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REASONABLE OUTCOMES IN COOPERATIVE
TU-GAMES

HH BE (Kensaku Kikuta)*

Abstract
The reascnalde set of a cooperaiive game was defined by Milnor
(1952). TIn tius article several subsews of the reasonable set are de-
fined by extending the definition of the reasonable set. Some inclusion-
relation between solution-concepts in cooperative games and these sub-
sets are examined. '

1 Introduction and Preliminaries.

The reascuable sei ¢f a cooperative game was first introduced by Milnor
(1952). Adding a lower bound to the reasonable set, Gerard-Valet and
Zamir (1987) defined a set of reasonable outcomes and justified it by ax-
iomatization. These sets as well as the imputation set are considered as
pre-solution-concepis. Le., it is asserted not that outcomes within the sets
are necessarily plansible, but only that those outside the sets are implausible.

Since the reasonable set is large, it would be preferable if we could define
a subset of the reasonable set and if 1t enjoys any reasonability in the sense
that those outconres nutside the set are implausible. A decision-maker would
get a more precise wuideline, if he has a smaller set as a pre-solution. Milnor
(1952) defined othier two pre-solutions, known as ”L” and ”D”, which put
fower and upper bounds on the payoff to any coalition. Milnor proved that
?1.” and the efficient part of ”D” are non-empty for certain classes of games.
Kikuta and Shaplev({198G) gave an example showing ”L” and the efficient
part of "D” are emply sets.

In this paper, we try to define a subset of the reasonable set, extending
the definition of the reasonable set, and give properties of it.

*Department. of Maunagement Science, Kobe University of Commerce, Gakuen-Nishi
8-2-1, Nishi, Kobe 651 2197, Japan. e-maitkikuta@kobeuc.ac.jp
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An n-person cooperative game with side payments (abbreviated as a
game) is an orderoa paiv (N;v), where N = {1,2,...,n} is the set of players
and v, called the ciraracteristic function. is a real-valued function on the
power set of N, satisfying v(f) = 0. For simplicity we express a game (N, v)
as v. A subset of N is called a coclition. For a coalition S, (S,v) is a game
in which § is the sel of players and v is restricted on 2%. For any set Z, |Z|
denotes the cardinality of Z. For a. coalition S, R® is the |S|-dimensional
product space R with coordinates indexed by players in S. The i-th
component of » € 1~ is denoted by ;. Vor S C T C N and z € RT, z|§
means the projection of & to R%. For v,y € R®, x < y (or y > ) means
xi < yiforalli¢ S For S CN and v € RN, we define 2(5) = ¥ cq 2
(Gf S # 0) and =6 (if S = 0). A pre-imputation for a game v is a vector
¢ € RN that satisfies

(1) 2(N) = v(N).

X*(v) = X*(N,v) iz the set of all pre-imputations for v. For a coalition S,
X*(S5,v) is the set of pre-imputations for (5, v).

2 Reasonable Set.

For a game v, let »;{5 v) = Maz{v(T)—-v(T\{i}): 1€ T C S}foralli e S
and all § £ .5 C N, ofT)—v(T\{i}) is the marginal contribution of Player ¢
to the coalition 1", {5, v) is the maximal marginal contribution of Player 7
in the game (9, v). Suippose @ € X*(v). We say z is reasonable (See Milnor
(1952)) if for cach ¢ ¢ N,

(2) ‘ x; <ri(N, o).

(2) means il Player ¢ is to get the amonnt a;, there should be at least one
coalition to which he contributes at least x;. The reasonable set, written
as R(v) = R(N,v). is the set of -all reasonable pre-imputations. Milnor
(1952) showed that the Shapley value(Shapley (1953)) is in R(v), and that
von Neumann-Morgenstern solution is in R(v) also. The reasonable set
considers the maximization over all coaiitions which the player belongs. We
extend (2) to subecoalitions so that a; 4 27 < r;(S,v) for z € X*(v) and
Sies(@i +&7) = v(5). More precisely, first we extend (2) as follows. For
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& € X*(v), for some weight w = {w }scn with e w? = 1forall S C N,
and for all S C N, :

(3) ci W u(S) = 2(8)] < (S, v).

v(S) — 2 (S) is called the excess of S at a (See Maschler (1992)). When
z(S) = v(S) (i.e.. «|5 € X*(5,v)), then 2|5 is a distribution of v(S) and
(3) becomes to x; < ri(S,v). When S # N and 2(S) # v(S), let z¥ =
z; +w[v(S) —2(S)]. The excess v(S) —x(S) must be added to z;, according
to a weight w, so that 2”(S) = U(S). Let W be the set of all weights,

e W = {w = {0 tscn| D w) = 1forall S C N}. For a fixed weight
1ES

w = {wS}Sg]\,’, denote by R(v;w) the set of all pre-imputations satisfying

(3).

(4) R(viw) = {x ¢ X*(v)|(3) forall i € S and all S C N} .

Theorem 1 |J R{v:w) = R(v).

we Y

Proof: (3) implics () by letting S = N and by (1). So R(v;w)
all w € W. Next suppose @ € R(v). or any S C N such that

system of inequalitics and an equality with respect to w®:

R(v) for

C R(v)
S#N,a

(5) wllu(9) - w9 < (S, v) — a; for all i € S, and w3 (S) = 1.

is feasible since S wlo(S)—2(9)] = v(S )2 (S) < 3 iesri(S,v)—2(S) =
Yoieslri(S,v) - 4 i, lha is, there is w” which satisfies (5) for each S C N
such that ‘) ;é N. For S = N, we have (2) for all ¢ € N since z € R(v).

Consequently, @ € U R(v;w). o
et

By Theorem 1, I/{¢) is interpreted alternatively. Le., z € X*(v) is reason-
able if and only il for some w = {w>}ycw~. and for any S C N, 25 = {:B;g}
is in the reasonable set of (S,v).

! By Theorem 1 below, there is w € W such that R(v; w) is not empty.
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3 Sub‘sets of the Reasonable Set.

In this section we reduce R(v), by considering a subset of W as a set of
admissible weights. DPlayers i,j € N is called symmetric if v(S U {t}) =

v(S U {j}) whenever i, € S (See p.G06 of Maschler (1992)). Player ¢ is
called dummy if ©(5 U {i}) = v(S) + v({i}) whenever ¢ ¢ S. A weight
w = {w?} is called symmetric w.r.t. v if, whenever ¢,j € N is symmetric,

f ) = wf;? forall S:1,7€S

6 Vi L st |
(6) { 'm;““ = w}_u{]} forallS:4,j ¢ 8.

A weight w = {w]} is called dummy w.r.t. vif w® =v({i}) forall S:1€ S
when 7 is dummy. W?*(v), W(v), and, Wed(v) are the sets of weights
which are syminetric, dummy w.r.t. ¢, and symmetric and dummy w.r.t.
v respectively. Let R*(v) = |J R(viw) where * is s, d or sd. Let ¢ be

welV*

a function defined on the set of all games with ¢(N,v) C X*(v) for (N,v).
We call ¢ a solution Tunction. In particular, if ¢ satisfies ¢(NV,v) C R(N,v)

for (N,v) then we say # is reasonable. We consider two properties of ¢.

Symmetry: ¢ is calicd symmetric if synimetric players in (IV, v) receive equal
payments in each point in ¢(N,v).

Dummy : ¢ is called dupuny if each duvmy player ¢ € N in (N, v) receives
v({i}) in each point in ¢(N,v).

Theorem 2 Supposc ¢ is a reasonable solution function.

(i) If ¢ is symmciric. then ¢(N,v) C R*(N,v) for all (N,v).

(ir) If ¢ is dumnany. then ¢{N,v) C RYN, v) for all (N,v).

(iii) If ¢ is symmetric and dummy, then &N, v) C R*¢(N,v) for all (N,v).

Proof: (i) Suppose i, € N are symmetric and z € ¢(N,v). Then z; = z;.
By Theorem 1 there is w € W such that » € R(v;w). Suppose ¢,j € 5. By

(3)7

(7) ay 4+ w?e(S) - 2 (5)] < ri(S,v) and @ + -wf[v(S)'m z(S)] < r;(S,v).
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Here by the symmetry of 4, j we have o(T'U {i}) - o(T) = v(T U {j}) — v(T)
for al T'C S : 4,5 ¢ 7. Furthermore, v(T) — v(T\{i}) = v(T) — v(T\{j})
forall T C .S :4. )« . This implies r;(5.v) = r;(S,v). So let wI;-9 = wIJS =
(w? + wf )/2. Theu (7) holds even if w? and wf are replaced by w/¥ and
'wljs respectively. Next suppose 4,5 € 5. Forall k € S,

Ty -+ u‘:u{;}[v(ﬁ' U{i}) — x(SU{i})] < re(S U {i};v).

2+l U (S U — e (SU D] < (S U {5, ).

Here we note that 1. (S U {i},v) = ri(S U {j},v) since v(T U {i}) —~v(T'U
{N\{k}) =T U {j}) = (T U{7}\{k}) by the symmetry. Further, v(S U
{i}) = (S U{j}), and 2(SULY) = 2(SU (7). So let wry 7 = w2} =
(w,‘?u{z} + u!}:U{"’})/‘“_Z for all & € S. For the other components of w/, let
wit! = w{f for all & & 7. Then w! satisfies (G) for 4 and j. If there are more
than 2 symmetric piayers, the same argument applies.

(ii) Suppose ¢ € N is dammy in v and @ € ¢(N,v). By Theorem 1 there is
w € W such that « ¢ R(viw). By assumption, x; = v({:}). By definition,
ri(S,v) = v({i}) for all 5 : i € 5. (3) becomes

w.;-s[v(S') —a(9)] < 6 and a;+ w?[v(S) ~a(S)] <r;j(S,v) forall j € 5,5 #i.
Since ¢ is dummy, v, (5, v) = r;(S\{i},v) for all j € S\{i}. So let ws/{ =0,

S — 2N A e 9\ 45
and w!} = w; oy all j € S\{¢}.

(i) Suppose a ¢ (N, v). Suppose i,j € N are symmetric and k € N
is dummy, and suppose @ € ¢(N,v). Then z; = z; and zy = v({k}). If
k=1o0r k=7, then v; == 2; = v({k}) and the argument reduces to that
of (i). Suppose & £ i aud k # j. By (i) and (ii) of this theorem, there
are w € W*(v) and w' € W9(v) such that @ € R(v;w) and z € R(v;w’)
respectively. Define «” € W*(v) as follows. If ¢,5 € S and k ¢ S then let
w’ = w’. I i,j¢ 5 and k€S then let v = w'S. If 4, j ¢Sandk ¢S

then let -w”S e u!"{'(’r[ = ,(”/,S" Supp()S(—.‘ '1',]‘ € S a.nd k’ c S.

i + W' [u(S) ~ w(S)) < (S, v) and a; + w'f[v(S) ~z(5)] < r;(S,v).

Noting that x; == x;. {5, v) = r;(S, v), let
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: w’ + w’ ; S
15 " = e e 2 == w; = 0, "y = wffor all KE S\{z,J,k}

w j )

Suppose i,j ¢ 5.

v+ 0T (S U (Y) — 2(S U D] < re(S UL}, v)

and ‘
ze+ 't VoS UL = (S UGN S (S UG, v).
Let
sSufif 1Suis}
LSUi ", + w’;
‘UJ";’Ui': - IDHfU{J} — ¢ t £ for‘all teS
and

" oyt SU{i} ,SU{5}
e S A wy +w';

| ' Y 2
For other components of «”, let w”S = w¥ for all k € U and all U C N. 3

Several solution functions are symmetric and dummy. We have the next
corollary. The definitions of solution-concepts are omitted here. See Shap-
ley(1953) for the Shapley value, and Maschler(1992) and Schmeidler (1969)
for others.

Corollary 3 The Shapley value, the nucleolus, the prenucleolus, the kernel,
and the prekernel of ¢ are in R (v).

4 Core and a Subset of the Reasonable Set.

The core ofdgamw ,,:l(!hnnd by C'(N,v) = {a € X*(v)]|2(S) > v(S) for all S C
N}. A game vis called i-zero-monotonic* it v(S)—v(S\{:}) > v({}) for all

S such that i € 5. .\ game v is called zero-monotonic it v is i-zero-monotonic

for all i € N. A weight w = {w?} is called i-non-negative if w? > 0 for all

S such that i € S. For i € N, W is the set of all i- non-negative weights.
Let M (v) be the m! ol ¢ € N such that v is i-zero-monotonic. For ¢ € M{v),

we let R (v) = U, 2yps B(0;w). Then we let RY (v) = ﬂiEM(v) Rt (v)

qplumont(l‘)‘l\l) de hm s the convexity of Player ¢ and also an i-veto game.
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Theorem 4 [f « guine v is zero-monotanic and the core of v is non-empty,
then the core is in Y {v).

Proof: First we need a lemina.
Lemma. Suppose a game v is i-zero-monotonic. For z € X*(v), suppose

2 (S) > v(S) for all § sach that i € S. Theo 2 € R (v).

Suppose 2 is in the core. By the definition of the core and by Lemma, we
have v € R'7(¢) fer all { € N. Hence v € BT (v).

Next prove the leinma. Assume v(S) — «(9) < 0 for S such that € S.
(3) becomes w} > (9, v) — a;]/[v(S) — «(S)] for all j € S. Hence a set
{w?] (3) holds for allj € 5,w¥(S) = 1} is compact. So let @ = max{w?|w €
W and (3) holds for allj € S}. Assume « < 0. Suppose for w5, ! = . If
wﬁs[v(.S') — (9| < r;(S,v) ~ a; for some j € S, then define w” by w!’® =
wi® 41, wi® = w” ~ for i > 0. Then «”" will satisfy (3). This contradicts
the definition of . Hence we must have w'”[v(S) — z(S5)] = r;(S,v) —z; for

all j € S\{i}. Adding these together, and noting that 1 — o= 3"¢\ 1y w;-S,

s\ rilsie) = a(S\{i})
- v(5) ~ 2(9)
which implies ) oy (5. v) + 2 < v(5). But the left hand side is greater

than or equal to ©(\5), since @; > v({i}). This is a contradiction. Hence
o > 0. Assume v{Y) — «(5) = 0. In this case we see a > 0 trivially.

Consequently, we can find w € W, This completes the proof of the lemma.
|

Al

> 1,

A game v is called tofaily balanced if each subgame (S, v) has the non-empty
core. [t is well-known that if a game is totally balanced then the core is
non-empty and the game is zero-monotonic. So we have the next corollary.

Corollary 5 [f a yame v is totally balanced then the core of v is in RT (v).

5 Examples.

Gerard-Valet and “awir (1987) characterized and justified the set of rea-
sonable outcomes. whick is defined by R'(v) = [1;en Ri(v), where Ri(v) =
[ (v), ri(N,0)]. and i (v) = mingues{e(S) — v(S\{i})}. Both of R'(v)
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and R*(v) are included in R(v). In general, there is no inclusion relation
between these two. as is seen by the next example. R°(v) is not a convex
set in the next example.

Example 1. Lei n =3 and v(123) = 100, v(23) = 80, v(12) = v(13) = 30,
and v(l) = v(2) = (’3) = 0.

R(v) = {ley, 09, 203) € X*(v)lr; < 30,25 < 80,23 < 80}.

R'(v) is the noun-uegative part of R(v). R*(v) is the region included in
| g

' - Tod 1w o zy gy 4. L — 30=z2 30—z,
R(v), surrounded Ly wy + % < 90, a3 + 5+ <90, 1 = .7:3-70 + 5°5% and

1= ;2 =L+ ‘U"m Note that w?® = w3 = % and wi? = wi3 since Players
1 and 2 are symmietric. R*(v) includes a point such that z, < 0, which is
not contained in ['{¢), while R°(v) does not contain (0,80,20), which is
contained in I¥/(v}. R*(v) is not a convex set in this game v. The core is
the region in R'(v) such that a; < 20, 2y < 70, and 23 < 70. The core is
included in R*(v). RV(v)is a quadrangle, the corner-points of which are
(30, -10, 80),(0, 20.80).(0, 80, 20), and (30,80, —10).

Figure 1

In the next exarple, the core includes R*(v).

Example 2. lLet n = 3 and v(123) = 1, v(12) = v(13) = v(23) = 1, and
v(1) = v(2) = v(3) == 0. R*(v) is the region in X*(v) such that z; + %L < %
for i # j. The core is the vregion in X™*(v) such that 0 < @; < 3fori=1,2,3.
So R*(v) is included in the core. RY(v) coincides with the core.

Figure 2

z € X*(v) is called pairwise reasonable (See pp.606-7 of Maschler (1992)) if
for every pair of Plavers i, 7 € N, :

Wi < SC%?&”[U(JS u{i}) —v(SU{j}]

The next example says that there is no inclusion re]atlon between R(v) and
the set of paitwise reasonable preimputations.
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Example 3. Let o = 3 and v(123) = 6, v(12) = v(13) = 0, v(23) = 10,
and v(1) = 0(2) = 2(3) = 0. 2 € X*(v) is pairwise reasonable if and only if
Ty = a3 and @y < aa < oy 4 10, while @ € R°(v) if and only if 2o = 23 and
~14 < xy < 0. RY(0) coincides with R(v).

References

[1]

[2]

[3]

Gerard-Valet, 1..A. and Zamir S. (19%7). Remarks on the Reasonanble
Set of Outcomes in a General Coalition Form game. Internat.J.Game
theory 16 pp.123-143.

Kikuta,K. aud Shapley L.S. (1986). On Milnor’s Classes ”L” and ”D”.
Internat.J. Guive theory 15 pp.231-236.

Maschler,M. {1992). The Bargaining Set, Kernel, and Nucleolus. In:
Aumann R.J. and Hart S.(eds). Handbook of Game Theory with Eco-
nomic Applications i, Handbooks in Economics 11, Elsevier Science
Publishers, Amsterdam pp.591-667.

Milnor, J.W.(1952). Reasonable outcomes for n-person games. RM 916,

The Rand corporation, Santa Monica, CA.
Y

Schmeidler, 1.{1969).The Nucleolus of a Characteristic Function Game.
STAM J. Appl. Math. 17 pp.1163-1170.

Shapley, 1,.5.01953). A Value for n-Person Games. In: Contributions
to the Theory of games 1T (Annals of Mathematics Studies 28), ed. by
H.W. Kuhun and A'W. Tucker. Princeton University Press, 307-317.

Sprumont,Y.(1990).Population Monotonic Allocation Schemes for Co-
operative Games with Transferable Utility. Games and Economic Be-
havior 2 pp.375-394.



87

Figure 1
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