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A NOTE ON BRUSS’ STOPPING PROBLEM
WITH RANDOM AVAILABILITY

"KATSUNORI ANO AND MASAKAZU ANDO

July 1998

ABSTRACT. Bruss (1987) has studied a continuous-time generalization of the so-called
secretary problem, where options arise according to homogeneous Poisson processes with an
unknown intensity of A. In this note, the solution is extended to the case with random
availability, that is, there exists a fixed known probability p(0 < p < 1) of availability, and
the number of offering chances allowed at most is m(> 1). The case when the probablhty of
availability depends on m is also studied.

Keywords: Apartment problem, secretary problem, Pascal process, optimality principle

1991 Mathematics Subject Classification: 60G40

1. Introduction

Bruss (1987) has studied the following problem. A decision maker has been allowed a
fixed time T in which to find an apartment. Opportunities to inspect apartments occur
at the epochs of a homogeneous Poisson process of unknown intensity A. The decision
maker inspects each apartment immediately when the opportunity arises, and he must
decide immediately whether to accept or not. At any epoch he is able to rank a given
apartment among all those inspected to date, where all permutations of ranks are equally
likely and independent of the Poisson process. The objective is to maximize the probability
of selecting the best apartment from those (if any) available in the interval (0,T]. This is
an extension of the problem studied by Cowan and Zabczyk (1976), who assume that the
intensity A of the process is known. Bruss (1987) has shown that if the prior density of
the intensity of the Poisson process is an exponential with the rate parameter a > 0, then
the optimal stopping rule is to accept the first relatively best option (if any) after time

= (T 4 a)/e — a. Sakaguchi (1989) has studied the full-information problem. These
problems may be regarded as the extented problem of the classical secretary problem,
whose history is reviewed in the papers of Ferguson (1989) and Samuels (1991).

This note extends Bruss’ problem to the problem in which each owner of apartment
can accept the offer proposed by apartment’s searcher with a fixed known probability
p(0 <p<1,9=1-p), and the decision maker is allowed to make at most m(> 1) offers,
even if an apartment is not available n drops to m—1, where m is a predetermined number.
The case of p = m = 1 equals Bruss’ problem. The secretary problem with random
availability of each secretary is sometimes called the problem of uncertain employment.
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Smith (1975), Tamaki (1991), Sweet (1994) and Ano, Tamaki and Hu (1996) have studied
the problem of uncertain employment. From a realistic point of view, this setting of random
availability seems to be attractive. :

- We show that the optimal stopping rule for the problem with a Poisson arrival at
intensity A > 0 having a prior exponential distribution with rate parameter a > 0 and
a probability p availability when we can make m more offers is to make an offer to the
first relatively best option (if any) after time s, = (T + a)exp{—C(™(¢)} — a, where
C(™)(q) is constant. For a = 0, it is interesting to compare the values s? = Texp{—1},
s5 = Texp{—(1+ q/2)}, s5 = Texp{—(1+ q/2+ ¢%/3 + ¢®/8)},... with the values
s] = nexp{—1}, sj = nexp{—(1 4+ ¢/2)}, 5] = nexp{—(1+¢/2+¢*/3+ ¢*/8)},... for
large n in the no-information secretary problem with probability p of availability, which
has been solved by Ano, Tamaki, and Hu(1996). They have studied the case of a fixed
sample size n of apartments and shown that the optimal stopping rule is to give an offer
the first relatively best option which appears at period s}, or after period s,.

In Section 2, we formulate the problem. Section 3 gives the optimal stopping rule for
_the cases with m = 1,2. Section 4 involves a consideration of the general case with m > 3.
Section 5 considers the case when the probability of availability depends on m.

2. Formulation

Let 71,79,... denote the arrival times of a Poisson process in chronological order, and
let {N(t)}s>0 be the corresponding counting process. For the unknown intensity \ of the
process, we suppose a prior gamma distribution with parameters a and [, i.e.,
a'A=Hexp(—a))/(I — DI}I(A > 0), where a is a known nonnegative parameter. The
corresponding conditional density of A given {7; = s} can be straightforwardly computed
and yields

FAlri = ) = AF (s + a)* {exp(=A(s + a) /(1 +i — 1)!)}

The posterior distribution of N given {r; = s} is found in Bruss (1987) and turns out
to be a Pascal distribution with parameters (¢ + ) and (s + a)/(T + a), i.e.,

(2.1) P(N(T) = nir: = §) = (T;ill:ll) (;:Z)Hl (:ﬁli)n—

When [ = 1, the prior gamma density equals an exponential density. Hereafter we focus
on the case of [ = 1, because then we can show that the one-step look-ahead function
(defined later) is independent of 3.

We define the state of the process as (i,m,s), when we observe that the :th option
arriving at time s is the relatively best option, and we can offer more m options thereafter.
Let Wi(m)(s) denote the maximum probability of obtaining the best option starting from
state (¢,m, s). Similarly, let U,-(m) (s)(Vi(m) (s)) be the corresponding probability when we
make an offer(we don’t make an offer) to the current relatively best option and proceed
optimally thereafter. Then, by the principle of optimality, we have for i,m > 1,
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(2.2) W?%@znmqwm@%wmgnﬁnsemj]

with boundary conditions W (m)(T) p for 1,m > 1 and Wi(o)(s) = 0 for all 7 and s.
Using (2.1), we can show (I = 1)

U™ (s)=p Y (i/n)P(N(T) = n|ri = s) + ¢V{" " (s)
n>i

(2.3)‘ =p(;i )+ V™).

Let p(k ") denote the one-step transition probability from state (i,s,m) to state (7 +
k,s+ y,m) We then have

' T—s
(24) V= [ W s+
0 k>1

and for k > 1, € (0,T — 3],

(k) /00 ,\e—kﬂ()\‘u‘)kwl i e—Msta) )i (3 +a),+1 0

2.5 =
28 pi (k=1 (i+k—1(G+k i
_ s+a (i+k 2)( s+a )z( u )k—l
T (sta+p)2\ k-1 sta+pu s+a+p '
(2.5) follows from [~ AkFle=Metatmgy = T(k 44 + 1)/(s + a + p)k+it,
Let B, be the one-step look-ahead stopping region, that is, B,, is the set of state
(,$,m) for which giving an immediate offer to the current relatively best option is at least

as good as waiting for the next relatively best option to appear to whom an offer is given.
Thus

B = {(sm) : UM 2 [ S o0 + )
k>1

Let

m k,
g™ (s) = U™ (s) - / S BEIUS (s + wydp
k>1

and we call gz(m)(s) a one-step look-ahead function. Then B, = {(i,s,m) : gl(-m)(s) > 0}
and ggm)(s) can be written as follows from (2.3) and (2.4): |
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i) =p (5o ) + V)

+
k, stu+a m—
—/ Zpgzs’;){ ( T+a >+ V( 1)(5+“)}d#
0 k>1
T—3s
_ sta (k) (8t pta
(7)o ()
T (ko) rypy (m=1) (m—1)
+‘1/ D pany Wy (s 1) = Vi (s + )}
k>1
s+ a s+a
‘p(T+ ){Hk’g(ﬂ )}
T (k) pyr(m=1) (m—1)
’ m m
(2:6) +‘1/ Zp(u’; Wik s+ p) =V “(s+p)ldu,
k>1

where we use ), PEf;‘S) (s+a)/(s +a+ u)?, because pE A = (s+a)/(s+a+p)? x{
Pascal distribution with parameters (k, u/(s +a+ p))}. It 1s well-known that if B,, is
closed, e.g., By = {(i,8,m) : 7; = 8 > s}, } for some specified value s},, then B, gives the
optimal stopping region.

Let A{™(s) = p~}((T + a)/(s + a))g\™ (). Then, By, = {(3,s,m) : h{™(s) > 0}, so
that we again call hEm)(s) a one-step look-ahead function.

3. The cases m=1,2

Theorem 3.1 (m = 1). The optimal stopping rule for the problem with random arrivals
on (0,T] following a Poisson process at intensity A > 0 having an exponential distribution
with rate parameter a > 0 and availability probability p (0 < p < 1) when we can make

_one more offer (f any) thereafter is to make an offer for the first relatively best option after
time s7 = (T +a)/e —a.

Remark: It is interesting to se that p has no influence on the optimal policy.

Proof. The one-step look-ahead stopping region for m = 1, By, can be written as By =
{Gr,1) : A(3) > 0} = {(3,5,1) : 1+ log (s + )/ (T +@))) 2 0} = {(5,5,1) i 13 = s >
st}, where s} = (T + a)/e — a. Thus By is closed and gives the optimal stopping region.

Theorem 3.2 (m = 2, Same conditions as in Theorem 3.1). The optimal stopping
rule is to make an offer for the first relatively best optwn after time 32 =(T+a)exp{—(1+

q/2)} — a.



62

Proof. From Theorem 3.1, we have
Wik + m)=VEk(s + )
Uh(s + 1) = Jy " Tt e UL s + w)dp for s+ > s
{ V(s +p) — V(lk(s + 1) for s+ p < st
(3.1) =g (s + w)I(s + u > s})

where I(A) is an indicator function of A.Let hgm)(s) = (T + a)/((s + a)p)g(m)(s) and
we write hgl)(s) as h((s) because h(V)(s) is independent of ¢ and A (s) = 1+ log((s +
a)/(T + a)). From (2.6) and (3.1),

1T +a
B (s) =7 sl (s)

T+a s+a s+ a
a1
=P s+a{p(T+ >“+k%(T+a)}

aT+a s+uta .
1 stal / Z Ef’sl;) M h(l)('3+#)1(8+u_>_31)d,u
k>1

T—s
s+a 1 S+ u+a
s (5E0) o f .___..(MO (st0)),
g(T+a) 1 (st—s)+ S+ pu+a 8 TH+a #
Then, for 0 < s < s7,
$+a
(32) K = log (212) + c(g)

where the constant C(?)(g) is calculated by changing variable (s + u + a)/(T + a) to v as
follows.

T—s
1 s+u+a
3.3 c®(g) =1 ‘/ —u—u-(1 1 (—ﬂ——~*))d
( ) (Q) +q (T+a)/e—a—s st+uta + °8 T+a a

1
1
=1 —}—q/ ;(1+logv)dv =1+¢/2.
€

Therefore we have for s € (0, s},

@ =14 2 STAY (= p@
KO =1+ Latog (512 (= 1906,

which is nondecreasing in s € (0, s}]. For s € [s},T], R()(s) is nonnegative, because h(1)(s)
in nonnegative in s € [s1,T], Then we have By = {(1,s,2) : h?)(s) >0} ={(¢,8,2) : i =
s > 53}, where s3 = (T + a)exp{—(1 + ¢/2)} — a(> s}). Thus B, is closed and gives the
optimal stopping region.

4, The case m > 3

We extend the results of Section 3 to the general case with m > 3.
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Theorem 4.1 (m > 3 Same conditions as in Theorem 3.1). The optimal stop-
ping rule is to make an offer for the first relatively best option after time s;, = (T +
a)exp{—C(™(q)} — a, where C(™)(q) is constant. s¥, is nonincreasing in m.

Proof. We carry out an induction on m. It is sufficient to show that B,, is closed and
hEmH)(s) > hgm)(s) for any m. So we assume that (Al) hEm)(s) is independent of ¢, is

nondecreasing in s € (0,s* _.], is nonnegative in s € [sX _;,T], and can be written as
19 m-1l> m—1>=" D .

(4.1) R™ (s) = C™(q) + log (Tj—) for 0 < s < 8%,
where
\(m) e 1 (m—1) )
. ™ (q) = —— plm=
(42) @=14a et

and (A2) R (s) > h(™)(s) for all s € (0,T] and sy, 44 <5

Note that the hypotheses imply that B, is closed and can be written as B, = {(i,8,m)
R™(s) > 0} = {(i,5,m) : 7y = s > s}, },where s, = (T + a) exp{—C™(q)} —a < s},_;.

When m = 1, the induction hypotheses are valid from Theorems 1 and 2. For the rest
of the proof, we show that both (A1) and (A2) hold with m replaced by m + 1.

From the hypotheses, we have

W (s 4+ 1) = Vi (s + 1) = gi™ (s + ) I(s + 1 > s,).
s+ u+a

=p 2T 7 p(m) I > 8* .
I (s+uwI(s+p2>sy)

Then, from (2.6)

m g4I+ a (m 1)
pimtD) oy o -1 2 T Omt
s =P e ()

= 1+1og (122

1 T+a [T stpu+a, i, ,
+p7! qf Soplts BT DR (s 4+ p)I(s + p > 83y )dps
0

rally 2PN e
S+a T+a T-s 3+a S+M+a
+0g(‘T+a) q3+a‘/(s;l..3)+(3+u+a)2 T+a (s + p)dp

T—-s
s+a 1
=1+log| =—— / ~————~h(m)s+ du.
g<T+a)+q ot ST AT (s + p)du
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Thus, A{m+1(s) is nondecreasing in s € (0,s% ], and is nonnegative in s € [s* , T}, because
h{™)(s) is nonnegative in s € [s%,,T]. For 0 < s < 5%,

m sta m
(43) (o) = tog (17 ) + 0,

where

T—3 1

cmtD(g) =1 +‘1/

RU™ (s + p)dp
(T+a) exp{~C(m)(q)}+a—s ST+ a )

1

(4.4) =1+ q/ —h(m)((T + a)v — a)dv.
exp{~C(m)(g)} ¥

Therefore (A1) holds with m replaced by m + 1.

As follows, it can be easily shown than (A2) holds with m replaced by m + 1. From
(4.1) and (4.3), we have

RO+ (5) — B4 () = q/ _
( ) (8:n+1_3)+8+[1«+a

T~s 1
h(m+1)(5 + p)dp

e 1 om
—q  pm d
q[s;—s)+3+ﬂ+a (S+M) K

T
1
> — (A (s 4 p) = AU (s + )}
20 e = s
2> 0.

The first inequality follows from the second part of the hypothesis (A2), and the last one
follows from the first part of the hypothesis (A2). The proof is complete.

The constant C®)(q) is easily computed. From (4.1), we have

1+4+1o sta ) for 0 < s < 8§
h(Z)(s) - { g (T—l—a) . 1

1+(l—~q)log(T+) 1 1og? (“""“), for s] <s<T.

We thus get
® o (2)
c® =1+/ — L (s 4 p)d
(9) q (s—ayt ST AT (s+ p)dup
1
—_—1+q/ h(z)((T+a)v~—a)dv
~c(Dq) v
=1+Q’/e_1 l(1-i~g-+-logv)clv+q/1 ~1-(1+(1—q)10 v—glo2v)dv
e~ (145 v 2 -1 U 8] 2%
2 3
142,94 .2
=ittty
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Then s% = (T + a)exp{—(1 +¢/2+¢*/3+ ¢*/8)} —a.

For a = 0, it is of interest to compare the values s} = Texp{~1}, s = Texp{—(1+
q/2)}, st = Texp{—(1+q/2+ ¢*/3+ ¢*/8)} ,--, with the values for large n, s =
nexp{—1}, 53 = nexp{—(1+ ¢/2)}, 8§ = nexp{—(1+ /1 +¢2/3+ ¢/8)} -, of the
no-information problem with random availability, which has been solved by Ano, Tamaki,
and Hu (1996).

5. The case when availability probability depends on m.

We assume that pm@mi1/Pm+1 = Pm—19m/Pm, (gm =1 — pp) for m =2,3,.... Under
this assumption, we can see that the one-step look-ahead stopping rule for this problem
is optimal. By the same method developed in Sections 2,3,and 4, we have the following
one-step look-ahead function,

(m) _ s+a s+ a
im0 = (352) {1 (552)]

T—3s
K, m— _
am /0 oW V(s +p) = VT V(s + w)ldp,
k>1 ,

Let 1™ (s) = pzl((T+a)/(s+a))g{™ (s), then for m = 1, k) (s) = 1+log((s+a)/(T+a)),
which is independent of i, and is nondecreasing in s. Therefore the one-step look-ahead
stopping region for m = 1, By, is written as By = {s : s > s} = (T + a)/e — a}, is closed
and gives the optimal stopping region for m = 1, where sJ is a unique root of the equation

RV (s) = 0.
For m = 2, we have
+a pg [T7° 1 1
5.1 P (s)=1+1o (S >+ / W5 4+ p)dp.
( ) () ) g T+ a P2 (3-{_3)+5+ﬂ+a ( ,u),u,

For s € (0,s1], K®(s) = 1 +log((s +a)/(T +a)) + (p192)/(2p2), which is increasing in s €
(0, s¥]. For s € [s},T], h®(s) is nonnegative, because R (s) is nonnegative for s € [s}, T1.
Therefore B, can be written as By = {s: s > s3 = (T +a) exp{—(1 + (p142)/(2p2))} — a},
is closed and gives the optimal stopping region for m = 2.

For m > 3, we have the following theorem. It is essentially the same approach employed
in Section 4 to prove it, so we omit the proof.

Theorem 5.1. Suppose that pmqm+1/Pm+1 = Pm—19m/Pm for m = 2,3,.... The optimal

stopping rule for the problem with random arrivals on (0, T] following a Poisson process at

intensity A > 0 having an exponential distribution with rate parameter a > 0 and availabil-

ity probability p., (0 < pm < 1) when we can make m more offers thereafter is to make an

offer for the first relatively best option after time s¥, = (T'+a) exp{—C™(p1, - ,pm)}—a,

where C™)(py,--- ,pm) is constant. s}, is nonincreasing in m.
The constant C™(py,- -+ ,pm) is given by

' ~1qm [~ 1 (m—
C(m)(pl. o, pm) =1+ Pm-19m / : Zpm 1)((T + a)v - a)dv,
Pm (st +a)/(T+a) V : T
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where the one-step look-ahead function, A{™)(s), for this problem can be written as

h(m)(s)::1+log<s+a)

T+a
Pm—19m Ts 1 (m—1)
+L__/ — AU 4yt a)dp.
Pm (s2._, -9yt Stpta ( )y

Monotonicity of s}, can be shown using the same induction on m as the proof of Theorem
4.1 and the assumption on p,, as follows.

(m+1) (m)(g) = PmIm+1 - 1 (m+1)
h s)—h s) = f h s+ p)dp
( ) ( ) Pm+1 (st —s)t s+u+a ( )

T—s

_ 1

_M/ LY COPRTRES
Pm (s*._,—s)+ Stuta

. |

(pmqm+1 _ pm—lQm) / ) —R(s + p)dp
(

0

v

Pm+1 Pm ot _,—9)t S +u+a

Vv

Using h(z)(s) = log((s + a)/(T + a)) + 1 + (p1g2)/(2ps) for s € (0 sy] and h(é)(s) =
log((s+a)/(T +a))+1—(p192)/(2p2) {log((s + a)/(T + a)) + (1/2) log*((s + a)/(T + a)}

for s € [s1,T], we have

o1

1
C( )(plap2>p3)—"1+p2qa (1ogv+1+plqz)dv
Ps3 (1+p1q2/p:) U P2

D243 1 P192 s+a P192, o
Rl 1+(1——-—-)10 ( )—- lo v}dv
P3 e—1 U { P2 & T+a 2p2 &
DP293 (l P14¢2 P%‘j!%)
Ps3

2 3p,  8p3

and then s3 = (T +a)/ exp {1+ (p243)/(2ps) + (P1P29205)/(3p2ps) + (pip2a3as)/ (8p3ps) }
—a. When p; = p; = p3, (1 = ¢2 = ¢3 = q), the values, s, s3, s}, coincide with the values,
87,83, 383, In Section 4. :

6. Outlook for further research

The full-information version of our problem, i.e., extension of Sakaguchi (1989), is re-
mains to be solved.
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