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Abstract

A graph is one of the most common ab-
stract structures and is suitable for repre-
senting relations between various objects.
The analyzing system directly manipulat-
ing graphs is useful for knowledge discov-
ery. Formal Graph System (FGS) is a
kind of logic programming system which
directly deals with graphs just like first or-
der terms. We have designed and imple-
mented a knowledge discovery system KD-
FGS, which receives the graph data and
produces a hypothesis by using FGS as a
knowledge representation language. The
system consists of an FGS interpreter and
a refutably inductive inference algorithm
for FGSs.

In this paper, we show that sufficiently
large hypothesis spaces of FGS programs
are refutably inferable and thus give a the-
oretical foundation of KD-FGS. We report
some experiments of running KD-FGS and
confirm that the systems useful for knowl-
edge discovery from graph data. We also
consider refutable inference of NLC graph
grammars.

1. Introduction

Machine learning and data mining tech-
nology have been used for knowledge dis-
covery and prediction in many fields [4].
The aim of knowledge discovery is to find
a small and understandable hypothesis

which explains data nicely. A graph is one
of the most common abstract structures
and is suitable for representing relations
between various objects [10]. We believe
that the analyzing system directly dealing
with graphs is useful for knowledge discov-
ery.

Formal Graph System (FGS, [8]) is a
kind' of logic programming system which
directly deals with graphs just like first
order terms. So FGS is suitable to rep-
resent logical knowledge explaining given
graph data. We have designed and imple-
mented a knowledge discovery system KD-
FGS (see Figure 1), which receives graph
data and produces a hypothesis by using
FGS as a knowledge representation lan-
guage. As inputs, the system receives pos-
itive and negative examples of graph data.
As an output, the system produces an FGS
program which is consistent with the pos-
itive and negative examples if such a hy-
pothesis exists. Otherwise, the system re-
futes the hypothesis space. KD-FGS con-
sists of an FGS interpreter and a refutably
inductive inference algorithm of FGS pro-
grams. The FGS interpreter is used to
check whether a hypothesis is consistent
with the given graph data or not.

A refutably inductive inference algo-
rithm, proposed by Mukouchi and Arikawa
[5], is a special type of inductive inference
algorithm with refutability of hypothesis
spaces. Suppose that a hypothesis space
is refutably inferable and data are succes-
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as a Hypothesis
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Figure 1: KD-FGS: a knowledge discovery system from graph data using FGS

sively given to the algorithm for the hy-
pothesis space. If there exists a hypoth-
esis describing the data in the hypothesis
space, then the algorithm will infer the hy-
pothesis, that is, it will eventually iden-
tify the hypothems If not, then the al-
gorithm will refute the hypothesm space,
that is, it will tell us that no hypothesis
in the hypothesm space explains the data
and stop. When the hypothesis space is
refuted, KD-FGS chooses another hypoth-
esis space and tries to make a discovery
in the new hypothesis space. By refuting
the hypothesis space, the algorithm gives
important suggestions to achieve the goal
of knowledge discovery. Thus, KD-FGS is
useful for knowledge discovery from graph
data. KD-FGS is based on FGS, which is
a kind of graph generating systems. We
show that the method of KD-FGS is also
applicable to the discovery system based
on NLC graph grammar, which is a famous
graph generating system.

This paper is organized as follows.
In Section 2, we introduce FGS as a
new knowledge representation language for
graph data. In Section 3, we give our
framework of refutably inductive inference
of FGS programs. For constant n > 0, we
show that the hypothesis spaces of Weakly
reducing or size-bounded FGS programs
with at most n_graph rewriting rules are
refutably inferable. Thus we give a theo-
retical foundation of KD-FGS. In Section

4, we report implementation of KD-FGS
and some experimental results. In Section
5, we also consider refutable inference of
NLC graph grammars.

2. FGS as a New Knowledge
Representation Language

Formal Graph System (FGS, [8]) is a kind
of logic programming system which di-
rectly deals with graphs just like first order
terms.

Let ¥ and A be finite alphabets, and let
X be an alphabet, whose element is called
a variable label. Assume that (YUA)NX =
0. A term graph g = (V,E,H) consists
of a vertex set V, an edge set F and a
multi-set H whose element is a list of dis-
tinct vertices in V and is called a variable.
And a term graph g has a vertex labeling
g : V — X, an edge labehng Yyt E— A
and a variable labeling A, : H — X. A
term graph is called ground if H=40. For
example, a term graph ¢ = (V,E, H) is
shown in Figure 2, where V = {uj,us},
E = @, H - {61 = (u17u2)762 = (u17u2)}7
0 (ur) = 3, pg(us) = t, Ag(er) = =z, and
Ag(e2) = y. An atom is an expression of
the form p(gy,...,9n), where p is a predi-
cate symbol with arity n and ¢4, ..., g, are
term graphs. Let A, By,...,Bn be atoms
with m > 0. Then, a gmph rewriting rule



is a clause of the form A « B,,..., B,.
An FGS program is a finite set of grap
rewriting rules. For example, the FGS pro-
gram ['sp in Figure 1 generates the family
of all two-terminal series parallel (T'TSP)
graphs.

Let g be a term graph and o be a list
of distinct vertices in g. We call the form
z := [g,0] a binding for a variable label
z € X. A substitution 0 is a finite collec-
tion of bindings {zq := [g1,01],...,2, :=
[9n,04]}, where z;’s are mutually distinct
variable labels in X and each ¢g; (1 <
¢ < n) has no variable labeled with an
element in {xl,...,wn}. For a set or a
list S, the number of elements in S is de-
noted by |S|. In the same way as logic
programming systém, we obtain a new
term graph f by applying a substitution
0 ={z1:=[g1,01],  *, Ty := [gn, 0]} to 2
term graph ¢ = (V, E, H) in the following
way. For each binding z; := [¢;,0,] € 0
(1 < ¢ < n) in parallel, we attach ¢; to ¢
by removing the all variables ¢;,- -, #; la-
beled with z; from H, and by identifying
the m-th element of ¢; and the m-th ele-
ment of o; for each 1 < 7 < k and each
1 <m < |tj] = |oy|, respectively. The re-
sulting term graph f is denoted by ¢. In
Figure 2, for example, we draw the term
graph gf which is obtained by applying a
substitution § = {z := [gl,(vl,vz)f:y =
[92, (w1, ws)]} to the term graph g. A uni-
fier of two term graphs g; and g; is a sub-
stitution 6 such that ¢;0 and ¢,0 are iso-
morphic. In general, there exists no mgu
(most general unifier) of two term graphs.
Therefore, in FGS a derivation is based on
an enumeration of unifiers and only ground
goal is considered in this paper. A graph
rewriting rule C is provable from an FGS
program [' if C is obtained from I' by
finitely many applications of graph rewrit-
ing rules and modus ponens.

3. Refutably Inductive Infer-
ence of FGS Programs

In this section, we show that sufficiently
large hypothesis spaces of FGS programs
are refutably inductive inferable and we
present refutably inductive inference algo-
rithms for the hypothesis spaces.

We give our framework of refutably in-
ductive inference of FGS programs accord-
ing to [1, 5,.7, 9]. Mukouchi and Arikawa
[5] originated a computational learning

stitution 6.

theory of machine discovery from facts and
showed that refutable inductive inference
is essential in machine discovery from facts
and the sufficiently large hypothesis spaces
of EFSs are refutably inferable.

Let ¢ = (V,E,H) be a term graph.
Then we denote the size of g by |g| and
define |g| = |V|+ |E| + |H|. For example,
gl = IVI+|E[+|H| =2+0+2 =14
for the term graph ¢ = (V, F, H) in’ Fig-
ure 2. For an atom p(g1,...,¢,), we define
”p(glv' s gu)ll = lgil ++ - +]gnl. An eras-

ing binding is a binding z := [g,0] such
that g consists of all vertices in o, no edge
and no variable. An erasing substitution
is a substitution which contains an eras-
ing binding. In this paper, we disallow an
erasing substitution. Then ||g8|| > ||g]| for
any term graph ¢ and any substitution 6.

Definition 1. (1) A graph rewriting rule
A « By,..., B, is said to be weakly reduc-
ing if ||A6|| > ||B:f|| for any : = 1,...,m
and any substitution §. An FGS program
I' is weakly reducing if every graph rewrit-
ing rule in I' is weakly reducing.

(2) A graph rewriting rule A «

1>---,Bm 1s said to be size-bounded if
| AG]| > || B16]| + - - - + || B8] for any sub-
ituti An FGS program T' is size-
bounded if every graph rewriting rule in T
is size-bounded.

A size-bounded FGS program is also
weakly reducing. For example, the FGS
program ['sp in Figure 1 1s weakly re-
ducing but not size-bounded. Let g =
(V,E,H) be a term graph. For a variable
label z € X, the number of variables in H
labeled with « is denoted by o(z,g). For
example, o(z,g) = 1 and o(y,g) = 1 for
the term graph g = (V, E, H) in Figure 2.
For an atom p(gi, ..., ¢») and a variable la-
bel z € X, we define o(z,p(g1,...,9x)) =
ofz,g1) + - + O(magn)-

A hypothesis space is also called a class.
We consider the two properties of hy-
pothesis spaces for machine discovery from
facts. (Property 1) All hypotheses in a hy-
pothesis space for machine discovery must
be recursively enumerable. The following
Lemma 1 shows that our target hypoth-
esis spaces have the Property 1. (Prop-
erty 2) Whether a hypothesis is consistent
with examples or not must be recursively
decidable. The following Lemma 2 shows
that our target hypothesis spaces have the
Property 2.
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Figure 2: Term graphs g and g0 obtained by applying a substitution § =

[91, (v1,v2)], ¥ = [g2, (w1, w2)]} to g.

Lemma 1. (1) A graph rewriting rule

— B , By, is weakly reducing 1f
and only if {|A|| > ]|B [l and o(z,A) >
o(z,B;) for any ¢ = 1,...,m and any vari-
able label z.

(2) A graph rewriting rule A
B, ..., B, is size-bounded if and only if
A S B 1 [Ba| and ofe,4) >
o(z,By) + - + o(a:, By,) for any variable

label z.

* For an FGS program I', Mt denotes the
least Herbrand model of T'.

Lemma 2. Let T be a weakly reducing
or size-bounded FGS program. Then the
least Herbrand model Mt of I is a recur-
sively decidable set.

Let II be a finite set of predicate sym-
bols. We explain the refutably inductive
inference of FGS programs. The set of
all ground atoms is called the Herbrand
base and denoted by HB. For an atom A,
pred(A) denotes the predicate symbol of
A. For a set IIp C II and a set S of
atoms, S |r, denotes the set of atoms in S
whose predicate symbols are in II5. That
is S |p,= {A € S | pred(A) € I,}.

A predicate-restricted complete presen-
tation of a set 1] C HB wart. Iy CII
is an infinite sequence (A, 1), (A2, 12),..
of elements in HB |g, x{+,—} such that
{Ai | ti = +,1 2 1} = I |n, and

{A lt-—-—,z>l}'—HB|n0 \I|n0.,

A refutably inductive inference algorithm
(RIIA, for short) is a special type of algo-
rithm that receives a predicate-restricted
complete presentation as an input. An
RIIA A is said to refute a class, if A pro-
duces the sign“refute”as an output and
stops. An RIIA either produces infinitely
many FGS programs as outputs or refutes
a class. For an RIIA A and a presentation

éé[m) denotes the last output pro-
duce by A which is successively presented
the first m elements in 6. An RIIA A is

: Wlth MF’ M=
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said to converge to an FGS program I' for a
presentation ¢, if there is a positive integer
mo such that for any m > my, A(6[m]) is
defined and equal to I'. Let FC be a class
of FGS programs. For an FGS program -
I' € FC and a predicate-restricted com-
plete presentation 6 of Mp w.r.t. Iy C II,
an RITA A is said to be infer the FGS pro-
gram ' w.r.t. FC in the limit from 6, if

A converges to an FGS program I € FC
Mp IHo for 4.

Definition 2 ([5]). A class FC is said to
be theoretical-term-freely and refutably in-
ferable from complete data, if for any
nonempty finite subset Il of II, there is
an RITA A which satisfies the following
condition: For any set ] C HB and any
predicate-restricted complete presentation
6 of I w.r.t. Iy, (i) if there is an FGS pro-
gram I' € FC such that Mr |n,= I |n,,
then A infers I' w.r.t. FC in the limut

from 0, (11) otherwise A refutes the class
FC from é.

Theoretical terms are supllementary
predicates that are necessary for defining
some goal predicates. In the above defi-
nition, the phrase “theoretical-term-freely
inferable” means that from the only facts
on the goal predicates an RIIA can gener-
ates some suppllementary predicates.

WRIE™ denotes the set of weakly reduc-
ing FGS programs at most n graph rewrit-

ing rules. SBE™ denotes the set of size-
bounded FGS programs with at most n
graph rewriting rules. For constant n > 1,

WRED and SBIE™ have infinitely many
hypotheses.

MWRMIIL|(s) denotes the set of all
canonical wealky reducing FGS programs
with just m graph rewriting rules and
predicite symbols in Il such that the
head’s size of each rule is not greater than
3.

By the procedure RITA_WR in Figure 3,
we have (1) of the following Theorem 1 and



procedure RITA_W R(n,Il,);
begin
T=10; F=0;
read_store(T, F);
while T = 0 do begin
output the empty FGS program;
read_store(T, F');
end;
To = T, Fo = F,
for m =1 to n do begin
Sm = max{ | A | A € T, };
recursively generate MWRI™ [TIo](s,,),
and set it to S;
foreachT' € S do
while (7', F') is consistent with My
do begin
output I';
read_store(T,F);
end;
T,=T;F, =F;
end;
refute the class WRE™ and stop;’
end;
procedure read_store(T, F);
begin
read the next fact (w,t);
ift="+'then T =T U {w}
else F = F U {w};
end.

Figure 3: RITA_WR: a refutably inductive
inference algorithm for the class WRIS

we have (2) by a similar procedure. The
proof of Theorem 1 is based on [5].

Theorem 1. (1) For any n > 0, the class

WRIE™ of all weakly reducing FGS pro-
grams with at most n graph rewriting rules
is theoretical-term-freely and refutably in-
ferable from complete data. '

(2) For any n > 0, the class SBIS™ of all
size-bounded FGS programs with at most
n graph rewriting rules is theoretical-term-
freely and refutably inferable from com-
plete data.

We can construct a machine discovery
system for a refutably inferable hypothesis
space. Thus the above Theorem 1 gives a
theoretical foundation of the KD-FGS sys-
tem.

4. Implementation of KD-FGS
and Experimental Results

We have implemented a prototype of the
KD-FGS system by constructing an FGS
interpreter and a refutably inductive infer-
ence algorithm in Common Lisp. The FGS
interpreter i1s an extension of the Prolog in-
terpreter (P. Norvig[6], Chap. 11).

In Table 1, we summarize 6 experiments
of running KD-FGS on a DEC-Alpha com-

‘patible workstation (clock 500 MHz) with

GCL2.2. In Exp. 1 and 2, input data are
positive and negative examples of TTSP
graph (see Figure 1). In Exp. 1 (resp.,
221, the hypothesis space C; (resp., C;) is
the set of all restricted weakly reducin

FGS programs with at most 2 (resp., 2

atoms in each body and at most 2 (resp., 3)
rules in each program, which is denoted by
“Fatom< 2, #rule< 2”7 (resp., “Hatom<
2, #rule< 3”). After the system receives 3
positive and 5 negative examples, which is
denoted by “#pos=3, #neg=5", it refutes
Cy in Exp. 1 (resp., it converges to a cor-

~ rect FGS program in Cs for TTSP graphs

in Exp. 2). We confirm that the system is
useful for knowledge discovery from graph
data.

5. Refutably Inductive Infer-
ence of NLC Graph Gram-
mars

FGS is a kind of graph generating system.
So we consider refutable inference of NLC
graph grammars.

Definition 3 ([3]).

A node-label controlled graph grammar
(NLC graph grammar, for short) 1s a five-
tuple (X, N, P, S,C), where

1. ¥ is a finite set of terminal labels,

2. N is a finite set of nonterminal labels

with XN N =0,

. P is a finite set of productions each
production has the form X — o,
where X is a nonterminal label in N
and o is a graph with a vertex label
in 2 U N and an edge label in A,

S is a special nonterminal label called
the start symbol,

121
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Experimental results on the KD-FGS system

Table 1:
No. | Examples Hypothesis Space Received Examples | Result
1 TTSP | #atom< 2, #Hrule< 2 | #pos=3, Fneg=>5 | refute
2 graph | Fatom< 2, #rule<3 | #pos=3, FHneg=5] 1nler
3 | undirected | #Fatom< 1, FHrule< 2 | #pos=3, Ffneg=6 | refute
4 tree | #Fatom< 1, FHFrule< 3 | #pos=3, FHneg=6 infer
5 directed | #atom<'1, #Hrule< 2 | #pos=3, Fneg=10 | retute
6 tree | Fatom< 1, FHFrule<3 | #pos=4, FHFneg=10 | relute

5. C is a connection relation C C (2 U

N)x (ZUN) x A.

In this paper, we assume that in each
production X — « the graph o has at least
one vertex and no multiple edge. Let G =
%‘E, N,P,S,C)bean NLC graph grammar.

he way that a production X — «in P is
applied to transform a graph is as follows:
Step 1. Start with a graph p and a specific
occurrence of an X-node in g. We call this
node the mother node. The set of nodes
which are directly connected to the mother
node is denoted by Nezghborhood.

Step 2. Delete the mother node and all
edges incident to the mother node from the
graph u, and call the resulting graph p'.
Step 3. Add to p’ a copy of the labeled
graph a. This new occurrence of « is called
the daughter graph.

Step 4. For each pair (Y, Z, L) in the con-
nection relation, connect every Y-node in
the daughter graph to every Z-node in
Neighborhood by the edge labeled with
LeA.

For example, the NLC graph grammar
G = ({a},{A},{A = o, A - B}, A, {(4,
a,a),(a,a,a)}) can generate the set of all
complete graphs [2], where a is a graph
consisting of one vertex labeled with a and
B is a graph consisting of two vertices la-
beled with A and a, respectively, and one
edge labeled with a between them.

Theorem 2. For any n > 0, the class
of all NLC graph grammars with at most
n productions is refutably inferable from
complete data.

6. | Conclusion

We show that sufficiently large hypothe-
sis spaces of FGS programs are refutably
inferable and thus give a theoretical foun-
dation of the KD-FGS system, which is

a knowledge discovery system from graph
data. We also consider refutable inference
of NLC graph grammars.
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