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and
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Abstract
The equations

$da/dt=-\sigma a+_{l}w^{*}+\lambda a^{*}b$ , $db/dt=-\sigma_{\mathit{1}}b+va^{\mathit{2}}$

describe perfectly-tuned second-harmonic resonance of two small-amplitude standing water
waves with Faraday excitation. Identical equations are also found for forced, resonant, coupled
pendula. Though more general equations, that incorporate frequency detuning, have previously
been examin$\mathrm{e}\mathrm{d}$, analytical progress is then hard.

By assuming perfect tuning, and very weak damping $(\sigma_{1}<<1)$ of the $b$-wave, a $\mathrm{v}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{u}\mathrm{a}\mathrm{u}_{\mathrm{y}}$

complete description of the solution trajectories is found. The degenerate case $\sigma_{1}=0$ has a
continuum of fixed points, and the solutions then take an unusual form: several $\dagger’ \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}$

” are
separated by pauses at unstable fixed points, until small random disturbances grow and initiate
the next $\uparrow\dagger \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{e}^{\dagger}’$ . This continues until a”$\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{e}^{\dagger}$

’ terminates at a stable fixed point. When $\sigma_{1}$ is
$\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ but non-zero, a similar qualitative structure remains; but all solutions $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{a}\mathbb{I}\mathrm{y}$ teminate at
one of a pair of stable fixed points of the now non-degenerate system.

When $\sigma_{1}$ is imaginary, the equations describedet-uning from intemal resonance: when
this is small, similar arguments apply.

1. Introduction
The equations here investigated arise for an idealisation of Faraday water waves, and also

for forced, coupled simple pendula, at precise second-hannonic resonance (see Miles 1984,
1985, Gu&Seflma 1987, Henderson&Miles 1991, Forster&Craik 1997). With only the two
resonant modes present, their rapid periodic oscillations may be factored out, leaving a pair of
coupled evolution $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathfrak{a}\mathrm{o}\mathrm{n}\mathrm{S}$ , on a much longer timescale $t$; namely,

$dddt=-\varpi+_{l^{w^{*}}}+\lambda a^{*}b$, $db/dt=-\sigma_{l}b+va^{2}$ . (1)
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Here, $a,$ $b$ are suitably-scaled complex amplitudes of the two participating modes with natural
frequencies in the ratio 1:2 on the eliminated short timescale. Mode $a$ is linearly damped, with
damping rate $\sigma$, and it is parametrically forced by a $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ extemally-imposed periodic oscillation

with frequency exactly twice that of mode $a$ . The amplitude of this forcing is represented by the
real parameter $\mu$ . Wave $b$ is not directly forced, and it has a linear damping rate $\sigma_{1}$ which, in this
paper, is mostly assumed to be small compared with $\sigma$. The nonlinear resonance interaction
coefficients $\lambda,$ $v$ may be taken as real without loss, and have opposite signs. The $*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$

complex conjugate. When the waves are slightly detuned from intemal resonance, the coefficient
$\sigma_{1}$ has an additional imaginary part-ie, say, which is proportional to $\omega_{2}- 2\omega_{1}$ , where $\omega_{1}$ and $\omega_{2}$

are the natural frequencies of the two modes on the fast timescale. Details of the derivation of
these equations can be found in the works cited above.

In fact, these previous works mostly consider a more general pair of equations, that admits
further slight detuning of the wave frequencies from the driving frequency. That is to say, the

parametric (Faraday) forcing frequency, and the frequency of mode $b$, are both allowed to differ
slightly, and independently, from twice that of mode $a$ . The bifurcation structure of fixed points
of this more general pair of equations has been studied in detail; and some properties of the
solution trajectories may be inferred from this structure. In particular, Gu&Setlma (1987) have
proved the existence of chaotic orbits, when both types of detuning are present. However, in
such cases, a complete theoretical description of the solution trajectories is unavailable.

The present paper addresses only the simpler set of equations (1), for which real progress can
be made. For the degenerate case $\sigma_{1}=0$ described in section 2, we are able to infer the complete

solution structure, which is internittently affected by the presence of small disturbancs. Then, in
sections 3 and 4, we examine cases with real and imaginary non-zero $\sigma_{1}$ , finding qualitative

simlillarities with the degenerate case.

2. Degenerate cases $\sigma_{1}=0$

Provided $\mu$ is non-zero, equations (1) with $\sigma_{1}=0$ may be rescaled to

$da/dt=-\varpi+a^{*}- a^{*}b$, $db/dt=a^{2}$ . (2)

Stationary points are $(a, b)=(0, k)$ where $k$ is an arbitrary complex constant. The degeneracy
therefore introduces a continuum of fixed points, absent when $\sigma_{1}$ is non-zero. Each of these
points is found to be linearly stable when $k$ lies in the complex $b$-plane within a circle of radius $\sigma$

and centre $(1, 0)$ .
The case $\sigma=0$ reduces, on writing $c=b- 1$ , to the equivalent unforced equations,

$da/dt=- a^{*}c$ , $dc/dt=a^{2}$ ,
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which have $a^{2}+c^{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$. Full solutions are then known in terms of elliptic functions.
Therefore, the forced undamped system is dynamically equivalent to the unforced undamped
system, with only a translation of variables ($c=b+\mu/\lambda$ in the original system): this was already
noted by Forster&Craik (1997).

For $\sigma>0$ , we instead have

$da/dt=-\sigma a- a^{*}c$, $dc/dt=a^{\mathit{2}}$ , (3)

and $d(aa^{*}+cc^{*})/dt=- 2\sigma aa^{*}\leq 0$. Therefore, the ”
$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}^{1}$

’ from ($a,$ $b\rangle=(0,1)$ in the 4-
dimensional double complex planes of $a,$ $b$ is non-increasing; and it is strictly decreasing
whenever $a$ is non-zero. It follows that all trajectories must eventually tenminate at a stable fixed
point with $a=0$, somewhere within the circular domain of the $b$-plane just described.

Also, since the equations (3) are invariant under the phase-shifts $(a, c)<->(ae^{i\delta}, ce^{\mathit{2}i\delta})$ ,

we may choose (say) $\mathrm{p}\mathrm{h}(a)$ to be $\ddot{\mathrm{m}}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ zero, without loss of generality; and recover many other
cases from the mapping. However, these apparently innocuous phase shifts require care. For
instance, an initial state $a=\epsilon$ (small, real and positive) and $b=0(c=- 1)$ experiences initial
amplification of $a$ , as aexp$(\dot{1}-\sigma)t\backslash$ whenever $\sigma<1$ ; but phase shift of $a$ alone by $\delta=\pi/2$ yields
imitial decay as iaexp$(- 1-\sigma)t$ when $b=0$. In fact, the transfomation $c<->ce^{\mathit{2}i\delta}$ requires the new
$b$ to be 2, not $0$ , for which the appropriate growth of $a$ results.

First, we restrict attention to cases where $b$ is $\ddot{\mathrm{m}}\mathrm{t}\mathrm{i}\mathrm{a}\mathbb{I}\mathrm{y}$ zero, and $a$ grows from infmitesimal
levels. Clearly, the linearly most unstable $a$-disturbance is then likely to dominate. Such linear
growth occurs whenever $\sigma<1$ , and the most-amplified disturbances have wholly-real $a$ . Both $a$

and $b$ remain real for later times $t$, at least until another stationaIy point is reached. From (2), the
corresponding pair of real equations is then

$da/dt=a(1-\sigma- b)$ , $db/dt=a^{2}$ .

These have (2-dimensional) fixed points $(a, b)=(0, K)$ for arbitrary real $K$; and trajectories lie
on the semicircles $a^{2}+(b+\sigma- 1)^{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ ($a\geq 0$ or $a\leq 0$), all of which terminate on fixed
points with $a=0$. The trajectory that corresponds to our assumed initially-small $a$ and $b$

terminates at $b=K=2($1 - $\sigma)$ .
However, we have shown above that such fixed points in the four-dimensional plane are

stable only when $1-\sigma<K<1+\sigma$. The value $K=2(1-\sigma)$ lies outside this range whenever $\sigma$

$<1/3$ . So what happens when this (or any other) trajectory terminates at an unstable fixed point?
The answer is that another infinitesimal instability must develop; and, since $K>1+\sigma$, the
dominant growing disturbance now has $a$ purely imaginary. Writing $a=ia’$ , we obtain another
pair of real equations,
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$da’/dt=a’(- 1-\sigma+b)$ , $db/dt=- a^{2}’$ .

These have the same fixed points as before; but trajectories given by the different semicircles
$a’2+(b-\sigma- 1)^{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}$. ($a’\geq 0$ or $a’\leq 0$).

Our $\ddot{\mathrm{m}}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}-\mathrm{i}\mathrm{n}\mathrm{f}\dot{\mathrm{m}}$litesimal solution therefore proceeds from $(a, b)=(0,0)$ to $(0,2(1-\sigma))$ along

the upper or lower semicircle. If $\sigma<1/3$ , it then must wait for infinitesimal disturbances to grow

and force it onto another trajectory in the orthogonal $(a’, b)$ plane: this is one of the two

semicircles $a^{Q}+(b-\sigma- 1)2=(1-3\sigma)^{2},$ ($a’\geq 0$ or $\leq 0$), which teminates at $b=4\sigma,$ $a=0$. This is a
stable fixed point provided $1/5\leq\sigma\leq 1/3$ . But, if $\sigma<1/5$ , there will be a further wait for

amplification of real $a$-disturbances, before the trajectory proceeds along the corresponding
semicircle, $a^{2}+(b+\sigma- 1)^{2}=(5\sigma- 1)^{2}$ , to the fixed point $(0,2(1- 3\sigma))$ . This is stable if $1/7\leq\sigma$

$\leq 1/5$ , but unstable if $\sigma<1/7$ . It is readily shown that the composite trajectory, starting at $(0,0)$

and subject to arbitrary infinitesimal disturbances, consists of $N(=1,2,3, \ldots)$ ”
$\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{s}\dagger$

’ when
$1/(2N+1)\leq\sigma\leq 1/(2N-1)$ ; or, equivalently, $\sigma^{1_{-}}1\leq 2N\leq\sigma^{1}+1$ . The corresponding end-

points of the trajectories have $b_{2M}=4M\sigma,$ $b_{\mathit{2}M+}\mathit{1}=2- 2(2M+1)\sigma$, where $M=0,1,2,\ldots$ until
$2M$ or $2M+1$ equals $N$.

More generally, real initial data $(a, b)=(0, K)$, for any $K=b_{\mathit{0}}$ less than 1 - $\sigma$, give

subsequent endpoints $b_{2M}=K+4M\sigma,$ $b_{\mathit{2}M}+l=2- K- 2(2M+1)\sigma$, and initial data $(a, b)=(0$,

$K)$ , for any $K=b_{\mathit{0}}$ greater than $1+\sigma$, give subsequent endpoints $b2M=K- 4M\sigma,$ $b\mathit{2}M+l=2- K$

$+2(2M+1)\sigma$. These sequences terminate as soon as a $b_{n}$ falls within the stable interval $[1-\sigma,$ $1$

$+\sigma]$ . A composite picture is shown in Figure 1 for the $\uparrow|\mathrm{f}\mathrm{o}\mathrm{u}\mathrm{r}$-bounce’l case $\sigma=1/8$ with zero
initial data: the arrows indicate direction ofmotion as time increases. The clockwise semicircular
trajectories are in the real $(a, b)$ plane, and the anti-clockwise ones in the orthogonal $(a’, b)$

plane: the $b$-axis is horizontal, and the $a$ or $a^{1}$ axis is vertical. Though $\mathrm{a}\mathrm{U}$ semicircles are drawn in

the upper half plane, any might instead be in the lower half-plane, if the appropriate linearly-

growing $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ disturbance of $a$ or $a’$ were negative rather $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}_{\mathrm{P}^{\mathrm{o}\mathrm{S}}}.\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ .
Corresponding trajectories for any initial data having $a$ either wholly real or wholly

imaginary, and $b$ wholly real, may be inferred similarly, since the initial data identifies the

appropriate circle for the trajectory’s first ”bounce\dagger t. Additional families of trajectories may be

deduced ffom the invariant mapping ($a,$ $c\rangle<->(ae^{i\delta}, Ce^{\mathit{2}i\delta})$ . In fact, this tells us much about all

possible trajectories. For, it was shown for equations (3) above that, whenever $\sigma>0$ , arbitrary

imitial complex values of $(a, c)$ must eventually reach a fixed point with $a=0$ and $c$ equal to some
complex constant $k=Ke^{i\delta}$. The trajectory that arrives at this point may well not have had $a$ and $c$

in a fixed phase relationship $2\mathrm{p}\mathrm{h}(a)=\mathrm{p}\mathrm{h}(c)$ or $\mathrm{p}\mathrm{h}(c)+\pi[\mathrm{m}\mathrm{o}\mathrm{d}(2\pi)]$ : therefore, we are unable to

detemine this initial portion of the evolution except by direct computation. But, after every such

trajectory has reached a fixed point with $a=0$, we can now determine the nature of the

subsequent behaviour. The next $\dagger’ \mathrm{b}_{\mathrm{o}\mathrm{u}\mathrm{n}}\mathrm{c}\mathrm{e}^{\dagger}$
’ (if there is one) will be determined by the fastest-
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growing linear disturbance, and this corresponds to a trajectory like those just found, if we first
apply the mapping to make $c$ real. For example, a trajectory that has reached $a=0,$ $c=1+3^{1/2}i$

may then be transformed to the dynamically-equivalent $a=0,$ $c=2$ by the phase mapping. The
subsequent (but not the earlier) evolution is therefore dynamically equivalent to that emanating
ffom $a=0,$ $b=3$ ; and this has been deduced above.

Of course, since the instability of fixed points depends on unknown small disturbances, the
$,\dagger \mathrm{w}\mathrm{a}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}^{1}$

’ spent in the vicinity of such points is not known without specifying the level of
such disturbances; nor is it known which of the two available semicircular trajectories will be
followed, unless the sign of the $a$-disturbance is also specified. But it is surprising that so much
can be deduced so simp.ly.

3. Cases with non-zero $\sigma_{1}$

When $\sigma_{1}$ is non-zero, the corresponding scaled equations are

$da/dt=-\varpi+a^{**}- ab$ , $db/dt=-\sigma_{1}b+a^{\mathit{2}}$ . (4)

Now the degeneracy is removed, and the continuum of fixed points disappears. Instead,
provided $0<\sigma<1$ and $0<\sigma_{1}$ , the only fixed points remaining are $(a, b)=(0,0)$ , and the pair

$a=\pm[(1-\sigma)\sigma_{1}]1/2$ $b=1-\sigma$. (5)

The origin $(0,0)$ is unstable to parametric forcing since $0<\sigma<1$ . As the equations (4) are
invariant under the mapping $a<->- a$ , the pair of points (5) are identical in nature. It is readily
shown that they are stable fixed points: their four exponents are

$(1/2)[_{-}\sigma_{1}\pm(\sigma_{1}^{2}- R)^{1/}2]$ , $\langle 1/2)\mathrm{t}- 2\sigma-\sigma 1\pm[(2\sigma-\sigma 1)2-R]^{1/}2\}$ ,

where $R=8\sigma_{1}($ 1 - $\sigma)$ . All four exponents are real and negative when $0<(1 - \sigma)<\sigma_{1}/8$ ; but,
when $0<\sigma_{1}/8<$ $($ 1 - $\sigma)$ , the first pair are complex conjugates with negative real part,
corresponding to damped oscillations. When $\sigma_{1}$ approaches zero, three of the four exponents
also approach zero.

It is natural to ask how the solution structure described above, when $\sigma_{1}=0$ , is modified
by the presence of a small positive damping rate $\sigma_{1}$ . The continuum of points $(a, b)=(\mathrm{O}, k)$ , for
arbitrary $k$, are no longer equilibria: instead, when $a=0$, the modulus of $b$ decays with the
exponential rate $\sigma_{1}$ . When, pr..eviously, a $’\uparrow \mathrm{b}_{\mathrm{o}\mathrm{u}}\mathrm{n}\mathrm{c}\mathrm{e}^{\dagger}$

’ terminated at an unstable fixed point, the
solution remained there until infmitesimal disturbances of $a$ were amplified to significant levels,
with a ”waiting $\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}^{1}$

’ depending only on the available small disturbances. Now, however, a
solution reaching such a point is subject to two effects: rather than $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{y}\mathrm{w}\mathrm{a}\mathrm{i}||l\mathrm{i}\mathrm{n}\mathrm{g}^{\dagger}$

’ at a fixed b-

15



value, the value of $b$ will be subject to a slow exponential decay during the growth of small

unstable $a$-perturbations. How much the $b$-value is reduced before the trajectory takes off on

another $1\mathrm{t}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{e}^{\uparrow}$
’ is influenced by the size of small disturbances. Accordingly, without knowing

the latter, it is impossible to determine the precise starting point of the next $\dagger’ \mathrm{b}_{\mathrm{o}\mathrm{u}\mathrm{n}}\mathrm{c}\mathrm{e}^{11}$; although

we know, to good approximation, what that $’\uparrow \mathrm{b}_{0\mathrm{u}\mathrm{n}}\mathrm{c}\mathrm{e}^{1}$
’ must be, once its starting point is fixed.

However, provided the $\dagger’ \mathrm{w}\mathrm{a}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ time” for growth of small $a$-disturbances to significant levels is

much smaller $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}\sigma_{1}- 1$, we can be sure that the succession $\mathrm{o}\mathrm{f}|’ \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{S}^{\mathrm{t}}$

’ is not much altered from

the case with $\sigma_{1}=0$, until the solution reaches a stable fixed point of the continuum. We recall

that such stable fixed points have values of $k$, in the complex $b$-plane, that lie within a circle of

radius $\sigma$ and centre $(1, 0)$ .
From then on, the only significant change in the solution is the slow exponential decay of

the $b$-mode, with $a=0$, until the modulus of $b$ approaches its smallest available stable value.

When $b$ is real, this smallest value is $1-\sigma$, but, for non-zero $\sigma_{1}$ , there is no invariant mapping $(a$,

$c)<->(ae^{i\delta}, ce^{\mathit{2}i\delta})$ to permit reduction of all complex cases. Consequently, we are here content

to $\mathrm{i}\mathrm{u}_{\mathrm{u}\mathrm{S}}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$ the behaviour for purely real values of $b$ .
As $b$ comes close to its smallest stable value of $1-\sigma$, the solution enters its final approach

to one or other stationary point (5). Small $a$-disturbances grow when $b$ falls below $1-\sigma$. The

growing $a$-disturbances are necessarily real, and the solution trajectory finally spirals in to the

stationary point. An example of this final approach, for $\sigma=0.5$ and $\sigma_{1}=0.01$ , is shown in

Figure 2. The solution at first moves along the $b$-axis ffom 1.2 (in fact, with a very small initial

positive $a$-value), and the motion is then $\mathrm{c}1\acute{\mathrm{o}}\mathrm{c}\mathrm{k}\mathrm{W}\mathrm{i}_{\mathrm{S}\mathrm{e}}$ as time $t$ increases, eventuaUy $\mathrm{a}_{\mathrm{P}\mathrm{p}\mathrm{c}}\mathrm{r}\mathrm{o}\mathrm{a}\mathrm{h}\dot{\mathrm{m}}\mathrm{g}$ the

fixed point $(a, b)=(1/10\sqrt 2,1/2)$ .
Figure $3\mathrm{a}$ shows a sample of computed trajectories for $\sigma=0.2$ and $\sigma_{1}=0.01$ . The

horizontal axis denotes $b$ , which is taken to be real; the positive vertical axis denotes wholly-real

$a$ (which may be either positive or negative); and the negative vertical axis denotes the magnitude

$0,\mathrm{f}$ purely imaginary $a$ (again positive or negative). In each half-plane, the appropriate real

equations were solved numerically. The curves in both half-planes are traversed clockwise as $t$

increases.The near-semicircular structure is very similar to that obtained with $\sigma_{1}=0$ . But

undisturbed trajectories in the upper half-plane must all eventually approach the spiral sink at $(\pm$

$a,$ $b)=(0.08944,0.8)$ . However, in the presence of small disturbances, it is still possible for
$,\dagger \mathrm{b}_{\mathrm{o}\mathrm{u}\mathrm{n}}\mathrm{C}\mathrm{i}\mathrm{n}\mathrm{g}$

” to occur, with alternately real and imaginary $a$ -values. Figure $3\mathrm{b}$ shows

corresponding sets of trajectories in the more heavily-damped case $\sigma=\sigma_{1}=0.2$ . The spiral

structure is more marked, with the sink at $(\pm a, b)=(0.4,0.8)$ . Far larger disturbances would

now be needed to divert a trajectory from the upper half plane to the lower. Undisturbed

trajectories in the lower half-plane all eventually approach $(a, b)=(\mathrm{O}, 0)$ : but, since this

equilibrium point is unstable to real $a$-disturbances, the trajectory must eventually continue into

the upper half-plane, and so towards a spiral sink.
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The sensitivity of solutions to small disturbances, when they approach close to the b-axis,
is doubtless part of the reason why chaos is sometimes found when slight frequency-detuning is
added to the equations: see Gu&Sethna (1987). Although our equations (1) do not support
chaos, and the structure of fixed points could hardly be simpler, trajectories when $\sigma_{1}$ is small can
nevertheless exhibit unpredictable \dagger ’waiting times” and $\dagger’ \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{s}\uparrow$

’ when random external
disturbances are present.

4. Detuning from internal resonance
When the waves are not quite resonant, suitably-scaled equations corresponding to (2) are

$da/dt=-\varpi+a^{*}- ab*$, $db/dt=id,$ $+a^{\mathit{2}}$ . (6)

Here, the $b$-wave is once more considered to be undamped, and the real parameter $\epsilon$ measures the
extent of detunin$\mathrm{g}$ from intemal resonance: see e.g. Miles (1984), Forster&Craik (1997) for
details.

The only stationary points are now the origin $(a, b)=(0,0)$, which is a saddle point when
$0<\sigma<1$ , and $(\pm a_{0}, b_{\alpha})$, where

$a_{0}=(\epsilon/2)^{1}/2(1-\sigma^{2})^{1}/4[(1+\sigma)1/2- i(1, \sigma)^{1}/2]$,
$b_{0}=(1-\sigma^{2})+i\sigma \mathrm{t}1-\sigma 2)^{1/}2$ . (7)

These points agree with results of Gu&Sethna (1987), who showed that the latter are stable
sinks. (They found more exotic behaviour when there is detunin$\mathrm{g}$ also of the driving frequency,
but such effects are not considered here.)

There are simple periodic orbits $(a, b)=[0, K\exp(i\mathcal{E}t)]$ for arbitrary complex constants $K$.
Small $a$-perturbations to such orbits are govemed by

dddt $+\varpi$ $=a^{*}[1- K\exp(i\epsilon t)]$ . (8)

The stability of this 2-dimensional linear system with time-periodic coefficients may readily be
determined by Floquet theory; but details are not given since instability is intuitively evident for
$\mathrm{a}\mathrm{U}\sigma<1$ . To illustrate this, recaU that, forfixed $b,$ $a$-disturbances are unstable whenever $b$ lies
outside the circle in the complex plane with centre 1 and radius $\sigma$. But, when $b=K\exp(i\epsilon t)$ ,

orbits pass through this circle only temporarily, if at all. To verify this, sample computations
were performed with variables $X={\rm Re}\{\mu\},$ $\mathrm{Y}=2{\rm Im}\{\mu\}$ , where $a=C\exp[\mu(t)]$ and $C$ is an
arbitrary complex constant. Figures $4\mathrm{a},\mathrm{b},\mathrm{c}$ show trajectories (X, Y) for the three cases $K=0.5$,

1.0 and 1.5 respectively, with $\sigma=0.5$ and $\epsilon=0.1$ . Both growing modes (upper curves) and
decaying modes (lower curves) are found, the latter being computed by reversing the time
direction. Clearly, these correspond to growing and decaying Floquet modes. Though case (b)

shows small loops’ where the instantaneous growth rate $X$ is briefly negative, strong overall
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growth is evident in all cases. The phase $\mathrm{Y}$ oscillates in (a) and (b), but phase-winding occurs in

case (c). The average temporal growth rates of both modes were found by dividing the total

increment of $X$ by the elapsed time. These are: (a) 0.567, $- 1.54;(\mathrm{b})$ 0.743, -1.759; (c) 1.174,

-2.154. Since the period of the $b$-orbit is $2\pi/\epsilon=62.83$ , initial disturbances as small as, say,

exp(-20) will amplify to prominence during just part of a single period.
Just as for cases $\sigma_{1}<<1$ examined in section 3, present cases where $\epsilon<<1$ must

resemble the $|\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{g}\dagger$ solutions of section 2 which correspond to $\epsilon=0$ . For example, we may

envisage initial states $(a, b)=(\mathrm{O}, K)$ , with $K$ real. If $0<K<1-\sigma$ or $K>1+\sigma$, smalla-

disturbances will grow, and trajectories will follow near-semicircular paths in times small
compared with $2\pi/\epsilon$ . The sequence of bouncing solutions obtained for $\epsilon=0$ will be little

changed when $\epsilon<<1$ provided small $a$-disturbances are continuously present. Accordingly, after

a known number $N$ of $\uparrow \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{S}\dagger$ , the trajectory will reach a point with $a=0$, and with $b$ within
the stable circle with centre 1 and radius $\sigma$. Thereafter, $b$ will slowly change its phase, as
$\exp(i\epsilon t)$ , until it crosses the circular boundary; thereafter, $a$-disturbances will grow. Is unclear

whether there $\mathrm{w}\mathrm{i}\mathrm{U}$ be further’bounces’, before the trajectory reaches its final resting place at one
of the two fixed points $(\pm a_{0}, b_{0})$ given by (7).

To clarify the nature of the fmal approach, the stability of the points (7) was examined.

Gu&Sethna (1987), in treating more general cases with detuning of the forcing, already found

them to be stable; a result that we here confirm. Small perturbations about $(\pm a_{0,0}b)$ , with
exponential time dependence as $\exp(\lambda J\rangle$, are found after reduction to have

$[\lambda^{2}+\sigma\lambda+2\epsilon(1 - \sigma^{2})^{1/2}]^{2}=\lambda^{2}(\sigma^{2} - \epsilon^{2})-2\epsilon^{2}\sigma\lambda$.

Though the four roots can be stated explicitly, it is enough to give their leading-order terns when
$\epsilon$ is small. nese are

$\lambda_{1}=- 2\sigma+o(\epsilon)$ , $\lambda_{2}=-\epsilon\sigma^{1}(1-\sigma)21/2+\cdot O(\epsilon^{2})$,
$\lambda_{3,4}=\pm(2\epsilon)1/2i[(1-\sigma 2)^{1/}4+\mathcal{E}/4]-\epsilon^{2}(4\sigma)- 1+o(\epsilon 5/2)$. (9)

Both $\lambda_{1}$ and $\lambda_{2}$ are real and negative, while $\lambda_{3}$ and $\lambda_{4}$ are a complex-conjugate pair with negative
real part. The latter roots have rather $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}\mathrm{o}(\epsilon^{2})$ decay rate.

When $b$ exactly equals $b_{0}$, it is found that

$(d/dt)[a_{\mathrm{r}}(1-\sigma)1/2+a_{\mathrm{i}}(1+\sigma)1/2]=- 2\sigma[a_{\mathrm{r}}(1-\sigma)^{1}/2+a_{\mathrm{i}}(1+\sigma)1/2]$,

which shows that either $a$ approaches zero as $\exp(- 2\varpi)$, or the phase of $a$ rapidly approaches %
$=\tan^{- 1}\mathrm{t}-(1-\sigma)^{1/}2(1+\sigma)^{-1/2}\}$ . The $a$-disturbances with phase $\mathfrak{g}$) are least-rapidly damped.
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Now suppose that $a=\epsilon^{1/2}R\exp(i\theta),$ $b=S\exp(i\psi)$ , where $R,$ $S\theta,$ $\phi$ are slowly-
varying. Let $\phi=\sin^{-1}\sigma+\phi_{1},$ $\theta=\theta_{0}+\theta_{1},$ $S=S_{0}+S_{1}$ , where $\phi_{1},$ $\theta_{1}$ and $S_{1}$ are assumed
small, and $S_{0}=$ $($ 1 - $\sigma^{2})^{1/2}$ , the modulus of $b_{0}$ . Since $2\theta_{0}+\sin^{-1}\sigma=-\pi/2$, one finds from the
$\mathrm{f}\mathrm{u}\mathrm{U}$ equations (6) that

$dR/dt$ $=R($ 1 - $\sigma^{2})^{1/2}(2\theta 1+\psi 1)+\mathrm{h}.0.\mathrm{t}.$ , $d\theta_{1}/dt=- 2\sigma\theta_{1}+\mathrm{h}.0.\mathrm{t}.$,

$dS_{1}/dt$ $=-\epsilon R^{2}(2\theta_{1}+\phi_{1})+\mathrm{h}.0.\mathrm{t}.$, $d\phi_{1}/dt=\epsilon[1- R^{2}((1-\sigma^{2})^{1}/2]+\mathrm{h}.0.\mathrm{t}$ .

To suppress the rapidly-decaying mode, one must choose $\theta_{1}=0$ . The scaling $R=(1-\sigma^{2})^{1/4}\eta$,
$\phi_{1}=\epsilon^{1/2}(1-\sigma^{2})^{-}1/4\xi\backslash ,$ $t=\epsilon^{-1/2}(1-\sigma 2)1/4\tau$ then gives

$d\xi/d\tau=1-\eta^{2}$, $d\eta/dt=\xi\eta$ . (10)

for which $S_{1}$ is uninportant at this order. This simple system has well-known closed orbits. At
this order of approximation, the phase of $a$ and the amplitude of $b$ are fixed, while the modulus of
$a$ and the phase of $b$ display nonlinear oscillations about the stable fixed point. Though the
oscillations must, in fact, be weakly damped in accord with the linear result (9), it is only at
higher order in $\epsilon$ that the slow decay is manifest.

When the imitial magnitude of $a$ is sufficiently small, trajectories starting close to the origin
of $(\xi, \eta)$ may eventuaUy grow to violate the assumed scaling: it is then possible that the $(a, b)$

trajectory will exhibit further bouncest before the fmal stationary point is reached. But when the
above scalin$\mathrm{g}$ is justified, a fmal spiralhng approach to the stationary point is to be expected.
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Figure 1. Semi-circular four-,,bouncet\dagger trajectory, for $\sigma=1/8,$ $\sigma_{1}=0$, with initial values close to $(0,0)$ . The

horizontal axis is (real) $b$ . Clockwise ”bounces” are for $(b, a)$ (with $a$ real); anticlockwise ”bounces’l are for $(b, a’)$

(with $a=ia$’ imaginary).

Figure 2. The approach to the stationary point, for $\sigma=0.5,$ $\sigma_{1}=0.01$ . The trajectory starts near $b=1.2$ , with a

very small real value of $a$ .
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Figure 3. (a) Some computed trajectories for $\sigma=0.2$ and $\sigma_{1}=0.01$ . The near-semicircular structure resembles

cases with $\sigma_{1}=0$ , except close to the spiral sink. The horizontal axis denotes real $b$ ; the positive vertical axis

denotes wholly-real $a$ ; and the negative vertical axis denotes the magnitude of purely imaginary $a$ . (b)

Corresponding trajectories for the more highly-damped case $\sigma=\sigma_{1}=0.2$, with spiral sink at (0.4, 0.8).

Figures $4\mathrm{a},\mathrm{b},\mathrm{c}$. Trajectories (X, Y) fronl (8), for $K=0.5,1.0$ and 1.5 respectively, with $\sigma=0.5$ and $\epsilon=0.1$ .
Upper culves are growing modes, and lower $\mathrm{c}\mathrm{u}\mathrm{l}\gamma \mathrm{e}\mathrm{S}$ decaying modes.
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