ® Az, !A, or a linear implication A; —o As.
Pre-linear A-terms, ranged over by t,u,..., are defined as:

to=2zx ! tits I /\$.t|t1®t2 l fetty bez®@yintsy .
| promote t1,...,t, for z1,...,Zn in u | derelict(t)
| discard t; in t2 | copy ¢; as z,y in to.

72

73

Here, bound occurrence of variables are either (1) occurrences of z in (\z. ...),
(2) occurrences of z or y in (let {; be z ® y in ...) or (copy t; as z,y in ...),
or (3) occurrences of z1,...,Z, in (promote ty,...,t, for z1,...,2, in ...). An
occurrence of a variable is called free if it is not bound. A linear A-term is a
pre-linear A-term ¢ such that each variable occurring free in ¢ does so exactly
once. :

Type inference rules.

i AFz:4 1@
z:AVt:B ol I'+t:A—oB AI—u:A__OE,
I'bAzit:A—oB I''Avrtu:B
'Ft:A Alu:B I I'Ft:A®B A,z:A,y:Blu:C 5
T Art@u:-A@B © I AFletibez@yinu:C %
A Fity 1A oo ARt A, xl‘:Al,...,wn:AnFu:BP .
Ay, ..., Ap - promote t,...,t, forzy,...,zp inu:!B romotion
I'ke:la Dei'eliction I'-t:1A Arwu:B Wéakening
I' - derelict(t) : A I'' AFdiscardtinu: B
'Ft:'!A Az:'A,y:'A+u:B .
Contraction

I' At copytasz,yinu:B

B-reduction of the linear A-calculus is defined by the following five rewriting
rules: (Az.t)u —p tfu/z],

lett@ubez®@yinv g v[t/z,ufy],
derelict (promote ¢ for Z in u) — g u[t/Z],
discard (promote & for in) in v —g discard £ in v, and
copy (promote for Z inu) as ',y in s

!, 2"in s [promote 2! for ' in u' / y', promote Z" for Z" in u” / y"]

—p copytas z

Here , 4, . . . stand for lists of linear A-terms, and Z, 7, . . . for lists of variables.
Andif Z=zx,,...,2, and t=1t;,...,t,, then

promote £ for Z in u = promote ty,...,t, for z1,...,z, inu
discard f in u = discard t; in - - -discard ¢, in u
copy t as Z,§ in u = copy £ as T1,Y1 in ---COPY tn, aS Ty, Yn iN U

3.2 Special Proof Expressions
We translate linear A-terms into special PEXPs:

Definition 2 (Special Proof Expressions). We call a PEXP ©;f a special
proof expression, or a special PEXP, if every term part of ©;1 consists of distinct
names.

The coequation part @ is sufficient to determine the computational content
of the special PEXP ©@;%. On the other hand, it is not the case for a usual PEXP;
See the following quotation from Abramsky [1]:

The “molecules” of the linear CHAM are the coequations. We refer to
© in ©;1 as the “solution”, and to f as the “main body”. The idea is that
the computation is done in the solution, with the result recorded in the
main body. One can think of each coequation either as a single sequential
process, or as a tightly coupled synchronous parallel composition of two
processes, proceeding in lockstep. (So coequations could be modelled
by “membranes” in Berry and Boudol’s terminology; but we shall not
pursue this idea.) -

We regard the main part ¢3,...,t, of PEXP ©;t,,...,t, as the ports, and we
let the computation results be recorded not on ¢;,...,t, but be recorded in the
coequation parts. Moreover, we allow PEXPs to connect each other through their
ports. So, we restrict tq,...,t, being variables Z. Thus, Z can be easily inter-
preted as a list of port names in concurrent calculi such as ccs [14]. Therefore, a
clear translation of special PEXPs into, for example, agents of cCS may be made
easily.

Thus, in the translation of A-terms, @;%,z’ is interpreted as having Z as
input ports and z’' as an output port as in the following figure.

151

RS TR

3.3 The Translation

Basic Idea. Linear A-terms represent natural deduction style proofs in ILL, while
PEXPs represent sequent calculus style proofs in LL (more precisely, an equiva-
lence class of proofs where the equivalence is defined to be “the equality as proof
nets”). We adapt Gentzen’s translation of natural deduction style proofs into
sequent calculus style proofs.

But, we employ a trick to make the translation result a special PEXP. For

FIi AL B
I AL R B
. ~ z:Ixz:A+t:B

Ay is AR B Ap). If ign t hen_=7

2 is AL B Ap.) we assign ermstothem,tePE:FI_)‘m.t:!,i__oB"o
6, 3:I" z: A, 4" : B Par. However, the lower PEXP
FO;z:I'", 2R z': A" B B ™ ’

©;%,x B 7’ in the last figure is not a special PEXP, so we let the translation
result of Az.t be @,y Lz B z'; T, y'. with ¢/ being a fresh variable.

example, the (—oI) rule is translated into Par (In LL, A; —o

I

is translated into

74

This coincides with introducing Cut-rule:
FO;z:I't, z: A+, 2': B p
FO; 2: It R ' : AR B ar F;y: (At B B)L,y: A8 B
FO,y LaRa;z: Ity AL R B

Cut

The Translation Rules. For a linear A\-term ¢, we define its translation result ¢°
by induction on the construction of £. In a PEXP ©;%,z’, we consider @ to be
a multiset of coequations, and %,z’ as an ordered pair of a multiset of names %

and a name z'. "
=zl z2
to = 9; i-’x’zl tO 26; :z.,xl uo — 5; g,y,
(el =0,7 LeBa; 5,7 (W =0,50Lly8sans
. = Y, y — My = Y 25 &Y,

t°=0; z,2 u =59y
(t®u)°—6,_,z 1Lz'®y; z,7,2
t°=0; T, u’=5; §,y1,Y2,y F
(lettbey1 ®@y2inu)° =0, Z,2' Ly B o5 7,5,y

— . ! (> — . !
t?—-@i, Yi, U; (7’_1’--"”) -uo—"—'a LryeeeyTny & .
: - S Promotion
(promote ty,...,t, for x1,..., Ty inu)® =
! '] /
@la RS] @na Ty -Ly17 A wn-‘-yna
/ ! (= . y.
Zlzy-xh (B, 21 L721,. .y 2n L7205 21,00y 20, T3
- - '
Y1,---yYny 2
t°=0; 7,7’ Derelicti
B - ereiiction
(derelict(t))° = 0O, z' L?y'; Z,9'
t°=0; z,2 u==5;7vy
oy - Discard

(discard tinu)° =0, E,2' L ; Z,3,y
t°=@; fﬁ,fl)’ 025; gvy17y2)y’

: - = —— Copy
(COpy tas Yi,Y2 In u)o = @$ =, mr L Y1 @y2; wvy)y’

3.4 The Computational Properties

The set of all the special PEXPs is not closed under the cleanup rule, Fortunately,
the cleanup rule is not so important when considering its computational meaning,.
Instead of the cleanup rule, we define several concepts about special PEXPs. In
the rest of this section, we consider only linear special PEXPs.

Definition 3. On the set of all the linear special PEXPs, we define = to be the
smallest equivalence relation satisfying:

(1) Plz/z] = P, for a fresh name z. (2) O,y L z;%,2' =2 Ofy/2]; %,z
(3) 6,z L %z, = 6;%,2'. - (4) @x.l.@,x:v:v’ze z,x'.

75

Clause (2) is sufficient to handle a cleanup rule;
by(2) - by(1)

O,y La;z,y = O/2);z,y = ;%2 . Clauses (3) and (4) are
required because free variables often disappear via B-reduction in A-calculus. (In
fact, clause (4) is not needed here, but if we accept clause (3), it is unnatural
not to accept clause (4).)

. d . .
Definition 4. Define P =, Q &L p i1 Q. Here =7 is a reflezive
and transitive closure of —9. The —o is determined by the communication
rule, and —,1 by the other reaction rules.

Proposition 1. The translation result of any linear A-term is normal with re-
spect to —,1.

o~y

Proposition 2. 2 is o bisimulation with respect to =, that is, if P =2 Q and
P =, P, then some Q' satisfies P' = Q' and Q =, Q'.

Proof. In view of the linearity of P and Q, it is easily shown that = is a bisimu-
lation with respect to —%; and —,1, from which the proposition follows directly.

Corollary 1. If P &=, Q, then P =,2 Q.

The relation £ is ‘compatible’ with the translation. For example, if ©; %, z, 2’ &
Z;7,z,y,then @, 2' Lz B ;4,2 = =, 2 LB y';§,2 holds. In particular,
if t° = u°, then (\z.t)° = (Az.u)° and so forth.

Next, we prove the following theorem:

Theorem 1. Let t and u be linear A-terms. If t —p u, then t° == u°, i.e, t°
goes to a term which is =>,= {o u°.

~ To verify the theorem, we define a concept which corresponds to substitution.

Definition 5. For P = O©; Z,z,2' and Q = E; #,y', we define Plz + Q] def

fond 1o = = ol
9,‘—‘71"—1—?/11:,?/73:'

Intuitively, P[z + Q] is a process where an “input port” z of P is connected to
the “output port” of Q. The following figure illustrates this.

Proposition 3. For all linear A-terms t and u, and for all free variable z in ¢,
(tfu/z]))° =tz < u°).

76

Proof. Let u° = =Z;7,y’. The proof is done by induction on the construction of
t. Note that x occurs in ¢ exactly once. In this proof, the ‘compatibility’ of =
with the translation described above is used.

Proposition 4. For each rewriting rule l = r of B-reduction, we have I° =>,22
r°. That is,

((Az.t)u)® =, (tu/z])°.
(let t; ® ty be y1 ® y2 in w)® =22 (ufts /y1,t2/y2])°.
(derelict (promote £ for 7 in u))° =,2 (u[f/z])°.
(discard (promote for Z in u) in s)° =, (discard { in s)°.
(copy (promote f for Z in u) as ¢/, y in 8)° =, (copy tas 2}, 2" in
s[promote z' for zind /¢,
promote z" for Z" in u” / y"])°.
Proof. For the proof of the first claim, let t° = ©; Z,z,2’ and u° = &, 7,v'.
Then, (A\z.t)°=0; 2’ Lz ® 2'; Z,2' and so
(()\m thu)° = 6,5,2 LzR® 2,2 L y'®w" z, g, w
00, 5,28 2’ Ly @u'; z, y,
=10, 5,z Ly, 2 Lo z,§w ,
> 0,5,z Lly; 27,7 =t°[z + u] = (t{u/=])°

The last is by Proposition 3. The other four claims can be proved similarly.

The proof of Theorem 1 is by induction on the derivation of ¢ = u.

From Theorem 1, we can conclude that the B-reductions in linear A-calculus
roughly correspond to the reaction rules except the communication rule in
LCHAM.

The commuting conversion —. is defined as follows. Let f(t¢) stand for either
(let s be £ ®y in t), (discard s in t), or (copy s as z,y in t). And let g(t) stand

for either (tu), (let ¢ be 2; ® 23 in u), (discard t in u), (copy t as 21,22 in u), or

(derelict(t)). Then, the commuting conversion is by definition g(f(t)) —. f(g(t)).
For example, (let s be z ® y in t)u — let s be z ® y in tu. The commuting
conversions expose ‘hidden’ redexes in terms.

We can prove that commuting-convertible linear \- terms are identified when
translated into PEXP. More precisely,

Proposition 5. Ift and u are linear A-terms and t —. u, then 1° = ul.

Proof. We have only to check all the entries of commuting conversions. For exam-
ple,if s° = ©;%,2', t° = =7,y and u® = IT; Z, 2/, then both ((discard s in t)u)°
and (discard s in tu)° turn out to be ©,5,II, ' L ¢y L 2 ®w'; %,7,zw
Thus, the translation is preserved via a commuting conversion (discard s in t)u —
discard s in tu. The other cases are all done in the same way.

7

Proposition 6 (M. Hasegawa [10]). Let MLL stand for multiplicative linear
logic and let MILL stand for multiplicative intuitionistic linear logic. Then, for
any term + M : 0° of MLL with o being a MILL-definable type, there ezxists a
term - N : o of MILL such that+ M = N° in MLL.

So,

Proposition 7. Ift and u are linear A-terms and t° = u°®, thent =; u

4 Principal Typing Theorem of LCHAM

Next, we prove the principal typing theorem of LCHAM:

Theorem 2 (Principal Typing). There is an algorithm such that given a
PEXP P,

1. if P is typable, then it computes a principal type,
2. or else it terminates by outputting “not typable”.

Here,

Definition 6 (Principal Typing). We write - ©; T : I", when for all A, these
are equivalent: (1) - ©; t: A, and (2) A = I'c for some substitution o.

I is called o principal type of @; t. It is easy to see that I" is unique up to
renaming of type variables. Hereafter, we write pt(@; t) to represent I’

In LCHAM, a type-assertion may have many derivations, unlike a type system
of A-calculus. In particular, a type—assertlon FO,Z; I, A, t®u:A® B can be
inferred from - @; It : Aand - =; A u: B by an 1nference rule R=Times,
but it may also be inferred by R from another .o-st:Aand & ---,u : B.
The same annoyance arises when R is a Cut-rule.This is why the algorithm we
will construct in the proof is non-deterministic, while the algorithm for principal
types of A-terms is deterministic.

In Subsection 4.3, we will present the algorithm, and will prove the ter-
mination property and the correctness. The correctness proof consists of the
verification of Theorem 2 (1) and (2). Theorem 2 (1) will be proved by using
the Principal Inference Lemma (i.e., Proposition 9 and 13) in Subsection 4.1,
and (2) will be proved by using the Generation Lemma (i.e., Proposition 12 and
Proposition 8) in Subsection 4.2.

Hereafter, for sequences I' and A of formulas, we denote by mgu(I"; A) a
most general unifier § such that I'§ = Af. Note that it is computable.

4.1 Easy Part of the Proof
Proposition 8 (Generation Lemma, part 1).

1. IfkO; I ;B ty : C, then C is of the form A% B andt O; I, t; : A, t3 : B.
2. If-@; I,inl(t) : C, then C is of the form A® B andt+ O; I, t: A.

78

If-0; I inr(t) : C, then C is of the form A® B and - O; I, t: B.
Iftre; INe:C,then C=1 and - O; I'.

If-0; I, _:C, then C is of the form 7A and - ©; I'.

If-0; I, 7t :C, then C is of the form 7A andF ©; I, t: A.

If 6; I’,tl@tng', then C is of the form TA andt+0O; Ity : C, t2: C.
If+; 7 : I, 5(O;1,t) : A, then for some F’ A', we have I' =7I" and
A= 'A'andl—@ t:I,t: A'

Ifb; z: T, £(O1;t1,uy || O2;82,u3) : C, then C is of the form A &Az, and
FO;; & u; 0 A; fori=1,2.

o R ® ;A o

°

Proposition 9 (Principal Type Inference, part 1). The following are ad-
missible inference rules.

O; I t: A, u:B O, It: A ; e, I,t: A ;
Fe; ItBu:AB B FO; Iinl(t): Ada IFO; Iinr(t) :ad A .
o, I ;I ; O L4
e, INe:L e, I, _:%7« IFO; I, 7t:7A.
+©; It: A,u:B u=mgu(A; B), v =mgu(?a; Au) CZiStT

FO; 'uv,tQu: Auv .
Fe;t:It: A u=mgu(l; 7a) exists
' k5 Z: Tu, 2(0;t,t) :1Au
Fe;t:Nt:A WE;a: I, u:B p=mgu(l;I") e.'m'stsﬂ»

-5 Z: Ty, Z(O;4,¢ || Z58,u) : (A& B)p

(t) @ is a fresh type variable. (§) The premises of the form I+ --. share no
‘variables.

4.2 Difficult Part of the Proof

As we explained in Section 2, a linear PEXP represents a skeleton of a proof
structure. It is well-known that correctness of a proof structure depends mainly
on the skeleton. We introduce locally correct assertions, which correspond to
‘proof structures.’

Definition 7 (Locally Correct Assertion). An assertion b, ©; t: I', which
we call a locally correct assertion, holds if and only if it is derivable in the
inference system LCHAM'. Here LCHAM' is obtained from LCHAM by replacing
the Cut-rule and the Times-rule with the following four rules:

L FrO; I hE;AM' FO; I t:Au:Ar +H6; I t:A u:B
F; HO,E1I,Aa M7 FO,tLlu I FO;, T iQou:AQB

- Intuitively, the derivation of b; @; T : I' corresponds to a proof structure [9)
with conclusions I'. It is easy to see the following:

79

Proposition 10. 1. IfF; ©; I', uy ®ugz : C, then C must be of the form A® B
and b @; I',uy : A, uz : B. :
2. If 1 ©, uy L uy; I', then there is an A such that by ©; I, ug : A+, ug 1 A.

Proposition 11. If+; @; I and © D @', I' D I", then \; ©'; I''; provided
that ©';I" = @';1 : I'" for some linear PEXP ©';t .

Proof. By induction on the deduction of ; @; I'.
Theorem 3. For a typable PEXP @; {, - @; t: T if and only if - ©; t: I.

Proof. The only-if part. Note that for each rule i——Q—l—F—P-l:Q’-‘- of the system |,

if in the system F; we assume k; @, - - F; @, as axioms, we can infer ; P by
using the Mix-rule. Therefore, we are done. The if part. Because ©; t is typable,
there is some A such that - @; £ : A. The proof is by induction on the height
of this derivation.

If the last rule is the Times-rule, the derivation ends with

i—@,‘; f,':Ai, u,-:Ai (i=1,2)
F @1, Oy; thAl,fgtAz,ul Rug: A ® Ay ’

By Proposition 10, ; ©; £ : I' must be of the form b; ©@; 1 : I, T2 : [2, u1 Quz :
A} ® A). Moreover, by ©; Ty : In, &2 : Iz, ug : A}, uz : A3. We note that each
©;;1;,u; is linear. Hence, by Proposition 11, b; ©;; t; : I, u; : A;. By induction
hypotheses, F ©@y; &1 : I[N, u; : A} and & O2; T : Iy, up : Ay. Then, by applying
the Times-rule we can conclude F @1, @; &) : I,z : I, u; @ ua : A} ® A, ie.
b ©; £: I'. The other cases are easy and similar.

Proposition 12 (Generation Lemma, part 2).

1. Suppose some deduction ends with
I—@l;t'l:Fl,ulel F‘@z;t}i[‘g,ﬂz:Ag . - -
- . Th F 1,05 t;: Ay, ty:
I-@;t:F,u1®u2:A1®A2 en if 1 _2’ 1 1,72
Ag, u; @ usg : C, then C is of the form B; ® B and - ©;; t; : Ay, u; : B;
(t=1,2).

FO; 6N, u: A FOg; fy:lh,up: AL
) ~ FO,u; Lug; t: T o
If - ©1,05,u; L uy; t1 : Ay, E3 i Ay, there is a B such that - Oy; ¢ :
Ay, uy: B and b Oy 3 : Ag, ug : BL. ‘

2. Suppose some deduction ends with

Proof. The premise implies through Theorem 3 that F; ©1,02;8; : I, s :
Iy, u; ® ug : C. By Proposition 10, F; ©1,62;¢; : I1,t2 : I3, 43 : By,uz : By and
C = B; ® B, for some B; and B;. Because the premise (i) : F ©;;%; : I, u; : A;
implies the linearity of @;;f;,u;, Proposition 11 implies b; ©;; £; : Ay, u; : By,
and because of (i), Theorem 3 implies - ©;; £; : A;, u; : B;. The second claim
can be proved in the same way as above.

80

Proposition 13 (Principal Type Inference, part 2). The following are ad- -
missible inference rules.

”’9,'; t;:.rf,;, u,-:A,- (i"—-:].,Z)
FO1,02; 6 : M, ty: I, u1 Qug : A; ® Ay

IO & T, ui: A; (1 =1,2) p=mgu(As; AL) ezists
k61, @2, uy Loug; & : Iy, b3 : Do

The premises of the form I - - . share no variables.

Proof. To prove the admissibility of the first inference rule, let - @, O,; £ :
Ag, b2 1 Az, u; @ ug : C. The premise of the rule implies the existence of a
deduction ending with

I—@i;ti:I},ui:Ai(i=1,2) .. .

F 60,00 h: N h Douon ASA By Proposition 12, C is of the

form A} ® A3 and F A;; & : Iy, u; ¢ AL with 4 = 1,2. Thus, for some o;,

A; = Lo; and A} = A;o;. Because of the side condition, we have A; = To

and Co = (A; ® Az)o for o being defined below. If a occurs in I;, A;, then

o(a) is 0;(a), or else it is a.. Hence we are done. The admissibility of the second
inference rule can be shown in the same way.

4.3 The Algorithm for Principal Type
To compute pt(P), do the following:

1. If P is of the form O;t,t1 B t3, then: if pt(©;t,t1,t2) = [I}, A, B], then
pt(P) = [I,A R B, else failure. '

2. If P is of the form ©;1,inl(t), then: if pt(©;t,t) = [}, A], then pt(P) =
[I, A® a], else failure where « is a fresh type variable.

8. If P is of the form O;i,inr(t), then: if pt(©;i,t) = [T, A), then pt(P) =
[T, a @ A], else failure where « is a fresh type variable.

4. If P is of the form O;1,0, then: if pt(©;1) = [I'], then pt(P) = [I', 1], else
failure.

5. If P is of the form O;1,_, then: if pt(©;%) = [I'], then pt(P) = [T, ?a], else
failure. Here a is a fresh type variable.

6. If P is of the form ©;1, ¢, them: if pt(0;1,t) = [I', A, then pt(P) = [I', 7 4],
else failure.

7. If P is of the form ©;1,t, @t,, then: if pt(©;1,t,u) = [T, A, B] and both of

p = mgu(4; B) and v = mgu(?a; Ap) ezist, then pt(P) = I'uv, Apv, else

failure.

If P is of the form ;x, then pt(P) = [1].

If P is of the form ;x,z, then pt(P) = [at,a], where o is a fresh type

variable.

10. If P is of the form ;%,%(Q), then: if pt(Q) = [T, A], and if u = mgu(T; ?a)

ezists (where & is a list of fresh names), then pt(P) = [['u, !Ap]. Otherwise,
failure. :

° %

82

11, If P is of the form ;5,5(Q || @), then: if pt(Q) = [T,], pH(@) = [I3, B),
and p = mgu(Iy; I3) ezists, then pt(P) = [I1p, (A & B)u). Otherwise, fail-
ure.

12. Otherwise, let P = ©;%. For every decomposition of the form © = ©,,0,
and T = 1,8, u1 @ ug, try to compute pt(Oy;t1,u1) and pt(Oq; 2, u2). If it
fails for every decomposition, go to 13. If it succeeds for a decomposition, let
the result be [T, A] and [A, B). Then, pt(P) =[I',A,A® B].

13. For every decomposition of the form © = ©1,03,u; L uz and t = 1,12, try
to compute pt(@1;t1,u1) and pt(Oz;t2,us). If it succeeds for a decomposi-
tion, let the result be [I', A] and [A, B). If mgu(A; Bt) eists, then pt(P) =
[Cu, Ap). Otherwise, failure.

This algorithm terminates for any input, because the number of constructors
in P decreases strictly at each step. Moreover, the correctness of each step is
verified as follows: When P is typable, let m be a derivation of it. Then we can
show that pt(P) is a principal type of P, by induction on 7, by using Proposition
9 and Proposition 13. When P is not typable, it outputs “failure,” because of
Proposition 12 and Proposition 8. Thus, the proof of Theorem 2 is completed.

5 Principal Typing Theorem of the Linear A-calculus

We are interested in whether our translation preserves(and/or reflects) the prin-
cipal type. So, we first prove that the linear A-calculus of this paper admits the
principal typing theorem.

As before, we prove that the generation lemma and the admissibility of prin-
cipal type inferences. The generation lemma is easy. We consider the following
principal type inferences:

ARt A (i=1,...,n)
21:C1, ..., Zn:CrlFu: B
6 = mgu(Ay,...,An; 'Ci,..., 1Ch)
A0, ..., A8 1F promote ty,...,t, forzy,...,z, inu:!BO

)|

I'Ft:A AWu:B T
T AlFdiscardtinu: B

Tlht:Ap A xz:ALy:Aslku:B 0=mgu(Ao, Ao; A1, As)
I, A+ copytasz,yinu: Bo I

(we omit to write down the other principal typing inference rules)
(1) The premises of the form I - - - share no variables.
We can prove that all the above are admissible. So,

Theorem 4. The linear \-calculus admits the principal typing theorem.

6 Concluding Remarks

Mackie [11] introduced a version of linear A-calculus, a translation from the
calculus to a proof structure, and studied efficient implementation of call-by-
(name/value/need) evaluation of the A-calculus.

By using LCHAM and the extension, we will analyze computation of linear
A-calculi neatly. Then we will study the (sub)computation can be encapsulated
(and parallelized) in recent concurrent calculi.

References

—

. S. Abramsky. Computational interpretations of linear logic. TCS, 111:3-57, 1993.

. G. Bellin and P. Scott. On the n-calculus and linear logic. TCS, 135:11-65, 1994.

. N. Benton, G. Bierman, J. Martin E. Hyland, and V. de Paiva. A term calculus

for intuitionistic linear logic. In M. Bezem and J. F. Groote, eds., Typed Lambda

Calculi and Applications, Proceedings, vol. 664 of LNCS, pp. 75-90. 1993.

4. N. Benton and P. Wadler. Linear logic, monads and the lambda calculus. In
Proceedings of the 11th LICS, pp. 420-431, 1996.

5. G. Berry and G. Boudol. The chemical abstract machine. In Conference Record
of the 17th POPL, pp. 81-94 1990.

6. L. Cardelli and A. D. Gordon. Mobile Ambients. In M. Nivat, ed., Foundations of
Software Science and Computational Structures, vol. 1378 of LNCS, pp. 140-155,
1998. .

7. J. Chirimar, C. A. Gunter, and J. G. Riecke. Proving memory management in-
variants for a language based on linear logic. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, pp. 139-150. 1992,

8. C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Confer-
ence Record of the 23rd POPL, pp. 372-385, 1996.

9. J.-Y. Girard. Linear logic. TCS, 50:1-102, 1987.

10. M. Hasegawa. Categorical Glueing and Logical Predicates for Models of Linear
Logic. Research Institute of Mathematical Sciences, Preprint RIMS-1223, 1999.

11. I. Mackie, The Geometry of Implementation, Imperial College of Science, 1994. 4

12. L Mackie. Lilac — a functional programming language based on linear logic. JFP,
4(4):395-433, 1994. '

13. J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. T'CS, special issue on papers presented
at MFPS’95. ‘

14. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[L I L)

83

