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Matrix coefficients of the large discrete series

representations of Sp(2; R) as hypergeometric series of two variables II
by

@m| FE (ERAY - #ER%E) =Takayuki ODA (Univ. of Tokyo)
Note presented at a mini-conference, Kyoto Univ., RIMS on September 21-25, 1998

Introduction
SRR 1994 FEEOES O, BEAFAT AT 7S 909
[Sp(2;R) L& SU(2,2) LofrBER) 9545 A
LB UREOTE DR - SHETH D (90— LY 101 =—),

FIE D /) — & T, 8/ K-type DITFIERD I B, DY A PTG
TEBSD ABEES LPATAREZE SN0, SE. £EOFES
ZOLOBEMAREEICRNTE, ETORDIONT, Bt A 78D
BHoRTBELNT, '

This is a continuation of a former artilcle by the same author with the
same tilte in the RIMS Kokyuroku

” Automorphic Forms on Sp(2; R) and SU(2,2)” , May, 1995
Also it solves the main problem, not solved completed in the former note.

In a previous paper, we had a partial result on an explicit formula for
the A-radial part of the matrix coefficients with minimal K-type of a large
discrete series representation of Sp(2;R).

Our former result was not satisfactory, because we had the result only
for the extremal components of the minimal K-type. At that time I do
not yet understand the structure of the holonomic system (i.e. a system
of difference-differential equations ) for the matrix coefficients of a large
discrete series, perplexed by the apparently combinatorial complexity of
the equations. ‘

Now we can see that that system has rather simple structure, discussed
in Section 4 of this note. This enable us to have.a complete set of rather
simple integral (and power sereis) expression of the A-radial parts of the
matrix coefficients. They are written as a kind of Eulerian integral, and
a special case of Appell’s classical Fp-type hyeprgeometric function of two
variables, though the origin of the system is different from the classical one
(the classical origin is thrown up to infinity by birationa; transformation).

Because of the laziness of the author and also to lessen the burden to
him, general setting explained in the former article and other papers are
not refrained. The symbols for the Lie group and Lie algbra of Sp(2;R)
should be the same as Oda’s former paper in Toéhoku Journal, 1994, and also
they are compatible with that of lida, Publ. of RIMS, Kyoto University,
1996.



In a paper in preparation, Section 1 should contains such generalities on

the structure of Lie grous and Lie algbras, and Harish-Chandra’s parametriza-

tion etc. Section 2 should explain the gradient operators and Schmid oper-
ators etc. These are the same as other papers, mutatis mutandis.

So we shall start from §3 !

Before starting that, I would like to comment that a simliar result is
obtained for the large discrete series of SU(2,2). There appear almost the
same functions discussed here, and the proof is almost parallel. So together

with the classical result by Hua on the Bergmann kernel of the holomorphic -

discrete series, we have some explicit formulae for the A-radial parts of the
minimal K-type matrix coeflicients of all the discrete series of SU(2,2), not
only those of Sp(2; R).

We do not attach a complete reference. Related papers up to the time
of the former article may be found in its reference, or in the reference of
Iida’s paper. Some of development on the spherical functions on Sp(2; R)
or on SU(2,2) is reviewed in a joint paper with Hayata and Koseki, refered
- below. The paper of Takayama below, is not logically related to this paper
itself. But it has some important connection inﬁernally, and strongly related

to (near) future work(s).

Added refereﬁces

Hayata, T., Koseki,H. and Oda, T.: 'Matrix coefficients of the principal Pjy-
series and the middle discrete series of SU(2,2). submitted for publication
at the summer of 1998 |

Iida, M.: ’Spherical functions of the principal series representations as hy-
pergeometric functions of Cs-type’, Publ. RIMS, Kyoto University, 32
(1996), 689-727

Takayama, N.: ’Prolongation of singularities of solutions of the Euler-
Darboux equation and a global structure of the space of holonomic solutions
I, Funkcial. Ekvac., 36, (1993), 187-234
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3 The explicit formula of Schmid operator

AU, B ORI R AR OREDS 3 & -
" 8 BT RS 7
DERTHD, NEITEEL TERIII LY DRI R>TND,

3.1 Presentation of the holonomic system

We prepare some macro symbols to denote our difference-differential equa-
tions. With the help of these symbols, some symmetries of the system

become apparent.

Here are some symbols of "hyperbolic triangular functions”. The func-
tions are in the variables (ai,as) € A, i.e. on the split Catan subgroup A.
The are really hyperbolic triangular functions in the coordinates of the Lie
algebra of A.

Notation For (a;,as) € A,
sh(a:) = (a;i — a;")/2, ch(aw)=(a;i+a7')/2 (i=1,2)

th(a;) = sh(a;)/ch(a;), ct(a;) = ch(a;)/sh(a;)
D(ay,az) = sh®(a1) — sh®(ag) = ch®*(a1) — ch®(az).
AEE. BEREEELZDEFIEOLOD1/4 THD, > TUTORLEX
4 DARTFH, N TOORERLRDIERERBH D00
Now we introduce some symbols concerning the indices I = (4,7) = (41,1%2)

which belong to the product set {0,d}?, {0,d} being the set of numbers
{0,1,--+,d—1,d}. :
Notation For I, we set
1 .. B 1, .
s(1) = 5ld=i=9), a(l) = 3i~i-L), al) = 5G=i-L)u(l)=ls(D]

Here we recall that we set L = l; + lo. The last number w([) is called the
weight of the index I. Moreover for p € {1,2}. we set

8E(I) := 8, F s(I)ct(ap) — co(1)th(ap).

P

The functions epq(a) (p,q € {1,2)) are given by

éPQ (a) = (~—)P_1sh(ap)ch(aq)/D(a1 ,02).
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Proposition Here are the differential-difference equations given by Schmid
operators:
(a): chirality equations

(1.-}) . {6f(1(0,2)) + (d~j — Deii(a)}er,2) + (d— i)612(4)61(1,1)
+(7 + 1)esacr(a) + iearcr—1,1) = 0.
(1.-): {0y (D) + (i + 1ews(a)}er + jera(a)er, -1
+(d - F)earcra,1y(a) + (d _ i — 1)eaacra,0) = 0.
(2+): {85(1(2,0)) + (d =i — ez (a) }er(a0) + (d — F)ear(a)er )
+jerz(a)era,—1) + (i + 1)err(a)er = 0. |
(2.-): {05 (I) + (5 + Deaz(a)}er + ien(a)er(—1,1y
+(d —1)eiacra,1y(a) + (d—j — 1)enrcro,2) = 0.

(b) adjoint equations

(A37*) 0 {85 +2ca(I)th(as) + 2(i + 1)eaz(a) Yer + 2jenrcrr )
+{6i+ (1(2, 0))+261 (I(2, 0))th(a1)+2(d—i—-ﬁ1)611(a)}cI(g,g)+2(d—j)€12€1(1’1) = (.
30 - {81" + 2¢c; (I)th{ar) + 2(5 + 1)er1(a)}er + 2ieracr(—1,1)

+{6;_ (1(0, 2))+202(I(0, 2))th(a2)+2(d—-j~—1)€22 (a)}cj(o,g) +2(d—i)€2161(1’1) = 0.

3.2 Symmetry with respect to the indices [

Definition We define an involutive automorphism on the set {1,d}? of

indices by _
I=(i,j) »I' = (d~j,d—i).

Obviously we have

.s(I') = —s(I),cx(I') = ex(I)quad(k = 1,2).

Hence
OF(I') =85 (1) (k=1,2).

Also for g1, €9 € {0,+1,£2},

{1(81,'82)}! = I’(——Ez, -—61).
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Apply the involution ”'” to the equations of our holonomic system, say,
to (1.£). Then it is transformed to similar equations (1.¥F). Therefore we
have the following
Observation If we replace the functions {c;} by another system {¢;}

defined
& =cp =cCq—ja—i foreach I = (i,7j).

Then they satisfy the same holonomic system as for {cr}.

3.3 The order of zeros of ¢; at the origin

Lemma Let {¢;} be a system of solutions of our holonomic system in (3.1),
such that all the ¢y are regular at the origin (aj,a;) = (1,1). Then each cs
is divisible by {sh(a;)sh(az)}*!!) in the ring of germs of analytic functions
at the origin. Here w(I) = |s(I)| is the weight of I.



4 Reduction of the holonomic system

4.1 Change of functions and change of variables

Up to the previous section, we had an explicit system of differential equa-
tions in terms of the coefficients {c;}. In order to make this holonomic sys-
tem simpler to handle, we introduce new functions {h;}, which differ from
{cr} by simple multiplicators. Also we change the varibles a; by —sh?(a;).

Definition (multiplicator) We set

2
4(0) = (sh(o1)5h(02) 0 ] (e
= {Sh(al)Sh(%)}i%(d"i—j){Ch(dl)Ch(az)}~%L(ch(al)/ch(aa))%(i—j)_

Definition (new functions) We set

cr(a) = uf (a)hf (a) = pr (a)hy (a).

We consider mainly only h}’" in the later sections for the reason of symmetry
between the systems {hf:} Therefore we drop the superscript ”+” in the

symbol from now on.

Remark. (Observation on symmetry) For I' = (d — j,d — 1),
ki@ = i)
Definition (change of variables) We set
z; = —sh®(a;) (t=1,2).
Note that
s, 1

ch*(a;) =1—z; (z; — 1), and 52, h(@)

0;
: :———-———-.—1-——————3,‘ (1=1,2).
2sh(a;)ch(a;)
' Now we rewrite the equations for {c;} in terms of new functions {h;} and
new variables z;.
Remark (Symmetry) By the involution I — I' = (d ~ 7,d — i), the system
of equations for {hs} (s(I) > 0) can be regarded as a system of equations

for {h7} (s(I') < 0).
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4.2 The holonomic system for {h;}

Proposition
(2) < chirality equations >

0 d-5-1 d—i
1+): + h L 27
( ) {33:1 2(2;1 )} 1(0,2) 2(3}1 — .’172) I(1,1)
(j+ 1)zo iTy
AR s S
2(zy — z2) 1+2(:L'1—a:)hf( 1) =0
9 ('L + 1)$1 j:cl
-): )4 )T
1) {3313 tell)+ 2(zy — z2) Yhi ¥ 2(z; — xz)hl(l,—l)
d— d—i-—1
T —z) D T 3 — 2 yhieo =0
0 d—1i-— d—j ‘
2+) - — h _ ___________h
( ) {ax:z 2(1E1 — x2)} 1(2,0) 2($1 _ $2) I(1,1)
__JT _ (i‘*‘l)fﬂlh ~0
2($1 — ) 1(1’ 1) 2($1 _ mz) I
: 9 (j + )z iTs
(2 ) : {2:2 Do (I) (ml — 11)2)} I — 2(2:1 — :Ug) h‘f(-—l,l)

d—i d—j—
———h - ———h = 0.
2(zy — z2) fa.1 2(zy — z2) I©.2)

(b) < adjoint equations >

(3r) : (z2 — 1){9622“ +s(I) + c2(I):c $—2~ 1 (;jjxiz h

_]( - 1)z, Ty

Ty — g h1(1 —-1) — (d .7) hl(l 1)
30) : (z1 — ) {m 8—‘1—1 +s(I) +a (I)ml“”_l_ 1‘ + (i f_”;;l Yhs
+i$_1£(§2:‘i;1—)h1(—1,1) +(d— 2) 1 h1(1 1)
RTINS

Proof) 1t is immediately derived from the system for {c;}. We should note
that identity

ui (@)™t 8i{pf (@) f(a)} = {8: + s(D)ct(a:) + ci(I)th(a:) } f-

The other tasks are careful computation. (q.e.d)
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4.3 Inductive equations

We derive from the basic system of the previous section for {h;}, some
simpler equations in this subsection. We call them inductive equations
because they will be used to find solutions for general I from the peripheral
entries like ho, ho,1.

Lemma We have
0 0 1 J+1

(4) : ézhl(o‘é) + ‘é‘;;hz(;,l) - 2h1(—1,1) - hr=20

(i€{0,d—1},j € {-1,d~2}),
- 5 o i+1
(i) : 3—;1-’11(1,1) + 5—hr2,0) - D)

63}2
(1€{-1,d-2},j €{0,d-1}).

hr - %hl(—l,l) =0

Proof) Shift the index I in the formula (2.+) by I — I(—1,1), and substract

the obtained fromula from (1.4+). The other (ii) is just the index shift
I — I(1,-1) in (i). It is written explicitly for the reference. (q.e.d)

Proposition (indutive equations of type I) We have

. 0 0 ' .
(1) : é;;hl(o'z) = -—(.’1:25-:1—;; + s(I))hs (7 € {0,d-2})
., 7] g )
(?,'I,) : %’;h[(z’g) = -—(.’Elb';:-l- + S(I))h[ (i€ {O,d— 2})
" o J 9 i+ 1
('LZ’L) : 'a—:;l—hj(l’l) - §h1(1,_1) - (11:15:;:-1' -+ S(I) + T)h] =0
(7’ € {07d - 2}7.7 € {Oud_ 1})
: 0 i o] o i+1
(1v) &;hl(l,l) — ghi-1y - (93255 +s(I) + T)hl =0

(i €{0,d-1},7 € {0,d—-2})
Proof) Add (1.4) and (2.—) to get (i); add (1.—) and (2.+) to get (i1). To

show (iii) (resp. (iv)), substract (ii) (resp. (i)) of the pfesent Proposition
from (ii) (resp. (i)) of the previous Lemma. (g.e.d)

Reamrk Note that up to this point, we use only the chirality equations.



We have more complicated inductive equations derived from the right and
left adjoint equations.

Proposition (inductive equations of type II)

(v): (22— 1){ 663;2 poois 31;_621(1(0’ 2) Yhi(o,2) + thr-1)
—@1—1@38 +2m§L+ﬂdD+ +1+_£EEM =0.
) (- (g + A0y kg
(22 = D){2m15— 0 -+ x2§~ +3s(I)+i+1+ (I)xz}h =0.
Proof) Substract (3)) (resp. (3r)) from (2.2) x 2(e ~ 1) (resp. (1.~) X

2(zy — 1)) to get (v) (resp. (iv)).  (qed)

4.4 Linear relations for {h;}

By eleminating the derivative terms in the equations by addition and
substraction among them, we have various linear relations of h;’s.

Lemma (6-term relations) We have

. j—1. )
(@) :  s(Dz2hr + s(I)zrhpa,—1) + ] 5 2122h1(0,~2) + 5 T1%2h1(-1,-1)

d—3j d—1-1 . .
5 ]hl(l,l) — ———*5———-}1,1(2,0) =0 (‘I, € {O,d— 1},] € {1,d})

Proof) Apply the shift 7 — (0, ~2) to (1.+). Then we have

0 d+1—3 d—1 (j—l)xz
+ hi + s————hy, - # 5
{8;1;1 2(x; "zz)} I 2(z1 — o) I(1,-1) 2(z1 — T2) 1(0,2)

1Ty
4l h =0 (je{1,d}).
2(z1 — 72) I(-1,-1) = (7 € {1,d})
Multiply z; to this, and substract (1.——). Note that d—1—j = 2s(I). Then
we have our Lemma. (q.e.d)

" Remark By eliminating 8> in place of 8; of the proof of above lemma, we

have a similar 6-terms linear relation. It is identical with the above lemma

up to the shift. For the convenience of reference, we write it explicitly here:

-1
5 z1z2hr(—2,0)

('LZ) : S(I).'Eghj(__l’l) + S(I)IElh[ + %.’171(1}2}1[(*1’_1) +

_ d—-jf-lh d—1
5 1(0,2) 5

(1€ {1,d},j € {0,d—1})
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Lemma (9-terms linear relations )

(@) z122{2( — 1)(z2 — Dhy—20) = (G = 1)(z1 — 1)hp0,—2)
+{(2 =) (z1 = 1) + (i = j = L) (21 = 22) }hr(=1,-1)}
+25(1)(z1 4+ 22)(x2 — 1)hr(=1,1) +2s(I)(z1 — Dz2hr — s(I) (21 = V)z2hs,—1)
+(d =i~ 1)@ ~ Dhragy — 2(d —§ — (@2~ Dhroa)
-{(d—-2'i+j)(x1—-1)+(i—j—L)(x1-—-:Eg)}hl(l,l) =0. (i€ {1,d-1},5 €{1,d-1})

(@) :  z122{2(j — 1)(z1 — Dhyro,—2) — (¢ — )(z2 - 1)hI(—2,O)
+HG—-20) (e -1+ (i~ L)(z1 ~ T2) }hr(-1,-1)}
+25(D)z1 (T2 — Dhy—1,1) — 25(1)z1 (T2 — 1) hs — s(I) (21 — 1) (21 +22) hy(1,—1)
+2(d — 1 — 1)(z1 — Dhrz0) — (d — 5 — 1)(2 — Dhro,2)
'+{(d“'2jv+ )z2—1) = —i—L)(z1 —22)}hya,) = 0. (5,5 € {1,d—1})
Proof) ‘

Theorem (5-terms relation) For 1,5 € {1,d — li} we have
(d—i— )){2hs + (21 — Dhr—1) + (@2 — Dhrorn)}
+(i+3j— L)rizohyq,—1) + (143 + L —2d)hy;,1) = 0.
Remark We may rewrite the above relation as
s(I{2hr(z1 = Vhyg,—1y + (@2 — Dhy—1)}
+{(d - L)/2 — s(I)}z122hs(—1,—1) — {(d = L)/2 + s(I) }hr1,1) = 0. |
Proof) Compute first a combination of 6-terms relations:
2z1 — 1) x (6 — i)4(z2 — 1) x (6 — i4),

which equals to ‘
? L% [ f) 7»1 |A‘%
*ok

After that, add the 9-terms relation (i) of the previous lemma. (g.e.d)

Corollary (initial values) For i,j € {1,d — 1}, we have

(1) {2h5(0) = hrgt -2 (0) ~ by (O} = (1) + T3 D hru 0)
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4.5 The initial values h1(0,0)

We determine the values of hy(z1,z2) at the origin (0,0). We start with
the case of diagonal elements.

Lemma If s(I) =0 (i.e.j = d — i), then
| o (d\ nilj!
h1(0,0) = hi,a—i(0) = co(—1) )(J = CO("l)Cl(I)?,
where ¢ is a constant independent of .

Proof The normalization condition for the matrix coefficient ®(ai,as)

should be .
®(1,1) = 1441 ( the unit matrix of size d ),

if ® is written in term of some basis in the representation space of the
minimal K-type and its dual basis. In our formulation, we use the standard
basis in both sides of K-types. In of the relation between the standard basis

and the dual basis for them, this condition is equivalent to
d\ !
Cid—i = Co(—l)(i> ,ifi+4+7=d,
c;=0,ifi+j#d.
Note finally that
hi,d—i(o) = Ci,d—i(o) if S(I) = 0.

Remark The constant ¢y depends on the choice of the identitification of

the standard basis and dual standard basis. The is canonical way to specify
it completely. Even if one fix the length of the standard basis and the
dual standard basis, ¢ = 0 still has ambiguity up to a complex number of
modulus 1.

Next we consider the relation between hy(0) with the same s(I).

Lemma

(d— 7)hij+1(0) + (d — D hitr,;(0) = 0.

Proof Input z; = 0,75 = 0 in the 6-terms linear relation (Lemma (***)).
Then -
(d = hit1,541(0) + (@ = 7 — 1)hit2,;(0) = 0.

Replace 7 by i — 1 to get our lemma. (q.e.d)

Now we determine the value hy(0) for general I if s(J) > 0. By the
Corollary of Theorem (* * *) (5-terms relation), we have

s(N{2h1(0) = hy(=1,1)(0) = hya,—1)(0)} = (%(d — L) + s(I))hs(1,1y(0)-



On ther other hand, the previous lemma shows that
2R (0) - hri-1,1) = hi@,-1)

1 . : . . . )
= m{z(d—z)(d~1)+(d-—2)(d—i+ 1)+(d—j+1)(d~5)}hs(0)

_ (2d+1~i——j)(2d—’i-—j)
=T @oa-n MO

Hence for I = (3, 7),

(s(I) + 3(d = L))(d - i)(d — )
s()(2d+1—1—j)(2d—i — j)

h(0) = h1(1,1)(0).

Thus we have the following
Proposition If s(I) > 0,

1
d+1

Led — —Dd = 7))
— _1\(i—j+d)/2 5(d— L)+ s(I)\ (d-1)l(d—j)!
7 (0) = co(0)(-1) ( s(I) d+1-i-j
Proof When s(I) = 0, the righf hand side RHS(I), which is a function
~in I, equals to

(d— i)!(d—j‘)! 1

d+1)!  ~ d+ 7 Pia—i(0)-

CO(“‘"].)i

So this case is settled. For the case s(I) > 0, consider the ratio

s)+3d-L)+1 (d+1-4)(d+1-7)

RESUI(=1,~1)/RES) = s(I)+1 (2d+3-i-j)(2d+2-1i-j)

= hy(-1,~1)(0)/hr(0),
as shown in the Collorary ( *** ). Hence our Proposition is shown by

induction with respect to s(). (q.e.d)
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5 Modified system of F; for extremal entries

We want to show that the extremal entries hy with s(I) = :!:[—g] are

solution of certain holonomic system of rank 4 with singularities along the
divisor z;z9(z; — 1)(z2 — 1)(z1 — z2) = 0 and at inifinity, which is called
the modified system of (Appell’s) F> in [Takayama II, §2, pp. *** ), that
consists of an Euler-Darboux equation and Poisson equation. These last
two equations are deduced from a part of the inductive equations in Section
(*.%).

We treat the Euler-Darboux equation first.

5.1 FEuler-Darboux equation for extremal entries

If the index I attains the psossible highest weight, i.e. if w(I) = |s(I)| =
14, |
I=1(0,0)or I =(d,d) ifdiseven, and
I=(0,1),=(1,0),=(d,d—1), or =(d—1,d) ifdisodd
By symmetry, it suffices to consider only positive s(I).
Proposition (Euler-Darboux equations)

(a) If d is even, both hg o and h; ; satisfy the eqaution:

5 d+1 1 ,8 8

- - hi; =0 ;= 0,1).
0x10z9 2 T — I oz, 5(122)} ’ (2 )

(b) If d is odd, ho,; and h; satisfy the equations:

2
{aiaz2 - d;2x1 im ;il ;ml fzz 8‘12)}%,1 =0
and 52 d 1 P it 18
{61:161:2 22y — 29 01 9 71— 3 8m2)}h1’0 =0,
respectivly.
Proof If d is even, we have
aa;rihl'l - (‘”i;%j. + d;r oo (i =1,2),

by setting I = (0,0) in the formula (iii) among the inductive equations of
type I (Porposition (*.*)).
Personal Memo to Recall:

0 ] 0
gahm,n - %hf(l,——l) - (-’1715;; + s(I) +
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For h, ;, we have

o2 0 d+1 0 0 d+1.,0 d+1
h = h =1 —_—
0110z4 11 = (31 0z + 2 )3x2 00 =25 (71 0z, + 2 )(&cg s 2
Multiply x5 to the above formula to have
5? 8 d+1.8 . d+10
T2 Ox10x, by = (o 0z + 2 )8332 L1 g 5';1_}11 !
8 d+1,8 )
= ———hy 1 — —
T o 0zy 1T T2 (Bxl amz)hlﬁ’

which is the equation in question.
For ho we have
02 0 0 d
h
FE Ll e

Change the role of the variables z;,z, to have a symmetric formula, and

9% d+1290

+1
h
) 0.0~ (x28 18.’132 + 2 8:171

Yhoo-

substract it from the original one. Then we have asymmetric equality:

- 92 - d+1 0 o? d+1 4
. {(331 85518932 + 9 6"52) - (:E + )}h0,0 — 07

26Z1 6582 2 8:51
which is the desired equatioh.

Now we settle the case d odd. Set I = (0,-1) in (1.+) and I = (-1,0)
in (2.4). Then

0 d 1 d 1
(82:1 +§£L'1 —l’z)ho’1+_2-$1— hl'o.—o

and 0 d 1 d 1
—_—— ) 10— % hO,l = 0.

(8:1;2 21 — Ty 2z — To 7
Eliminate h; ¢ in the second formula by using the first one. Then we have
the equation for hg;. Eliminate hp; in the first formula by the second

- formula. The we have the other equation for hy g. (qg-e.d)

5.2 Poisson equations for the peripheral and extremal
entries
We deduce the other partial differential equations for the extremal h;.
We start with an equation valid for the peripheral entries, i.e. for h; with
=0 (or j = 0 by symmetry).

Lemma If I = (0,7) i.e. © =0, we have an equation

2 82
(#); : {Zf" D3; 52 +2(z 1)$2m}hl
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Z{(—-—-—+d—1+3)mz (s )+1)}——h1

d—j d—L d—j
5 T+ 3

Proof Set i =0 in the formula (v) of the indutive equation (Proposition).

-—(d-l—l) h1+(

+ l)h] = 0.

Then we have
8 d—j—1+c(I(0,2))

-1 h
(z2 )(31:2 Zy — 1 ) 1(0,2)
0 0 I
—-(211 —-1)(151 22325‘" +33(I)+ +1+——~——(——);I—il)h120.
2 i
Apply the opera.tor to the above formula. Then, since the operator on

the function hy(g 2) depends only on the variable z3, it commutes with 37—

Recalling the inductive equation

9 0
Bz, Mo = ~(@25 =+ s()hr,
we have an equation:
0
——{(:m —D(zig - 9 o+ g +3s(I)+j+1+ Cl( )a 1) hi}

) 5}
+{(z2 — 1)2%—2 +d—-j—1+ 02(1(0,2))}(225;2 +s(I))hr =
Note here

3s(DN+j+1+al)=2s(I)+5+14+{s(I)+cr()}
d—L d—L

= —_— = —4d-
= 2s(I) + 3 +1 5+ j+ 1

Then the last equation is found to be the desired equation by direct com-
putation. (q.e.d) _

The following Poisson equations are obtained from the above lemma.
Theorem _
(a) If d is even,

{Z k(e = +(d+1) (1 —;21) ail —(d+ Uxfz_;zl) 6(12

Z{(——-—+2)xk—( +1)}———+( +1)(-(-1—————£+(2i+1)}h00—-0

(b) If d is odd,

2 — —
ka 6 (d+2)$1($1 1) 0 _ d.’I}g(ZBz 1) 0
Ty — Iy 811)1 Iy — o 81132




d-L d+2-3.9 d-1 d-L d-1 |
Z}p3—+% Dzi—(——5 g+ (555D} hor =0.

and
, |
8>  m(z-1) 8 To(zy—1) O
{§xk($k—1)a$?+d pa—— 6x1_(d 2) P
d+3-2%.8 d-1 _d-L d-1
Z{ ’“‘“+4 2= (5 g H D (5 + Do = 0.

Proof When d is even (resp. odd), set j = 0 (resp. j = 1) in the formula
(#); of the above lemma, and applying Euler-Darboux equation, replace

the term 2(z; — 1)z2—£—§5;; by

(z1 — 1)z O ~(x1—1)zo O
(d+1+ ) ry — T2 31:1 (d+1 ]) ry — T2 6.’1,‘1
IL‘1($1 1) 0 2;2(1:2 1) 0
=(d+1+7) 2, P —(d+1-7) 2, 9o
10 0
——(d+1+ ) zz'a—xl——(d“*‘l—-]) —(BQEE_;
with j = 0 (resp. 7 = 1). (q.e.d)

AIENL Z OEDOFRIK L. Z D”extremal entries” DI DZIEF R  BHFR
DBABETH D Z L FER L Tib-oz, 4B/ — F®, "inductive equations”
DESBEL ISR oTz, @B fFTiTiEan 7200 TH 3B,
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6  Solutions {hs}

6.1 The solutions for the modified system of F;

We recall some basic facts on the regular solutions of the modified system
of Fy (cf.[lida,§** ).
Definition We define an operator @p, p,, called Euler-Darbouz operator,

by
8?2 B, 8 B, &

@B,,B, = - .
BP0 8140z Ty — X201 T1 — T2 0T

Here By, B are constants.

Lemma If a function h(z;,z2), analytic around the origin, satisfies an

equation
@B, B,h=0 (B; > 0,B; > 0),

it has a power series expansion of the form:

B1)m, (B2)m,&(my +ma) .. .
h(zy,z2) = Z (B1) (:n)l!mi(! - 2)11:1 x5,

my,ma2>
with some series {£(k)}ren. Here we set

. _I(B+k)
(B)e =~z

Moreover, let Fy(z) be a function in one variable 2, regular around zero,
defined by the restriction A to the diagonal:

h(z,z) = %%Fh(z) = z m‘—!———“.-é‘(k)zk.

£>0

Then the Eulerian integral formula for the beta function implies an integral
1 .
h(w17$2) = / Fh(t.’L‘l -+ (1 — t)zZ)tBl‘—l'(l _ t)Bg«ldt
0

if the integral of the right hand side converges.

The modified F, system consists of the above (), B, and a Poisson op-
erator P = P4 p, B,.c;»- The role of the Poisson operator is the following

"intertwining property” for the series of the above type.

Lemma Assume that h satisfies the condition in the previous lemma
:QB, B,h = 0, and let Fi(z) be the associated power series of one vari-
able defined there. Let

IBl(IEl - 1) a
T1 — Ty Oy

7 a_),
P = Z:L‘i(m‘i *1)5;:—?-4-{(14-1—31 ‘—-B2+1):L'1 + By —-C-HZBz
i=1 ?



To(zo — 1), 0
Ty — Iy 6322

Then hy = Ph also satisfies @ p,,p,h1 = 0 and for the operator

& d
L=2(z=1)75 —{C~(A+Bi+ B2 + 1)z} - = A,

- A

+{(A_BI+BZ+1)$2+B1—C+231

 we have an interesting intertwining property:
Fpu(z) = L - Fi(2).

Reamrk This is an analogy of Lemma(8.6) of [Iida, §8, p.***]. He formulated
this for the integral expression of h. But this expression requires extra-work
to verify its convergence in the definite interval [0, 1], strictly speaking. So
we prefer to formulate in terms of (formal) power sereis.

Proof Since @p, B,h =0, we have an equality

Ph = {P + 2(531 - 1)332QB1,32 - ($1 - m2)QBl,Bz}h‘

Set
2 2 82
Poh = ZszJa e +(A+BI+BQ+1)Zx, A,
i=1 j=1 =1
and ) ‘
52 o2 a a
b = —;51—3?~(9:1 +$2)m“0(3—m‘+gg)

-(Zx, -+0)- (_“Lai

Then by direct computation, we have an equality between operators:
P +2(z1 — 1)22QB,,B, — (21 — 72)@B,,B, = Fo + P1.

The power sereis Pyh is given by

Z (Bu)m, (B2)m, {(m1+m2)?+(A+Bi+Bs) (my+ma) = A}(my +my)z T 22

my 'mzl

and P h by

B mi B' m e
..Z( 17)711|7(n;!) 2 (my+mae+B1+Bz)(my+ma+C)E(my+me+1)z M 232

Hence h; = Ph is equal to

n(my +ma)z 5

Z (Bl)nn (Bz)mz

ml!mg!

7
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with
k) = {k?+(A+B,+By)k—A}¢(k)—(k+B1+B)(k+C)€é(k+1)  for each natural number k.

Now it is obvious that @, ,h1 = 0 from the last power series expression

of hy, and for Fj, we have

F(Bl)I‘(Bz) (B1 + Ba2)k + Bz)k k
F(Bl -+ Bz) kz>0 ( )z

by definition. In turn it is equal to the sum of

I'(By)l'(B2)

S BBk o (44 B BR- R = (= L+ A+ B+ Ba) ) H By By P ()

and
-3 (B_l%ﬁﬂf(k + By + By)(k + O)é(k + 1)z*

k>0
- Z (B Bf),"“ (k+1+C— 1)k + 1)5;(;"“)
= -——{Z (n+C —1)é(n)2"}
n=0
_ D(B)I'(B2)
= "'EE(ZEZ +C -G, B, )

Therefore, cancelling the same factor I'(B;)['(B2)/[(B1 + Bs), we have

2

Fi( _{(z—d— +(A+Bl+B2)(z———)\-——(z——+C’—1)}Fh

1

as desired. (g.e.d)
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6.2 The solutions for the extremal entries

Now we can desribe the solutions for extremal entries Hpg (when d is
even) and ko1, h1,0 (When d is odd). We saw in the previous section (§§(*.*))
that

Q(d+1)/2,(d+1)/2h0,0 = 0 and Q(a41)/2,(a+1)72h1,1 = O for even d,
and
Qay/2,(d+2)/2h0,1 = 0 and Q(442)/2,a/2h1,0 = 0 for odd d,

respectively. Thus we have the following
Lemrha
(i) If d is even, hg,o and h;; are constant mutiple of formal power series

ho and h{; of the form:

B m 'B m m m .
Him 3 DB me e (= 0,)
m120,m220 ' )

with By = B, = 4EL, for some series {¢& (k) | k € N} (s = 0,1).
(i) If d is odd, ho,l and h; ¢ have power series expressions:

(B )m (B2)m mi_ma .
h’lpl —1 = Z lm]‘l!mz!} 262,1‘-‘1(m1 + m2)ml :E2 ('L = 0, 1)

my,m22>0

with B; = $+1, By = £41—1, for some series {£,1-:(k) | k € N} (i = 0,1).

Since hg ¢ satsfies the Poisson equation
P h(),o =0

with parameters

d—-L 3
A= —2—+1 B, = By = (d+1)/2, C~——d+2 A=—(= +1)(§~—£+‘2j+1)

the associated function Fy,, ,(z) should be a constant multiple of the hyper-

. geometric series

dd-L d 3
21(—,——2—— 2-%-1 =d +2; z).
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6.3 The power series solutions for general h;

We determine the (unique) power series expansion of the solutions of the
holonomic system for {hy|s(I) > 0}, which is regular at the origin.

Theorem The holonomic system for {h;|d = ¢ + j(mod 2)} given by
Proposition (*.*.*¥) has a unique system of solutions regular at the origin
(z1,z2) = (0,0), up to constant multiple. Moreover these power series

expansions are given as follows:
(i) If d is even, and 1 + j < d, for I = (4, )

d+1 d+1

hi(z1,22) = co(~1)FTHI/2 H" (ml!m2!)—l(_—Z—-)m1‘[j/2](*2"")m2——[i/2]
ml,mgzo
1i/2) i/2)
% ]y + s(I) + &) T] (ma + s(2) + O)oo(ma +ma ~ (i + 5)/2)27 257,
’ £=1 £=1
Here

(H2)e (2 + 55
(d+ 3)r(d+ 1)k
(i) If d is odd and s(I) > 0,

€oo(k) = for k € {~d/2,0}.

S L d,

hi(z1,72) = ¢ (-T2 X" (myIm,Y) 1('2')m1+1—[(.7'+1)/2](§)m2+1—~[(i+1)/2]'
mi,mo>0

[i/2] [3/2]

A T (ma + (D) + &) ] (ma + (1) + Eéor (m1 +mz — (i + 5 ~ 1)/2)27™ 257,
=1 =1 .

Here d+1 d+1 d—L
(0 (5 + S5

(d+ De(d+ 1)k

£o1(k) = for k € {~d/2, }.

Finally, c;,,c'1 are constants independent of 1, j.

Proof We have to prepare two lemmas to show our Theorem. Let {h}}
denotes the system of the power series defined by the right hand sides of our
Theorem. Then, the first one claims that the initial values hr(0) coincide
with the constants terms A} (0) of the power series solutions h¥. The second
one claims that the system {hf } is a special solution of our holonomic
system (Proposition).

These are the substantial works in the proof. We omit exact formulation

of these lemmata in this review.
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6.4 Integral expression of solutions

- In this subsection, we give an integral expression of Euler type for the
system of solutions for {hs}. It is deduced from the power series expression
given in the previous subsection. The first step in this procedure is to
represent hy’s by simpler power series.

Lemma Assume that s(I) > 0. Let ¢, (resp. ¢;) be the constant defined
in the previous Theorem for even (resp. odd) d. We set for I = (i1,12)

Hi(zynm)= Y ——

mllmg! X
ml,mzzo
d+1 d+1 e o
$((—)mi- fi2/21 (=5 Jma—(2/2 foo(m1+m2—~('b+3))$ zq*( if d is even)
X d e
(§)m1+1—[(i2+1)/2](2)m2+1 [(11+1)/z]€o1(m1+mz——(2+3 1))z 22 (if d is odd ).
» Then

' % 9 s i i
hr = ¢, x (@122) "D (G A ()2 (120) DM a2 .
6.’[.‘ 6232

Proof 1t suffices to check the corresponding statement termwise:

| I B I g g s
(IEleQ) (I)(é—j;—)[ 1/2]( ) 2/2] {(.’E T ) (I) [ /2] [2/2] z] 2}

Ozo
[i1/2] [i2/2]
=[] my+s@) + 0 [] (m2+s(I) + Oz 27"
=1 =1

(q.e.d)
The next step is to find an integral expression for H;. Note that now it

satifies Euler-Darboux equations with
By =(d+1)/2 —[i2/2],B2 = (d+ 1)/2 — [i1/2] if d is even.
By = (d+2)/2 + [—i2/2], By = (d +2)/2 4+ [—i, /2] if d is odd.
Theorem We have the follwing integral expression for {Hj}:

(a) The case of even d: (i) If both 1; and i, are even,

I(d+1— afiz)
r(d“"il_),p,(fftzt?%). 4

Hi(zy,22) = HI(O)

R / 2F1(s D)+1, ~(d L)+ (D+1;

Here the constant H(0)is given by

INCEN "H , .
d(+1+z T 2 = co(—1)Cmit/2
D(E5=)T(5572)

T3 L o(1); tmy +(1—)29)t 2 -1 (1) B -1y

F(d+1~m) 21+ig
D(EL)T(E) &oo(— 5 )

H(0)




(i—j+d)/2 I'(d+1) (4%—_3 + S(I))(i1+i2)/2
D(42)2 (s(1) + 1) (i, 4i0)2(5(d = L) + 5(1) + 1) (3, 4i2) /2

(i) If both 7; and i; are odd,

= co(~1)

I(d+1- 532 41)

Hy(z1,32) = Hi (0 . - '
I(xl T ) 1( )I-.(d_;.QZﬂ)F(d—{—::ZEEO,)-)\)

A / Gltoy + (1 = )za)t 5211 — 1) 5 1y,
0

where

G(2) = (z%+d+1—“ T2y R(s(D+, %(d—L)+s(I)+1; El—_—;_—?’—+s(l);z).

Moreover the constant Hy (O) is given by

F(d+ 1-—- m) 21 +i2

I(d + 2 — a2 ool
T(ELr(&L) ™ 2

(FL0)r(E-2)G(0)

H1(0) co(—1) (/2

['(d+1) (42 + 5(1)) iy 4422
F(%l)z (S(I) + 1)(51—!-%'2)/2(%(‘1 - L) + S(I) + 1)(i1+i2)/2

(b) The case of odd d:

— c;)(wl)(_i*j‘i-d)/z

I(d+1- adiz 41
Hy(z1,55) = Hy(0) 2"+ 5)

. . - X
T - [$Dr(¢E - [2) '
/1 d+2
I)+1 (d L)+S(I)+1 T+S(I) t$1+(1—t)$2)
0

2Fy (s( ' 5

d+1—i d42—i
t 11— )T e (i 4y even, 43 odd)

5 11 -1) ) (if 4, odd, iy even)
The constant Hy(0) is given by

21 +'I,2

P+3-352) o0 esrapel@+i-552)
A0 p “yrd g Y TONCE

"END

)

1
2

5)
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