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In this note we explain some properties that follow from a high linear syzygy. We
consider the r-th, $(r- 1)-\mathrm{S}\mathrm{t}$ , and $(r- 2)-\mathrm{n}\mathrm{d}$ linear syzygies over a polynomial ring in $r$

variables. The most interesting, and the only nontrivial. case is the $(r-2)-\mathrm{n}\mathrm{d}$ linear
syzygy which produces $\mathrm{s}\mathrm{k}\mathrm{e}\mathrm{W}^{-}\mathrm{s}\mathrm{y}_{\mathrm{I}}\mathrm{m}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}_{\mathrm{C}}$ matrices that are helpful in understanding
certain geometric situations.

Let $S=K[x_{1}, \cdots, x_{\gamma}]=\oplus_{d\geq 0}S_{d}$ be a polynomial ring over a field $K$ with the usual
$\mathrm{N}$-grading. Let $M=\oplus_{d\geq t}M_{d}$ be a finitely generated graded $S$-module. As usual,
$M(n)$ denotes the same module $M$ with its degrees shifted to the left by $n$ units, i.e.,
$M(n)_{d}:=M_{d+n}$ . Let F. denote the minimal graded free resolution of $M$ over $S$ , i.e.,

F. : $0arrow F_{\Gamma}arrow F_{r-1}arrow\cdotsarrow F_{p}arrow\cdotsarrow F_{0}arrow 0$ ,

where $F_{p}=\oplus_{q\in \mathbb{Z}}s(-q-p)b_{\mathrm{p}},q(M)$ .

The reason for the extra degree shift $\mathrm{o}\mathrm{f}-p$ in the p-th free module $F_{p}$ is because the
entries of the maps in the minimal resolution are all of positive degrees. We say that
$M$ has a $q$-linear p-th syzygy if the graded betti number $b_{p,q}(M)\neq 0$ . When $q=0$

we drop 0- to call it a linear p-th syzygy. The most important result concerning the
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linear syzygy is the vanishing theorem of Green ( $[\mathrm{G}_{\mathit{1}}$. Theorem 3. $\mathrm{a}.1]$ ) which asserts
that if $M$ has a linear p-th syzygy. then $\dim M_{0}\geq p$ under certain conditions, which
are satisfied in geometric situations. Some progress in finding rnore precise algebraic
conditions affecting the linear syzygies were made in [EK1] and [EK2], but much more
remains a mystery.

$Tor$-modules of the graded modules are also graded and can be computed in the usual
way using $M(n)\otimes_{S}N(q)\cong(M\otimes_{S}N)(n+q)$ . Let $IC$ denote the graded S-module
$S/S_{+}$ , where $S_{+}:=\oplus_{d0}>S_{d}$ is the unique homogeneous maximal ideal. We note that
$I\iota^{f}$ is a graded module concentrated in degree $0$ . Using $F$. $\otimes_{S}K$ , we compute

$Tor_{p}^{s\Lambda}(M, K)=\oplus_{q}\in \mathbb{Z}K(-q-p)^{b()}p,qf$ ,

which implies that
$b_{p,q}(M)=\dim_{K}Tor_{p}^{s_{(}}M,$ $K)_{q+}p$ .

We may also compute $\tau_{or_{p}^{s_{(M,K}}}$) using the Koszul resolution G. of $K$ , where

G. : $\mathrm{O}arrow S(-r)arrow S(-r+1)arrow\cdotsarrow S(-p)^{(_{p}^{\mathrm{r}}})arrow\cdotsarrow Sarrow \mathrm{O}$.

Using $M\otimes_{S}$ G., we again compute

$T_{or_{p}^{S}}(M, K)=\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}(M(-p-1)^{(}p+1)r)arrow M(-\mathcal{P})(^{r}P)arrow M(-p+1)\backslash )$ ,

and hence

$(*)$ $\tau_{\mathit{0}}r_{p}’\backslash ^{\mathrm{v}(\begin{array}{l}rp+1\end{array})}(M, K)_{q+p}=\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}(_{\mathit{1}}^{\eta I_{q1}}-arrow M_{q}(_{p}^{r})arrow\Lambda C_{q+1})$ .

Since the differential maps in the Koszul complex is given by the natural maps between
the wedge products, it is custornary to write the $\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}- \mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d}$-side of $(*)$ above as:

$(**)$ homology $(\wedge s_{1}p+1\otimes_{K}M_{q-1}arrow d_{\mathrm{p}+1}\wedge^{p}S_{1}\otimes_{K}M_{q^{arrow}}d_{p}p\wedge^{s}-11\otimes_{K}M_{q-1})$

.

We remark that $\mathcal{K}_{p,q}(M)$ was the notation for $\mathcal{I}_{\mathit{0}\Gamma_{p}}^{1S}(M, K)_{q+}p$ Green used in [G] in his
systematic study of the relationship between the graded resolution and the geometry
of projective algebraic variety.
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Let $\{x_{1}, \cdots , x_{r}\}$ be a basis of $S_{1}$ . To simplify notation we write $X_{\mathrm{i}_{1}\ldots i_{y}}^{*}$ to denote the

wedge product of $\{x_{1_{J\mathit{1}}}.\cdots.x\}r-\{X_{\mathrm{i}_{1}}, \cdots, X_{i_{r}}\}$ . We first consider some trivial cases.

$\mathrm{p}=\mathrm{r}$ . Suppose that $M$ has a $q$-linear r-th syzygy. Since $\wedge^{r+1}S1=0$ , this syzygy

corresponds to a nonzero element $a\in \mathrm{A}/I_{q}$ in the kernel of $d_{r}$ . Since

$d_{r}(x_{1} \wedge\cdots\wedge xr^{\otimes a})=\sum_{i1\leq\leq r}X^{*}i\otimes(-1)iX_{i}a$
,

$x_{i}a=0$ , for alll $\leq i\leq r$ . Hence $a$ is a nonzero element of degree $q$ that is killed by

$S_{+}$ . The converse is equally trivial for us to state:

$M$ has a $q$-linear r-th syzygy if and only if $($ Soc $M)_{q}\neq 0$ .

$\mathrm{p}^{=\Gamma-}1$ . Suppose now that $M$ has a $q$-linear $(r- 1)-\mathrm{S}\mathrm{t}$ syzygy. By $(**)$ above this

syzygy is determined by an element in the kernel of $d_{r-1}$ that is not in the image of
$d_{r}$ . Let $a_{i},$ $1\leq i\leq r$ , be elements of $M_{q}$ such that $\Sigma_{1\leq i\leq r}x^{*}i\otimes a_{i}$ is in the kernel of
$\mathrm{c}f_{r-1}$ . Using

$d_{r-1}(_{1\leq \mathrm{i}\leq} \sum_{r}x*i\otimes a_{\dot{l})}=\sum_{1\leq i<j\leq r}X\otimes ij\pm*$ ( $j$ xjai),

We can easily check the validity of the following statement:
$M$ has a $q$-linear $(r-1)- \mathrm{s}\mathrm{t}$ syzygy if and only if there is a 2 $\cross r$ matrix

such that

i) $a_{i}\in M_{q}$ , for all $1\leq i\leq r$ ,
ii) all of its 2 x2 minors are $0$ , and

iii) there is no element $a\in M_{q-1}$ such that $a_{i}=(-])^{i}x_{i}a$ for all $1\leq i\leq r$ .

We now consider the main case.

$\mathrm{p}=\mathrm{r}- 2$ . Let $M$ has a $q$-linear $(r- 2)-\mathrm{n}\mathrm{d}$ syzygy. As before, we can find elements $a_{ij}$ ,

$1\leq\dot{\iota}<j\leq r$ , of $M_{q}$ such that $\Sigma_{1\leq i<j}\leq rijX*\otimes a_{ij}$ is in the kernel of $d_{r-2}$ . Since

$d_{r-2}(_{1\leq i}< \sum_{\leq Jr}x_{ij}\otimes aij*\mathrm{I}=\sum_{1\leq i<j<k\leq r}x^{*}ijk\otimes\pm(X\mathrm{i}a_{j}k-X_{j}a_{i}k+xkaij\mathrm{I},$ $\cdot$
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$x_{i}a_{jk}-X_{j}a_{ik}+x_{k}a_{ij}=0$ , for all $1\leq i<j<k\underline{\backslash ’}r$ . Since these are nothing other than

4 $\cross\cdot 4$ pfaffians of $Q$ below involving the first row and column, we have the following

characterization:
$M$ has a $q$-linear $(r- 2)-\mathrm{n}\mathrm{d}$ syzygy if and only if there is a $(r+1)\cross(r+1)$ skew

symmetric matrix

$Q=$ (1)

such that

i) the first row spans $S_{1}$ ,
ii) $a_{ij}\in M_{q}$ for $1\leq\dot{i}<j\leq r$ ,
iii) each $4\cross 4$ pfaffian of $Q$ involving the first row and colurnn is zero, and

iv) there are no elements $a_{i}\in \mathit{1}VI_{q-1}$ such that $a_{ij}=\pm(x_{i}a_{j}-X_{j}a_{i})$ for all $i<j$ .

We consider two geometric situations where all, not just the ones involving the first

row and column, 4 $\cross 4$ pfaffians are zero. To consider general phaffians the products

of elements in $M$ have to be defined. The first situation deals with the homogeneous
coordinate ring of a set of points in, or mor.e generally, a $0$-dimensional subscheme

of, $\mathbb{P}^{r-1}$ , and the second deals with the canonical image of a nonsingular projective
curve. We assume that the field $K$ is algebraically closed inn the rest of this note.

$X$ is a set of points. Let $X$ be a $0$-dirnensional subscheme of $\mathrm{P}^{r-1}$ in ”general”
position. Our discussion of this case is not rigorous because we use ”general” to mean

the argument below works. Let $S$ be the homogeneous coordinate ring of $\mathbb{P}^{r-1}$ , and
$I$ t,he saturated ideal defining $X$ . Suppose that $S/I$ has a 1-linear $(r- 2)-\mathrm{n}\mathrm{d}$ syzygy.
Then we may view $Q$ in (1) above as a matrix of linear forms of $S$ . The following
trick expresses any $4\cross 4$ pfaffian of $Q$ in terms of those involving the first row and

column: for $1\leq i<j<k<l\leq r$ ,

$x_{i}(a_{ij}a_{kl}-a_{ik}ajl+aila_{jk})$
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$=$ $a_{ij}(x\iota aik-X_{k}a_{i}l+x_{i}a_{kl})-a_{ik}(xla_{i}j-xjail+x_{i}a_{jl})$

$+$ $a_{i\iota}(x_{k}aij-Xjaik+x_{i}a_{jk})\in I$ . (2)

Since $S/I$ is a 1-dimensional Cohen-Macaulay ring. we may assume that each $x_{i}$ is
a nonzero divisor on $S/I$ , and hence the $4\cross 4$ pfaffian $a_{ij}akl-aikajl+a_{i}lajk$ determined
by $i<j<k<l$ is in $I$ .

Since the vector space spanned by the entries of $Q$ is of dimension $r$ , the following
result forces $Q$ to have a generalized zero, i.e., one can produce a $0$ off the diagonal
after performing suitable (symmetric) row and column operations on $Q$ .

Lemma ( $[\mathrm{K}\mathrm{S}$ , Lemma 1.5]). Let $T$ be a $v\cross v$ skew symmetric matrix of linear forms.
If $\dim T<2v-3$ , then $T$ has a $\mathrm{g}\mathrm{e}_{p}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}$ zero.

We may, after a suitable row and column operations, put $Q$ in the form

where $A$ is a 2 $\cross(r-1)$ matrix of linear forms. We assume that the points in $X$

are in ”genera”l position so that if $A$ is not 1-generic, i.e., one can produce a $0$

after performing suitable row and column operations, then the whole column of $\Lambda$

containing zero is zero. Since the 2 $\cross 2$ minors of $A$ are 4 $\cross 4$ pfaffians of $Q$ , this
assumption is satisfied when $I$ doesn’t contain too many rank 2 quadrics. e.g., when
$X$ contains at least $2r-$ ] reduced points in linearly general position because $I$ can’t
contain a product of linear forms in this case. Under this assumption we may put $Q$

in the form

where $A$ is a $m\cross n1$-generic matrix. Since $m+n=r+1$ and $\dim A=r$ , a
result of Eisenbud $([\mathrm{E},\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}5.1])$ implies that $2\cross 2$ minors of $A$ define a rational
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normal curve. This argument provides a reason for one, more involved, direction of
the following result of Green ( $[\mathrm{G}_{J}\backslash$ Theorem 3. $\mathrm{c}.6]$ ).

Theorem (Strong Castelnuovo Lemma). Let $X$ be a set of points in $\mathbb{P}^{r-1}$ in general
position. Then $X$ lies on a rational normal curve if and only if $S/I$ has a l-linear
$(r-2)- \mathrm{n}\mathrm{d}$ syzygy.

We remark here that Yanagawa used the same result of Eisenbud in proving his
Generalized Castelnuovo’s $\mathrm{L}\mathrm{e}\Pi \mathrm{l}\mathrm{m}\mathrm{a}$ ( $[\mathrm{Y}$ , Theorem 2.1]).

$X$ is a nonsingular projective curve. We sketch the argument given in [KS] to
prove a result of Green and Lazarsfeld $([\mathrm{G}\mathrm{L}])$ on normal generation of line bundles.
Let $X$ be a nonsingular projective curve in $\mathbb{P}^{r-1}$ . Let $\mathcal{L}$ be a very ample line bundle
on $X$ . Write $r=h^{0}(\mathcal{L})$ , the dimension of $H^{0}(X, \mathcal{L})$ , and $S=$ Sym $H^{0}(X, \mathcal{L})$ , the
symmetric algebra. For a line bundle $\mathcal{F}$ on $X$ , let $M(\mathcal{F})$ denote the graded S-module
$\oplus_{n\in \mathbb{Z}}If^{0}(x\backslash .\mathcal{F}\mathcal{L}n)$ . There is a natural map $\varphi$ : $Sarrow M(\mathcal{O})$ whose kernel is the ideal
$I$ of the image of the morphism $f$ defined by $\mathcal{L}$ . $\mathcal{L}$ is said to be normally generated
if $f(X)$ is a normal subvariety of $\mathrm{P}^{r-1}$ , or equivalently, the map $\varphi$ is onto. In terms
of the graded betti numbers, this condition is equivalent to $b_{0,q}(M(\mathcal{O}))=0$ , for all
$q>0$ . (In fact, for all $q\geq 2$ because $\varphi$ is onto in degree 1.) To obtain a $(r- 2)-\mathrm{n}\mathrm{d}$

syzygy we apply the following result of Green.

Duality Theorem ([G] or [EKS]). Let $\omega$ denote the canonical bundle on $X$ . For any
line bundle $\mathcal{F}$ on $X$ ,

$b_{p,q}(M(\mathcal{F})\mathrm{I}=b_{r-}2-p,r-q(M(F-1\omega \mathrm{I})$ .

Suppose that $\mathcal{L}$ is not, normally generated. Since $b_{0,q}(M(\mathcal{O}))\neq 0$ for some $q\geq 2$ ,
$b_{r-2,q}(M(r-\omega \mathrm{I})\neq 0$ by the Duality Theorem. We now assume that ( $\mathrm{C}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{f}(x)$ will be
defined below.)

$\deg \mathcal{L}\geq 2g+1-\mathrm{C}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{f}(x)$ . (3)

This implies that $H^{0}(x, \mathcal{L}^{n}\omega)=0$ for all $n\leq-2$ and $h^{1}(\mathcal{L}):=\dim H^{1}(X,\mathcal{L})\leq 1$

(see [GL] or [KS]). Hence $b_{r-2,r-2}(M(\omega))$ is the only nonzero graded betti numbers
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for $q\geq 2$ , and $M(\omega)$ has a (O-)linear $(r- 2)-\mathrm{n}\mathrm{d}$ syzygy. As in the previous case we get

a skew symmetric matrix $Q$ in (1), where $a_{ij}$ are sections of the canonical bundle.

Since $X$ is irreducible, the similar argument as in (2) shows that all $4\cross 4$ pfaffians of
$Q$ are zero when viewed as elements either in $H^{0}(\mathcal{L}\omega)$ or $H^{0}(\omega^{2})$ . If $h^{1}(\mathcal{L})=0$ , we

take $B$ to be the $r\cross r$ skew symmetric submatrix of $Q$ without the first row and the

first coluInn. If $h^{1}(\mathcal{L})=1$ , we let $B=Q$ . When $h^{1}(\mathcal{L})=1$ , we may cIloose a nonzero

section of $H^{0}(X, \mathcal{L}^{-1}\omega)\cong H^{1}(\mathcal{L})$ to define an injection $H^{0}(X, \mathcal{L})arrow H^{0}(x,$ $\omega\grave{)}$ so that

each $x_{i}$ can be viewed as a section of $\omega$ . Thus $B$ is a $(h^{0}(\mathcal{L})+h^{1}(\mathcal{L}))\cross(h^{0}(\mathcal{L})+h^{1}(\mathcal{L}),)$

skew symmetric matrix with entries in $H^{0}(\omega)$ such that all of its $4\cross 4$ pfaffians are in

the ideal of the canonical curve. Since $\dim B\leq g$ , where $g$ is the genus. the degree

bound in (3) and the earlier lemma imply that $B$ has a generalized zero. Since $X$ is

irreducible, the ideal of the canonical curve can’t have a rank 2 quadric. Hence we

may, after suitable row and column operations, transform $B$ to

where $A$ is l-generic.

It is not hard to $\mathrm{c}$}$\perp \mathrm{e}\mathrm{C}\mathrm{k}$ that if $A$ is of size $m\cross n$ , then $m+n=h^{0}(\mathcal{L})+h_{}^{1}(\mathcal{L})$ and

$m,$ $n\geq 2$ . Let $\mathcal{F}:=Im(A:\mathcal{O}^{m}arrow\omega^{n})$ . Since all $2\cross 2$ Ininors vanish on the canonical
image of $X,$ $\mathcal{F}$ is a rank one subsheaf of $\omega^{n}$ , and hence a line bundle because $X$ is
nonsingular. Since the rows of a $1$ -geneJricJ matrix is linearly independent $h_{}0(\mathcal{F})\geq m$ .

It can further be shown ([KS, Claim 2]) that $h^{1}(F)\geq n$ . We now recall the definition
of the Clifford index of $X$ :

$\mathrm{C}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{f}(X):=\inf$ { $g+1-(h^{0}(\mathcal{G})+h^{1}(\mathcal{G}))$ : $\mathcal{G}$ is a line bundle with $h^{0}(\mathcal{G}),$ $h^{1}(\mathcal{G})\geq 2$ }.

Our discussion on $\mathcal{F}$ above shows that

$\mathrm{C}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{f}(X)\leq g+1-(h^{0}(\mathcal{F})+h^{1}(\mathcal{F}))\leq g+1-(h^{0}(\mathcal{L})+h^{1}(\mathcal{L}))$.

Applying Riernann-Roch Theorem, $h^{0}(\mathcal{L})=\deg \mathcal{L}-g+1+h^{1}(\mathcal{L})$ , we get

$\deg \mathcal{L}\leq 2g-2h^{1}(\mathcal{L})-^{\mathrm{c}}1\mathrm{i}\mathrm{f}\mathrm{f}(x)$ ,
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which contradicts the assumption on the degree of $\mathcal{L}$ in (3). We have thus proved the

following result of Green and Lazarsfeld $([\mathrm{G}\mathrm{L}])$ :

Theorem. Let $\mathcal{L}$ be a very ample line bundle on a nonsingular projective curve $X$ of

genus $g$ . If $\deg \mathcal{L}\geq 2g+1-2h^{1}(\mathcal{L})-\mathrm{C}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{f}(X)$ , then $\mathcal{L}$ is normally generated.
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