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1 Introduction

The Web [4] has grown exponentially for recent years and we have a huge amount of identical (or
almost identical) documents on the Web at present. When users wish to detect or filter those
(almost) identical documents by the currently used indexing software [7], e.g., AltaVista, this
might cause them several undesirable problems — (1) indexing of those replicated documents
wastes expensive resources such as time and bandwidth; (2) most of users are not interested in
getting (almost) identical documents to their queries, etc.

To evaluate the performance of the indexing software, we need to formally define the notion
of “almost identical” between documents, however, any of the standard distances defined over
strings (e.g., Hamming distance [6] or Levenstien distance [1]) does not capture well our intuition
for this notion. In addition, these distances require the pairwise comparison of whole documents.
Thus in practice, this is infeasible for a large collection of documents and some sort of sampling
for each document is necessary. Now our problem can be reduced to a set intersection problem
by shingling process [5, 2]. In the shingling process, we associate a set Sp with each document
D. In general, we can regard Sp as a set of natural numbers, i.e., there exists a natural number
n (n =~ 2% in practical use) such that Sp C [n] for each document D, where [n1] = {1,2,...,n}.
Then we can define a good measure (called resemblance [2]) to capture the notion of “almost
identical” between documents. The resemblance r(A, B) of two documents A and B is defined as
r(A, B) = ||SanSk||/||SaUSs||, where ||A]| is the cardinality of a finite set A. By experiments,
the resemblance is known to capture well the notion of “almost identical.” To compute (A4, B),
it suffices to consider the sets S4, Sp C [n] associated with A, B, respectively, and to evaluate
Pr(min{n(S4)} = min{#(Sp)}) when 7 is chosen uniformly at random from S,,, where S, is
the set of all permutations on [n]. Indeed, it is easy to show that

IS4 N Sal

 Pr(min{n(S4)} = min{n(Sp)}) = ﬂm

=r(A, B). (1)

Thus the resemblance of two documents can be easily estimated by keeping a sketch [2, 3]
of each document D. The sketch Sp of D can be efficiently computed and is given by the fixed
size list Sp = (min{n;(Sp)}, min{me(Sp)},...,min{my(Sp)}) for £ (say £ ~ 100) independently
chosen random permutations m, s, ..., T € Sp. To estimate r(A, B), we only count how many
elements in S4 and Sp are common. In practice, however, it is unrealistic to choose 7 uniformly
at random from S, because S, contains a huge number of permutations. Thus in the practical
and theoretical point of view, the goal of the paper is to construct a polynomial time samplable
(smaller) family of permutations that has the property of equation (1).
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Definition 1.1 (min-wise independency [3]): We say that C C S, is a family of min-wise inde-
pendent permutations if for any (nonempty) X C [n] and any z € X, Pr(min{n(X)} = 7(z)) =
|IX||~* when = is chosen uniformly at random from C.

Broder, Charikar, Frieze, and Mitzenmacher [3] showed that C-C S, has the property of equatlon
(1) if and only if it is min-wise independent.

Theorem 1.2 (lower bound [3]): For any integer n > 0, let C C S, be a family of min-wise
independent permutations. Then ||C|| > lem(n,n —1,...,2,1) and hence ||C|| > e"~°®),

Theorem 1.3 (upper bound [3]): For any integer n > 0, there exists a polynomial time sam-
plable family of min-wise independent permutations C C S, such that ||C|| < 4.

Theorem 1.4 (size-optimal family [8]): For any integer n > 0, there exists a family of min-wise
independent permutations F,, such that || Fy|| = lem(n,n —1,...,2,1).

In this paper, we shall construct a polynomial time samplable family of permutations F,, C
Sn and then show that F, is min-wise independent and ||F,|| = lem(n,n — 1,...,2,1).
2 Min-Wise Independent Permutations

Let (a1, a,...,a;) be a string. For each k € [n], let H, = {H C [n] : ||H|| = k} and Pp; =
{(x1,22,...,2) € [n]F : 3 # x5 (i # j)}. For each H € Hyy, let PE, = {(z1,29,...,71) €

Py z; € H}. For any m = (x1,Z2,...,Zk) € Pay and any y € [n] — {1, z9,. .. , Tk}, We use
n#y to denote the concatenation of 7 and y, i.e., 7#y = (x1,22,..., %k, y) € Pprs1. For each
k € [n], let apy =lem(n,n—1,...,n—k+1) and B} = o /0 k-1, Where oy g = 1. From
the definition, it is obvious that 3, is an integer, because
O o lcm(ank Ln—k+1) (n—k+1)
ﬁn,k = (2)
Op k-1 U k-1 ng(a’n k—1,T — k + 1)

For any H € H,, k> let 7 = (z1,%9,...,%k) € fnk and 7’ = (:1:1,332, ., Z}) € F2,. Define < on
FH to be m < 7' if there exists an ¢ € [k] such that z; < «, and T; = for each i < J<k
or z; = x; for each j € [k]. It is obvious that < is the total order. As for the intuition of our
construction for the min-wise independent permutations, see [8].
Input: An Integer n > 0.
Output: A Family of Permutations Fy,(= Fy ).
Initial:  Fro = Foo = {({ )}, where ) denotes the null string.
Stage k: For k=0,1,...,n—1, iterate the following:

Classifying Procedure For each H € Hpy, let Fnk = {{z1,22,...,%k) € Fny :z: € H} and

enumerate every g € Fr according to the order =, where fi(H) = ||F|l. For each
i € [mg], where my, = (k) arrange w,fi,w,fé, ,ﬂk,fk(m) in the the array Cj as follows:*
The Array Cj,
H, Hy |---ccen-- | H,,
H: H. Hm
7rk ]1. 7rk f ......... ﬂ-k,l k
H H ] e e e & e o 2 e e Hm
M (i) | M) | 70 “k,fk(Hmk)
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Replicating Procedure: For each H € H,, generate [, k+1 coples of 1r,“ € .7-" for each
i € [fx(H)], and enumerate those By 41 copies of each 1rk ; € Fll, as follows:

~ ~ ~ H
Wr,l “k,ﬂn,m ”k,ﬂnﬁmu oo T 2ﬂ|n et Wk,(fkm)—l)ﬁn,kﬂﬂ <o Tk fo(H)Bn k1
H H H H H
L7l’k’1 « e ﬂ‘k,l N 7‘_,‘:’2 PECEY 7Tk 2 B ﬂ-k,fk(H) « . ﬂ—k’fk(H)
Bnx+1 COpieES Bn k41 COPiES B +1 CODIES

. ~H; ~H; ~ H; )
For each i € [my], arrange 71, k5, - - o T g H‘) Bt in the array R; as follows:

The Array R;

H, Hy, |-~ H,,
~ Hy ~ Hy =~ Hmy,
The,1 ﬂ-k O IO T,
#H FH2 L | A
Tk, fie (H1)Br ket kS (H2)Bn k41 kyfi(Hm; )Br k+1

Appending Procedure: For each H € Hp i, let H® = [n] ~H = {y1,¥2, .- - Yn—r} and assume
that y; < Yo < ++- < Yp—p. Let Q’n o1 = {TH it X v = = g # Ures(i=1n—k)+1 for each i €
[fi(H)Bnk+1]}, where res(a,d) is the function that returns the residue when b divides a.
For each ¢ € [my), arrange wf+171,7rf+1,2, 7(’,?1_1’ Fe(H) B 11 the array Axy1 as follows:

The Array Ag4q

H, Hy, |- - ece--- H,,
H, Hy | ......... Homy,

Tr+1,1 7T1c+1 1 M1,

Hmy,
Tkt L fi (Homy g1

---------

i w2
k41, fr(H1)Bn k43 k+1,fi.(H2)Bn k+1

Finally, define Fy, ;41 = UHe%,, kgn k41> 1€, @ collection of all entries in the array Agy1.

For each 7 € F,,, we regard 7 = (T1,T3,...,Ts) 88 a permutation on [n] in the natural manner,
i.e., w defines a permutation on [n] in such a way that n(z;) = ¢ for each i € [n)]. '

For our construction of F, C S, the following lemma and proposition are essential to
guarantee the min-wise independency of F, and || Fy|| = lem(n,n - 1,...,2,1).

Lemma 2.1 [8]: For each 0 < k < n — 1, the following holds:
(2) ang is divisible by (});  (b) QnpBajt1 = Gnpsr is divisible by (n — k) (%)
Prdposition 2.2 [8): Foreach0<k<n-1 and each H € Hyy, the following holds:
@) IFL = ane/(); () 165usll = ompar/(()-
By the use of Lemma 2.1 and Proposition 2.2, we can show the follbwing:

Theorem 2.3 [8]: For any integer n > 0, the family of permut;at;lons F, is min-wise indepen-
dent and || F,|| = o p =lem(n,n —1,...,2,1).
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3 Polynomial Time Samplability

3.1 Overview of Our Polynomial Time Sampling Algorithm

We first describe the intuition behind our po gnomlal time sampling algorithm Samp.
For each H € M, and each z € [n], let Ek = {(21,%2,..., %k, Tr41) € G2 bl Thel =T}
The following lemma plays an essential role to design the sampllng algorithm Samp.

Lemma 3.1 [8, Eq.(11)] i ,Sf’lx)” = an,k+1/{(k+1)(kil)} foreach H € M, and each z € [n].

Remark 3.2: For each H = {z;,23,..., %541} € Hnr+1 and each x € H, we define ﬁ+1(m)
{61, &2r- -1 &) € Filigr : &k = ), e, T (2) is the set of 7 € FH r+1 that has z € H at

the (k + 1)-th (rightmost) position. Note that S(H tehe) = TH,(z). So it follows from Lemma
3.1 that F; .| can be partitioned into k + 1 sets 7; 11(x;) of equal size.

- Foreach0 <k <n-1, let Li(m) be the location of m € FZ, with respect to the total order

=< on FZ, where 0 < Ly(m) < ay k/( ) —1 and Lo(m) = Lo({ )) = 0. In Step 0, the algorithm
Samp randomly chooses z € [n] and sets m; = (x) and H; = {z}. Assume that in Step k, the
algorithm Samp keeps m = (21, 2,...,24) € FH, Hy = {21,%2,..., 24} € Hpp, and Ly (m).
Let Ty k41 = (n —k)/Bnk+1. Then from equation (2), we have that

n—k = (n- )gcd(ank,n k)
Brje+1 n—k

Loj1 = = ged(an i, n — k).

Let Hf = [n]—Hy = {y1,¥2,- - -, Un—s} and y; < o < -+ < Yu_. Partition HE £ into Ty 41 blocks
of size fprt1, 1€, HE; = {Yi, 141 YicBo pyat2r - ) Y(i+1)-Bapqs ; fOT €2CH 0 < 4 < Ty — 1.
Recall our constructlon of the famlly Fu. In Stage k, we generate (3, ;41 copies of each entry
in the column index by Hj € Hy, in the Replicating Procedure and cyclically append y; € H;
in the Appending Procedure. Then we can append any y € H¢ es(Li(me),Tnpaa) 10 Tk € Frk. We
call HE (oo(r, (m) T rpn) 20 allowable block for 7 € Fi at the Appending Procedure in Stage k.
Thus the sampling algorithm Samp randomly chooses Y € HE ro(L,(m) Do pys) @04 S€tS Hppy =
Hy U {241} € Hnpyr and Tpqq = mpftapys € F, ,H_l, where T3, = ¥.

As a next task, Samp needs to evaluate Lk+1(7rk+1) (see Figure 1). Let Agy1(zk41) be the lo-
cation of zy41 in the set Hyyy = {1,29, ..., Zk41}, where 0 < Agyi(x541) < k, when :17, € Hjyq
are arranged in the increasing order, and let dx41(mg41) be the location of myyq € 7;,_,_1 "(Tht1)
with respect to the total order < on 7 +1+ (Tk41), where 0 < g (mit1) < anper/{(k +
1) (k +1)} 1. We note that 7441 € F, ,’;i‘l and each entry in F, ,’:fl is arranged according to the
total order < at the Classifying Procedure in Stage k + 1. Then it follows from Remark 3.2 that

a‘n,k+1

k+D(n)

Note that every 7 € 7; 137 (Tp+1) has 24 as the rightmost element. Thus 7 € ’I; Y(2pgr) I
there exists 7’ € .’F to which zx,, is appended at the Appending Procedure in Stage k. Since 7y,
is located at the L (7rk) th position in .’ka, it suffices for the evaluation of dg41(mg41) to count

Liy1(Te41) = Apy1(Trt1) + Okt1(Trtr).
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the number of 7 € .T’ such that res(Lg(7), Ty p41) = res(Lk(wk) ni+1) and Lg(m) < Li(m).
S0 Op41(Tk4+1) = | Lk (7rk) /T x+1] and we finally have that '

o
Liyi(me41) = nuktl ) - Ap1(Tpgr) + l

(k+1) (43,

It is obvious that by the use of Ly41(7k+1), the algorithm Samp can specify the allowable block
Hg,,; for mep € F, ,’;3:‘1 at the Appending Procedure in Stage k + 1.

L)

I.‘n.,lc+1

)

Qnkg1
(k+1)(k115

» Ak+1(xk+1) blocks

Qp k41 y
(k+1)(kii)

4 R T

Oy kg1 5k+1 (7Tk+1)
+1) () 1 l

H,
= Tis1" (@e41)

~

Tk+1

S

Figure 1: Evaluation of Ljy1(mk41)

3.2 Description of the Algorithm

The following is the formal description of the sampling algorithm Samp for the optimal family
of min-wise independent permutations.

Input: An integer n > 0.
Output: = € F,.

Initial: Let o = < ) (b, and Lo(ﬂ'g) = Lo(( >)
Step k: For k=0,1,...,n— 1, iterate the followmg

(1) Let Hf = [n] — Hi = {y1,¥2, - - -, Yn—k}, Where 3 < Y2 < -+ < yn—, and partition Hg
into Tp 41 = (7 — k)/Brk+1 blocks of size fn k41, i.e., for each 0 < ¢ < Ty — 1, let
Hlﬁ,z’ = {yi-ﬂn,k+1+17 YiB 142« s Y+ 1)-Bpkta }

(2) Compute res(Lg(mg), Tne+1) and choose y € Hg g1, (m) 1

y uniformly at random.
2 n,k41

H,
(3) Let z341 = y and set Hyy1 = Hy U {Zp41} € Hp g1 and Trpy = MpffTen € Fp ety

(4) Let 0 < Ak+1(xk+1) < k be the location of zxy; in Hgyy = {21, %2, ..., Tk+1} When we
arrange z; € Hy,, in the increasing order, and evaluate

Liy1(Tp41) = nhtl ) - Dpyr(Tg1) + [

Ly (’ﬂ'k-)J ‘
(k+1) (5

I-‘n,lc+1
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3.3 Analysis of the Algorithm

In this subsection, we analyze the time complexity of the sampling algorithm Samp and show
that the algorithm Samp runs in polynomial time in n (not in the length of n).

To analyze the time complexity of the sampling algorithm Samp, we need to estimate the
time complexity of integer multiplication and integer division. For integers m > £ > 0, we use
MULT(m, £) to denote the number of bit operations required to multiply an m bit integer by an
£ bit integer, and QUOT(m, £) and RES(m, £) to denote the number of bit operations required
to compute the quotient and residue, respectively, when dividing an m bit integer by an ¢ bit
integer. We also use EUC(m, £) to denote the number of bit operations required to compute
the greatest common divisor (gcd) of m bit integer and an £ bit integer.

Lemma 3.3: For any integer m > £ > 0, MULT(m, £) = O(mlgmlglgm).

Lemma 3.4: For any integer m > £ > 0, QUOT(m,¢) = O(mf) and RES(m,£) = O(mf). If
0 <m < 2, then QUOT(m, £) = O(¢lgLlglgt) and RES(m, £) = O(£lgLliglg¥).

Lemma 3.5: For any mteger m > £ >0, EUC(m,{) = O(ml + L1g’Llglgl). If0 < m < 20,
then EUC(m, £) = O(£L1g*L1glg?). -

To specify the allowable block H,, ; for m; € f'n,’; and the location Lyt (mg+1) of gy in
F, ;fl in Step k, the algorithm Samp evaluates: (1) Tnz41; (2) res(Le(mh), Trgr1); (3) anpyi;
(4) Anjerr = o /{(k+1)(,7,)}; and (5) S1(mps1) = | Li(mk) /Tt By definitions, we
can immediately derive the following proposition:

Proposition 3.6: For each 0 < k < n — 1, the following holds: (1) Ty 41 = ged(anz, n — k);
(2) ankrr = {ank - (0 = k)}/Tnpsr; and (3) Angs1 = (Ank - k) /T s

Since an,1 = n, Ap,1 =1, and Ly(71) = 0 in Step 0, assume that in Step k, the algorithm Samp
already has ank, Ank, and Ly (my) and recursively evaluates a1, Angt1, and Ly (Thge1)-

In general, an g, Apg, and L(m) are n bit integers, and n — k, Tpni+1, and k are Ign bit
integers in Step k. Then the following holds for the time complexity of Samp in Step k.

(1) Time complexity of evaluating res(L(7x), [nt+1): RES(n,lgn) = O(nlgn) bit operations
are required (from Lemma 3.4).

(2) Time complexity of evaluating 'y 441:. EUC(n,lgn) = O(nlgn) bit operations are re-
quired (from Proposition 3.6-(1) and Lemma 3.5).

(3) Time complexity of evaluating ans41: QUOT(Ign,lgn) = O(lgnlglgnlgiglgn) and
MULT(n,1gn) = O(nlgnlglgn) bit operations are required (from Proposition 3.6-(2)
and Lemmas 3.4 and 3.3), i.e., O(nlgnlglgn) bit operations are required.

(4) Time complexity of evaluating Ay, p+1 = o p41/{(k+1) (k +1)} MULT(n,lgn) = O(nlgn
lglgn) and QUOT(n,lgn) = O(nlgn) bit operations are required (from Proposition 3. 6-
(3) and Lemmas 3.4 and 3.3), i.e.,, O(nlgnlglgn) bit operations are required.

(5) Time complexity of evaluating dg.41(ms41) = [ Li(m1)/Tnps1): QUOT(n,lgn) = O(nlgn)
bit operations are required (from Lemma 3.4).

Thus in Step k of the algorithm Samp, O(nlgnlglgn) bit operations are required. Since the
algorithm Samp iterates this process n times, we finally have the following theorem:

Theorem 3.7: For any n > 0, the algorithm Samp requires O(n%lgnlglgn) bit operations to
uniformly sample m from the (smallest) family of min-wise independent permutations F,,.
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4 Concluding Remarks

- In this paper, we have constructed an optimal family of min-wise independent permutations
F, in the sense of family size, and have shown that it is polynomial time samplable.

Let k € [n] be a fixed integer (k ~ 1000 in general). In the practical point of view, Broder,
et.al. [3] defined the notion of “k-restricted min-wise independent.”

Definition 4.1 (restricted min-wise independency [3]): We say that C C S, is a family of k-
restricted min-wise independent permutation if for any X C [n] such that 1 < || X|| < k < n and
any € X, Pr(min{m(X)} = n(z)) = || X||~* when 7 is chosen uniformly at random from C.

In a way similar to Theorem 1.2, Broder, et.al. [3] derived the lower bound below for any family
of k-restricted min-wise independent permutations. '

Theorem 4.2 [3]: For any integer n > 0, let C C S, be a family of k-restricted min-wise
independent permutations. Then ||C|| > lem(k,k —1,...,2,1) and hence ||C|| > e¥=°®),

At present, we do not know whether for any integers n > 0 and 0 < k < n, there exists a family
of k-restricted min-wise (but not min-wise) independent permutations, but our construction of
the family of min-wise independent permutations could be applied to this.
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