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On Duality of Set-Valued Optimization*

e K5 (Daishi Kuroiwa)

Department of Mathematics and Computer Science
Interdisciplinary Faculty of Science and Engineering, Shimane University

1060 Nishikawatsu, Matsue, Shimane 690-8504, JAPAN

Abstract. An optimization problem which has set-valued objectives and inequality
constraints and its dual problems are defined and discussed.

Keywords. Set-valued analysis, vector optimization, set optimization.

1 Introduction and Preliminaries

Set-valued optimization is usually interpreted as vector optimization with set-valued
objectives, which called set-valued set optimization, and it has been investigated for about
twenty years. Against this type of set-valued optimization, set-valued set optimization has
been introduced and investigated in [9, 10], recently. These two are different thought their
settings are same because criteria of solutions are different. Each optimization has various
applications for many fields of mathematics, economics, and so on.

In this paper, we discuss duality theory of set-valued set optimization. Now we mention
our setting. Let X be a nonempty set, ¥ a topological vector space, Z a normed space,
K, L pointed solid convex cones of Y, Z, respectively, and F : X — 22 G : X — 2" with
Dom(F') = Dom(G) = X.

Our primal problem (SP) is the following:

(SP) Minimize F(z)
subject to  G(z)N(=K) # 0

In set-valued vector optimization (see [2, 3, 4, 5, 6, 7, 11, 12, 13]), the aim is to find
rg €S ={r € X|G(z)N(—K) # 0} and yo € F(z,) satisfying

Yo € Min | J F(z).
zes
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In this paper, we investigate set-valued set optimization. To define this optimization,
we introduce two set relations as follows. For two nonempty sets A and B of Z, |

Agl B & A4+ 1-oB,
A<iB & AcB-L.

Using these notations <} and <%, we can define two types of set- valued set optlmlzatlon
problems. In this paper, we use only relation <! .

2 Duality of Set-Valued Set Optimization
For primal problem (SP), we define our notions of ‘squtions based on set optimization.

Definition 2.1 (Solutions of Primal Problem) An element 7 € X is said to be

(i) an ltype feasible solution of (SP) if G(z) <! 6;
(ii) an Ftype minimal solution of (SP) if xz; is l-type feasible and

€ X,G(z) <} 0,F(z) <X F(xo) 1mp11es F(z) <4 F(:v)

(iii) an Ftype weak minimal solution of (SP) if z¢ is F type feas1ble and there does not exist
z € X such that

G(z) <} 0 and F(x) < F(zo).

th

Next we define dual problems. Let L(Y,Z) = {T : Y — Z | T is linear}, £, (Y,Z) =
{TeL(lY,Z)|T(K)C L}, and ®,®,, : L(Y,Z) — 2% defined by

O(T) ={F(z)+T(y) | (z,y) € Gr(G) is a Ftype minimal solution of (SPr)},
@,(T) ={F(z) +T(y) | (z,y) € Gr(G) is a l-type weak minimal solution of (SPr)},

where
(SP7) Minimize — F(z) + T(y)
subject to  (z,y) € Gr(G)

for T € L(Y,Z). Now, we set (SD) and (wSD) as follows:

(SD) Maximize  ®(T)
subject to T € L,(Y, Z)

(wSD) Maximize o, (T)
subject to T € L (Y, Z)
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Definition 2.2 (Solutions of Dual Problem) An element T, € £(Y, Z) is said to be
(i) an ktype feasible solution of (SD) if ' |
To € L(Y,Z) and ®(T) # 0;

(ii) an Itype maximal solution of (SD) if Tj is feasible and there exists Ay € ®(Tp) such
that

Ty € L(Y, Z), A1 € B(T1), Ay <}, A; imply A; <4 A,

(iii) an Ftype weak maximal solution of (wSD) if Tp is feasible and there exists Ay € ®,,(Ty)
such that

there do not exist T, € £, (Y, Z), A; € ®,(T1) such that 4, <t AL

Proposition 2.1 (Weak Duality)
Let zo be an [-type feasible solution of (SP), T; an Ftype feasible solution of (SD), and

(z1,71) an element of Gr(G) satisfying F(z;) + T1(y1) € ®(T3). Then,
F(z0) <Y F(z1) + Ti(y1) imply F(z1) 4+ Ty (1) < F(zo).
Now we have one of main theorems of this paper.

Theorem 2.1 (Strong Duality)
Let the following assumptions are satisfied:

(H1): F is nonempty compact convex values;

(H2): for each z1, 22 € X, y1 € G(z1), 2 € G(:cz), A € (0,1), there exists
(z,y) € Gr(G) such that

{ F(z) <f, (1= )F (1) + AF(22)
y <k (1 - ANy + Ay ‘
(H3): Slater condition: there is ' € X such that G(z') N (—=intK) # 0.

Then for each minimal solution z, of (SP), there exist y5 € K+\ {6} and p : intL — (0, c0)
such that the following is satisfied:

(i) 1/u is affine on intL

(ii) for each a € intL, there does not exist (z,y) € Gr(G) such that
F(z) + Ta(y) <inez, F(w0)

where T,(y) = (¥, y)u(a)a, y € Y.
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3 Lagrangian Duality of Set-Valued Set Optimization
In this paper, we define Lagrangian set-valued map L : X x Y x L(Y, Z) — 27 as
L(z,y,T) = F(z) + T(y)

forz € X,y eY, T e L(Y,Z), and we define concepts of saddle point the following
definition. Such definitions are different from ordinary definitions in set-valued vector
optimization.

Definition 3.1 (Saddle Point)
A triple (zo, 50, T0) € Gr(G) x L4(Y, Z) is said to be an Ltype saddle point of L if the
following two conditions (i) and (ii) are satisfied:

(1) L(z,y, To) <, L(20,90,T0), (2, y) € Gr(G) = L(20,0, To) <}, L(=,y, To);
(it) L(zo, yo, To) <1, L(zo,%0,T), T € L+(Y, Z) = L(z0,90,T) <Y, L(zo, 70, Tv).

Definition 3.2 (Weak Saddle Point)
A triple (zo,y0,To) € Gr(G) x L, (Y, Z) is said to be an Ltype weak saddle point of L if
the following two conditions (i) and (ii) are satisfied:

(i) there does not (z,y) € Gr(G) such that L(z,y,To) <i ., L(zo,y0, To);
(ii) there does not T' € L (Y, Z) such that L(xo,yo, Tp) <t i Do, %0, T).

Note that a triple (zo,y0,7To) satisfies (i) of Definition 3.1 if and only if (2¢,) is an
Ftype minimal solution of (SPr), or equivalently, L(zo, yo, 7o) € ®(Tp), and (i) of Defini-
tion 3.2 if and only if (o, yo) is an l-type weak minimal solution of (SP7z), or equivalently,
L(zo, Yo, To) € P (Tp)-

Theorem 3.1 Assume that K is closed, L is solid, and F satisfies the folloWing bounded
condition: for each € Dom(F') there exists y* € K+ such that

o (y*,y) > 0 for each y € K \ {0};
o infyer (", 9) > —co.
If (zo,y0,To) € Gr(G) x L(Y, Z) is an l-type saddle point of L, then we have
(i) Yo < 6 and Ty(yo) = 6;

(ii) o is an Ftype minimal solution of (SP);

(iii) Ty is an Ftype maximal solution of (SD).

Corollary 3.1 Let the same assumption of Theorem 3.1 is fulfilled. Then, (zo,y0,To) €
Gr(G) x L4(Y, Z) is an Itype saddle point of L if and only if

(1) L(x’nyO) SlL L(x07y07T0)a ($7 y) € GI'(G) = L(@"o,yo,To) SlL L(.’E,y,To)
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Theorem 3.2 Let the assumptions of Theorem 2.1 is satisfied. Then for each minimal

solution z of (SP), there exist y5 € K™\ {0} and p : intL — (0, 00) such that the following
is satisfied:

| (i) 1/pis affine on intL

(ii) for each a € intL, (o, yo, T,) is a weak saddle point of L for each yo € G(zo) N (- K),

where T,(y) = (yg, y)u(a)a, y € Y.
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