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Integral transforms for D-modules and
homogeneous manifolds

Corrado Marastoni

1 Integral transforms, sheaves, D-modules

Any problem of integral geometry has aspects of geometric nature (e.g. the
support of the transform of a datum) and analytic nature (e.g. the differ-
ential equations describing the transform of some class of data). The idea
of the approach by sheaves and D-modules (see [8], [4], [9]) is to separate
these problems in the calculations of the transform of a constructible sheaf
(geometry) and of a coherent D-module (analysis).

Complex integral transforms and real submanifolds. Since we use the
theory of D-modules, our framework will be complex, and the real transforms
will be read by means of R-constructible sheaves associated to real submani-
folds (usually, locally constant sheaves of rank one). Let us explain this point
a little more. Let X be a complex analytic manifold with structure sheaf Oy
and X® the underlying real analytic manifold: then, the functors - ® Oy,
-®Ox, Thom(-,0x) and RHom(-, Ox) (see [8], [9]) associate a Dx-module
to any R-constructible sheaf on X®. In particular, let M be a real analytic
submanifold of X® such that X is a complexification of M ; then, denoting by
J+ M — X the closed embedding and by (-)* = RHom(-,Cyx) the duality
functor for sheaves, one has Cpy ® Ox ~ 51 Ay (analytic functions on M ),
Cy®0x ~ 71C3¢ (smooth functions), Thom(C},, Ox) ~ jiDby, (Schwartz’s
R

distributions) and RHom(C3,,Ox) ~ H;f,,M(OX) ® ormix =~ jiBBy (Sato’s
hyperfunctions). |

The general ihtegral transform. Let X and Y be complex analytic man-
ifolds, g; (j = 1, 2) the projections of X xY on X and Y. Roughly speaking,
the choice of a function (kernel) k(z,y) on X x Y determines an integral



transform from data (e.g. functions, cohomology classes) on X to data on Y
by the law (f o k)(y) := [, k(z,y)f(z) dz, where dz is some volume element
on X'. Formally, this can be accomplished also in the categories of sheaves or
D-modules, where the pull-back of f by ¢; becomes the inverse image by ¢,
the product by k the tensor product and the integration along g, the proper
direct image by gs.

More precisely, let D?(Cy) (resp. D*(Dy)) be the derived category of
sheaves of C-vector spaces (resp. left D-modules) on X, i.e. the complexes
with bounded cohomology modulo quasi-isomorphisms. Any kernels K €
D’(Cxxy) and K € D*(Dxy)) define integral transforms by means of the
following functors: :

oK :D*(Cx) = D’(Cy), FoK =Rg(K®q 'F),
oK :D*(Dx) = D*(Dy), MoK = 2,(K @0y o' M),

where ¢p, and ¢:~' are the direct and inverse images in the sense of D-

modules. The functor K o - : D*(Cy) — D®(Cyx) is similarly defined.

A typical situation is when K is a regular holonomic Dy «y-module and
K = RHompy,, (K, Oxxy) (i.e. the complex of holomorphic solutions of K):
by the Riemann-Hilbert correspondence in Kashiwara’s formulation, K is a
perverse sheaf and K >~ Thom(K, Ox«y). For example, we have the geomet-
ric correspondences (see [4]): let S be a smooth complex submanifold of X xY
and let K = Bg (the holomorphic hyperfunctions along S). The Penrose
transform (see [6]) is an example. In this case, one has K ~ Cg[—cod$, 9]
If one considers the double fibration (where f and g are the projections)

X+«L 5493y,
then it is easy to verify that - o Cg = Rgif!(-) and - o Bg = g_!i—l(-).

Adjunction formulas. The arriving point are the adjunction formulas,
where a problem of integral geometry is divided into the problems of calcu-
lating the transforms of a sheaf on Y and a D-module on X. For simplicity,
we suppose the manifolds to be compact.

Proposition 1. ([4], [9]) Let X and Y be compact complex analytic mani-
folds, IC a reqular holonomic Dy «y-module and K = RHomop, , (K, Oxxy).

Assume that char(KC) N (T*X x TyY) C Ty (X x Y). Then, for any
M € D*(Dx) and H € D*(Cy) one has |
~ RHomp, (M, (Ko H)®Ox) =~ RHomp,(MoK,H ® Oy)[-dS],
RHomp, (M, RHom((K o H)*,0x)) =~ RHomp, (MoK, RHom(H*,Oy))[-d$].



Moreover, similar formulas hold when H has R-constructible cohomology if
4
one replaces ® by @ and RHom by T hom.

In particular, we are interested in the following case (see [4]). Let F a
holomorphic line bundle on X and F*. Taking M = DF* = Dy Qo, F*, we
get | -

RIX,(KoH)® F) =~ RHomp, (DF*oK,H ® Oy)[-d$], (1)
RHom((K o H)*,F) =~ RHomp, (DF* oK, RHom(H*,Oy))[-d$]. 2)

Hence, (a) we shall compute the D-module transform DF* o K, and then (b)
we shall make different choices of H in order to obtain various applications.

Remark 1. Let p; (j = 1,2) be the projections of 7*(X x Y) on T*X and
T™Y respectively, and denote by p} the composition with the antipodal map.
Assuming, as above, the “non-characteristicity condition” char(K) N (T*X x
TyY) C T (X xY), one has char(DF* o K) C péchar(K). Therefore, it is
important to study the “microlocal correspondence” T*X < char(K) — T*Y
in order to get informations on the transform DF* o K. '

2 Generalized flag manifolds and relations to
representation theory

We specialize the preceding discussion to the case of compact homogeneous
manifolds. Let G be a complex semisimple Lie group, P and @ two parabolic
subgroups containing a same Borel subgroup. Let X = G/P and Y = G/Q
be the corresponding compact homogeneous manifolds. The diagonal G-
action on X x Y has a finite number of orbits, and the only closed one is
S = G/(PNQ), which is again a compact homogeneous manifold of G. Let K
be a G-equivariant regular holonomic Dy xy-module (e.g. the one associated
to one of these orbits) and F be a G-equivariant holomorphic line bundle
on X: then DF* (resp. DF* oK) is a quasi G-equivariant Dx- (resp. Dy-)
module (we refer e.g. to [10] for all these notions).

Let Gy be a real form of G, and let Gy act on X and Y by restricting the
G-action. Then, if H is a Gg-equivariant sheaf (e.g. we shall consider locally
constant sheaves of rank one on the closed Gy-orbit in V'), so are K o H and
the duals, and the formulas (1) and (2) may be interpreted as isomorphisms
in the derived category of representations of Gy.



3 The case of Grassmannians

Let W ~ C* and G = SL,(C). For 1 < p < n — 1, the subgroup P, of
matrices in G with the left bottom (n — p) x p block equal to zero is the
“standard pth” maximal parabolic subgroup of G, and the quotient X =
G/P, is naturally identified to the Grassmann manifold of p-dimensional
- subspaces of W. Recall that X is a compact manifold of complex dimension
p(n — p). The homogeneous action of G on X yields the following natural
identification:

T*X ~{(z;a) : z € X, a € Homc(%, z)}.

Let 1<p#¢<n-1,X=G/P,and Y = G/Pq; assume for simplicity
p < q < n —p. The diagonal G-action on X x Y has orbits

sz{(x,y)EXXY:dimC(xﬂy)‘——j} (7=0,...,p).

The closed orbit is S, ~ G/(P, N P,) (the flag manifold of type (p,q) in W),
So is the open generic orbit and the other S;’s are smooth locally closed sub-
manifolds. Again, for 1 < j < p one has the following useful identifications:

T3 (X x¥) = {(z,5:7) (z,9) € X x Y, v € Home(,2Ny)},

<

piz,y;) = (5% I L Torny Lo ),
ps(z,y7) = (g% " o Ny Soy).

where 7 and ¢ are the natural maps.

The holomorphic line bundles on X are parametrized (up to isomor-
phisms) by A € Z, and we shall denote by Ox(A) the —Ath holomorphic
tensor power of the determinant of the tautological vector bundle on X. In
other words, let F,(W) = {v = (v1,...,0p,) € WP 1 03 A--- Auy, # 0} (the
manifold of p-framesin W, an open dense subset of W?) and 7 : Fp(W) — X
the natural GL,(C)-bundle assigning to any v = (vy,...,v,) € F,(W) the
p-subspace of W spanned by the v;’s: then, for any open subset U C X one
has

L(U;0x(A) = {¢ € T(x~"(U); Op,(w)) : o) = (det A)*$(v) VA € GLp(C)}-

We will write Dy (A) = Dy ®o, Ox(A) for short.



4 Applications

We announce results in two different applications.

4.1 The Grassmann duality ([11])

In the above notations, let W ~ C", G = SL,,(C), \ =G/P,, Y =G/P,_,
(we assume p < n/2), Q@ = Sy and S = (X xY)\ Q. We consider the integral
transform from X to Y given by K = Cq and K = Bq = Thom(Cgq, Oxxy),
i.e. the sheaf of meromorphic functions on X x Y with poles on S. (This
choice generalizes the projective duality (see [5]), which is obtained for p = 1.)
The nice geometric properties of the correspondence (e.g. for any y € Y
the“slices” Q, = {z € X : (z,y) € Q} are affine charts of X) allow us to
prove that :

Theorem la. The functor - o Cq : D¥(Cx) — DY(Cy) is an equivalence
of categories preserving the objects with R- or C-constructible cohomolo-
gies; similarly, the functor - o Bq : D*(Dx) — D®Dy) is an equivalence
of categories preserving the objects with good coherent or reqular holonomic
cohomologzes.

The closed singular manifold S is a non- smooth (if p > 1) hypersur-
face of X x Y, Whitney-stratified by § = J 19 The group G acts
prehomogeneously. on X x Y with singular locus S, and this action is lo-
cally isomorphic to that of GL,(C) on M,(C) whose semi-invariant is f :
M,(C) — C, f(a) = det(a) with b-function b(s) = (s +1)---(s+ p). This
is a regular prehomogeneous vector space, and hence we get char(Bg) =
Ty (X x Y) U, T3, (X x Y). From the above identifications, it is then
easy to check that the microlocal correspondence T*X < char(Bq) — T*Y
induces a contact transformation between two open dense subsets Ux C T*X
and Uy C T*Y, whose graph A is contained in TS (X x Y), and moreover

~1(Uyx) = p¢*(Uy) = A. Using this fact and Theorem la, we obtain the
following result: '

Theorem 1b. Let \* = —n—A\: then D,\—(—)\)QBQ o~ D};-(—)\*) if b\ —v) #
0 foranyv=12,...,1e if A\>—-n+p.

Applying Theorem 1b to (1) and (2) we get the following isomorphisms



for any —n+p < A < —p and any H € D?(Cy):

RIO(X;H® Ox()\) =~ RI(Y;(HoCq)® Oy(\))[N],
RT (X5 RHom(H, Ox(2))) RI(Y; RHom(H o Cq, Oy (X")))[—N],

12

(where N = p(n — p)) and similarly for ® and RHom replaced by @ and
Thom when H has R-constructible cohomology. Hence, we are left with
the choice of H and the calculation of H o Cq. (Using the simmetry of the
transform, here we have written the formulas with H a sheaf on X rather
than on Y.)

Example 1. Let @ be a hermitian form of signature (p,n —p) on W ~ C",
and let Gy = SUp n—p(Q) be the corresponding real form of G. The Gy-orbits
in X are UJ; = {z € X : Q|, has signature (3,5)} for 0 < i+ j < p (the
only closed orblt is Up g, i.e. the Q-isotropic p-subspaces, and the open orbits
are U ; with 1 +j = p) Similarly, the Go-orbits in Y are U, = {y € Y :

@|, has signature (4,7)} for 0 <¢<p,j>n—2pandi+j < n — p. Let
yo € U" =Uf,_,, and let By = {z € X : 2Ny =0} ~ CV: then U' = U,

is a relatively compact open subset of Ey; similarly, fixed zo € U’, U” is a
relatively compact open subset of the affine chart Ef = {y € Y 1z Ny =
0} ~ C¥. Let us consider the closure U’ = U?_, Uj,, and choose H = Cg:

7,00
then it is possible to prove that Cg o Cq =~ Cy» and then from the above

adjunction formulas we get
RI(U7; Oy ) = RL(U"; Opy)[N], RIgr(Eg; Ogy) = RT(U"; Opy)[=N]

where all complexes are concentrated in degree zero.

4.2 The generalized Radon-Penrose transform ([3])

Let W ~ C""!, G = SL,;1(C), X = G/P,, Y = G/Pyy1 (with 1 < k <
n—2) and S = S;. Note that X is a n-dimensional complex projective space
and S is the flag manifold of type (1,k + 1) in W; one has dim¢ X = n,
dimcY = (k+1)(n—k) and dim¢ S = n+k(n—k). We consider the integral
transform from X to Y given by K = Cg[—(n — k)] and K = Bg. (This is a
natural generalization of Penrose’s twistors correspondence (see [6]), which is
obtained for n = 3 and k = 1.) We have char(Bs) = A = T§(X xY’), and thus
let us consider the microlocal correspondence T*X « A — T*Y: it is easy
to check that p;|; is smooth and surjective and p3|; is a closed embedding
identifying A to a smooth regular involutive submanifold V' C T*Y (in fact,



itisV ~{(y;08) :y€Y, e Homc(‘,1 ,Y), rank(3) = 1}), which implies
that the correspondence induces mwrolocally a contact transformation with
holomorphic parameters. Using the theory of [4], we prove that:

Theorem 2a. Dy (—\)oBg is concentrated in degree zero if and only if
A < 0, and H'(Dx(=)\)oBs) is a Dy-module with simple characteristic
along V.

For any A € Z we introduce a pair of G-equivariant holomorphic vector
bundles H, and H) on Y, and a G-invariant differential operator (the ultra-
hyperbolic system) Py acting between them. The description of these objects,
that will be given in detail in [3], depends upon the sign of \* = —k —1 — X
(positive, null and negative helicity cases in Penrose’s terminology [6]): it can
be partially found e.g. in [2, Ex. 9.7.1] and, in a real version, in [7].

Let Mp, be the coherent Dy-module associated to the differential operator
P,, i.e. Np, is defined by the exact sequence of Dy-modules (where D% X
Dy Qp, Hj and Pj is the transpose to Py):

’D-';{[,\* —PL} DH,* —“‘-—)Np/\ — 0.
The Dy-module Np, has simple characteristic along V, and we prove that:

Theorem 2b. For any A < 0, Dx(—A) o Bg is isomorphic to Np,.

Again, the application of Theorem 2b to (1) and (2) yields the following
isomorphisms for any A < 0 and any H € D?(Cy):

RI'(X,(Cso H)® Ox(A)) =~ RHomp, (Np,,H ® Oy)[—k],
RHOm((CSOH)*,Ox()\)) o~ RHOIHDY(NP/\,R'HO’m(H*,(9))')){——k]

and similarly for ® and RHom replaced by ® and 7Thom when H has
R-constructible cohomology.

If we choose H to be a locally constant sheaf of rank one on the closed
orbit of some real form Gy of G in Y, we can recover and improve many
known results of real integral geometry. We give two hints in this direction
(these results will appear in [3]).

Example 2. Let Wg be a (n+ 1)-dimensional real subspace of W such that
W ~ C ®@gr Wr, and let Go = SL,4,(R) be the corresponding real form of
G. Assuming for simplicity that k£ + 1 < (n + 1)/2, the Gy-orbits in Y are
Ni={y €Y :dimgr(yNWgr) =3} (j=0,...,k+1), and N = N, is



naturally identified to the real Grassmann manifold of (k + 1)-subspaces of
Wr. Similarly, the Gg-orbits in X are M; = {z € X : dimg(z N WR) = i}
(i=0,1), and M = M; is naturally identified to the real projective space of
Wg. It is known that N (in particular, Af) is not simply connected: namely,
one has m;(N) =~ Z/2Z. We denote by Cy(e) (¢ = 0,1) the two distinct
locally constant sheaves on N, with the convention that Cy(0) = Cy. For
example, for ¢ = 1 we recover and improve the results of [7], whereas for
¢ = 0 the results should be new.

Example 3. Let 1 <k <¢g<n-—1,Q ahermitian form on W of signature
(g +1,n —q), and let Gy = SUj41,0—4(Q) be the associated real form of
G. Assuming for simplicity that ¢ + 1 < (n + 1)/2, the Go-orbits in Y are
Ni; ={y € Y : Q|, has signature (i,5)} for 0 < i+j < k+ 1. The closed
orbit is N = Ny g, the Q-isotropic (k+ 1)-subspaces of W: one can prove that

N is a generic real submanifold of Y of dimension (k+1)(2n—3k—1), simply . -

connected if £+ ¢+ 1 < n and affine if k¥ = ¢. Similarly, the Gy-orbits in X
are Moo, Mo and M ;; the closed orbit M = M, is a simply connected real
hypersurface of X, and M, o and My are the two connected components of
X \ M. Here, we can extend some results known only in the case of Penrose
transform (see e.g. [1]) by calculating Cg o Cy.
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