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NONLINEAR ERGODIC THEOREMS
FOR ALMOST NONEXPANSIVE CURVES

REIERFRER (FRETENAER EZ EF (Sachiko Atsushiba)

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a subset
of H. Then, a mapping T of C into itself is called nonexpansive if ||Tz — Ty|| < ||z — y|
for all 7,y € C. We denote by F(T') the set of fixed points of T.

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space was
established by Baillon [2]: Let C be a nonempty closed convex subset of a Hilbert space
and let T" be a nonexpansive mapping of C into itself. If for some zo € C, {T"zq:n € N}
is bounded, then for each & € C, the Cesiro means |

n—1
1
k=0

converge weakly to some y € F(T). In Baillon’s theorem, putting y = Pz for each z € C,
P is a nonexpansive retraction of C onto F/(T') such that PT™ = T™P = P for all positive
integersn and Px € co{T"z : n =1,2,...} for each € C, where @A is the closure of the
convex hull of A. Takahashi [22, 23] proved the existence of such retractions, “ergodic re-
tractions”, for noncommutative semigroups of nonexpansive mappings in a Hilbert space.
Rodé [19] found a sequence of means on the semigroup, generalizing the Cesiro means on
the positive integers, such that the corresponding sequence of mappings converges to an
ergodic retraction onto the set of common fixed points. Recently Takahashi [25] proved a
nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings without
convexity in a Hilbert space. On the other hand, Miyadera and Kobayasi [17] introduced
the notion of almost-orbits of a one-parameter nonexpansive semigroup on C and stud-

ied weak and strong convergence theorems of such almost-orbits (see also [6, 7]). Then,
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Rouhani [20, 21] introduced the notion of almost nonexpansive sequences and curves in a
Hilbert space and proved weak and strong convergence theorems for such sequences and
curves. Kada and Takahashi [12] introduced the notion of almost nonexpansive curves
over a commutative semigroup. They studied the asymptotic behavior of such almost
nonexpansive curves over a commutative semigroup.

In this article, we recall the notion of almost nonexpansive sequences and curves over
a commutative semigroup and nonlinear ergodic theorems for such sequences and curves.
Further, we introduce the notion of almost nonexpansive curves over a noncommutative
semigroup and for any almost nonexpansive curve u, consider generaliied fixed point set
F(u). Then, we prove nonlinear ergodic theorems for almost nonexpansive curves over a

right reversible semitopological semigroup.

2. THEOREMS FOR NONEXPANSIVE SEQUENCES AND CURVES

Throughout this article, we assume that C is a‘nonempty closed convex subset of a
real Hilbert space H. We also assume that D is a subspace of B(S) containing constants

unless other specified. We Write z, — x (or w—limxn = z) to indicate that the sequence

{a.} of vectors converges Weakly to x. Similarly z, — « (or lim z,, = a:) and T, =
(or w*- hm 0 T, = ) will symbolize strong convergence and w* convergence respectlvely
We denote by R, R* and N the set of all real numbers, nonnegative real numbers and
nonnegative integer, respectively. For a subset A of H, coA and ©0A mean the convex

hull of A and the closure of convex hull of A, respectively.

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space was
established by Baillon [2]:

Theorem 2.1 ([2]). Let C be a nonempty closed convex subset of o Hilbert space and let
T be a nonezpansive mapping of C into itself. If for some xg € C, {T"zy : n € N} is
bounded, then for each x € C, the Cesaro means ’

n—1

ZTk

converge weakly to a fized point of T.
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Many mathematicians obtained generalizations of Baillon’s result [2] (for example, see,
(17,19, 22, 23, 25]). Among other things, by modifying the method used by B.D. Rouhani
and S. Kakutani (” Ergodic theorems for nonexpansive nonlinear operators in a Hilbert
space”, preprint, 1984) and B.D. Rouhani (”Ergodic theorems for nonexpansive sequences
in Hilbert spaces and related problems”, Part I, Thesis, Yale University, and ” A new
proof of the weak convergence theorems for nonexpansive sequence and curves in Hilbert
spaces,” preprint, 1984), Rouhani [20, 21] introduced the notion of almost nonexpansive
sequences and curves in a Hilbert space and studied nonlinear ergodic theorems for such
sequences and curves. Let {z,} be a sequence in H. Then, {z,} is called an almost
nonexpansive curve if there exists a nonnegative real-valued function e(+,-) on N x N such
that

ik = Tierll? < Nlzi = 25]]> + (6, 5)
for every 4,7 and k in N and l%r]ns(i,j) = 0. In the case when ¢(s,t) = 0 for every 7,7 €

N, {z,} is called a nonexpansive sequence (see [20]).

Remark 2.2. Let {z,} be a bounded sequence in H such that
[ Zisi = Tjaell < Nlzi = 25| +e1(s, 1)

for every ¢,7 and k in N and lime; (i, j) = 0. Then, it is obvious that {z,} is an almost
i.j

nonexpansive sequence curve with e(i,7) = 4(sup||z:||)e1 (¢, 7) +£1(3, 5)* (see also [20, 21]).
1eN

A sequence {z,} in H is called an almost-orbit of T if

lim sup ||Zptk — T"ak| = 0
k n>0

(see [6]).

Example 2.3. Let T' be a nonexpansive mapping from a closed convex subset C of H
into itself. If {z,} is a bounded almost-orbit of T', from Remark 2.2, {z,} is an almost
nonexpansive sequence in H. Hence, we also see that for z € C, {T"z} is an almost

nonexpansive curve from R* to C if {T"z} is bounded (see also [20]).

Let {z,} be a sequence H. Then, we denote the subsets F; and F of H as follows:
q € Fy if and only if ||ziyx — ¢|| < |lzi — ¢|| for every i,k € S and ¢ € F if and only
if lim ||z, — g|| exists. We can prove that Fy and F are closed convex subset of H and
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Fy C F (see [20]). Rouhani [20] obtained the following nonlinear ergodic theorem for an

almost nonexpansive sequence which is a generalization of Baillon’s result [2]:

Theorem 2.4 ([20]). Let {z.} be a bounded almost nonezpansive sequence in H. Then,
{150 2k} converges weakly to 2o € F asn — oo uniformly ink € R*. Further, zy is a

lim -asymptotic center of {z,} in H, i.e., 20 € {z € H : lim -||z,,—2|| = in}flm—”xn—yll}.
ve

We do not know whether Theorem 2.4 would hold in the case when H is a Banach

space.

A family {T'(s) : s € R*} of mappings of C into itself is called a one-parameter

nonexpansive semigroup on C if it satisfies the following conditions:

(a) s+ T(s)x is continuous for all z € C;
(b) T(s+t) =T(s)T(t) for all s,t € S;
(e) |1T(s)xz —T(s)y|| < |z —y| for all z,y € C and s € S;
(d) T(0) = I.
Baillon [3] proved a nonlinear ergodic theorem for a one-parameter nonexpansive semi-

group in a Hilbert space:

Theorem 2.5 ([3]). Let {T'(t) : t € R*} be a one-parameter nonezpansive semigroup on
C. If for some zo € C, {T(t)zo : t € R} is bounded, then for any x € C, {1 [/ T(s)zds}

converges weakly to a fized point of T

Rouhani [20, 21] also introduced the notion of almost nonexpansive curve in a Hilbert
space and studied a nonlinear ergodic theorem for such a curve which is a generalization
of Baillon’s result [3].

Let u be a function from R* into H. Then, u is called an almost nonexpansive curve if
there exists a nonnegative real-valued function &(-,-) on Rt x R* such that ||u(h + s) —
u(h+ |12 < |lu(s) — u(t)||? + (s, ) for every s,t and h in R* and lisI’Pe(s,t) = 0. In the

case when &(s,t) = 0 for every s,t € S, u is called a nonexpansive curve (see [20]).

Remark 2.6. Let u be a bounded function from R* into H such that

llu(h + ) = u(h + DI < Ju(s) — u(®)]| +e1(s,1)
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for every s,t and h in Rt and lil? €1(s,t) = 0. Then, it is obvious that u is an almost

nonexpansive curve with e(s,t) = 4(sup|ju(r)||)ei(s,t) + 1(s,1)? (see also [20, 21]).
re€s

A continuous function u from R* into C is called an almost-orbit of & = {T'(¢) : t € R*}
if
lim sup ||u(t + §) = T(t)u(s)|| =0
s t
(see [17]).

Example 2.7. Let {T'(s) : s € R} be a one-parameter nonexpansive semigroup on C.
If u is a bounded almost-orbit of {T'(s) : s € R*}, from Remark 2.6, u is an almost
nonexpansive curve from R* to C. Hence, we also see that for x € C, {T'(t)z : t € R*}

is an almost nonexpansive curve from R* to C if {T(t)z : t € R*} is bounded (see also

[20]).

Let u be a function from S into H. Then, we denote the subsets Fi(u) and F(u) of H
as follows: ¢ € Fy(u) if and only if ||u(h + s) — ¢|| < ||lu(s) — ¢|| for every h,s € R and
g € F(u) if and only if lim ||u(s) — ¢|| exists. We can prove that F;(u) and F(u) are closed
convex subset of H ands Fi(u) C F(u) (see [20, 21]). Rouhani [20] proved the following
nonlinear ergodic theorem for an almost nonexpansive curve which is a generalization of
Baillon’s result [3]:

Theorem 2.8 ([20]). Let {u(s): s € R*} be a bounded continuous almost nonezpansive
curve in H. Then, {1 [[u(s+k)ds} converges weakly to z € F(u) ast — oo uniformly
in k € RY. Further, 2y is a lim -asymptotic center of u(-) in H, i.e., 20 € {# € H :

Tim flu(t) — 21| = inf T -Ju(t) - 2]}

We do not know whether Theorem 2.8 would hold in the case when H is a Banach
space.

3. THEOREMS FOR COMMUTATIVE SEMIGROUPS

In this section, we prove nonlinear ergodic theorems for almost nonexpansive curves
over a commutative semigroup. At first, we state some definitions and notations.

Let S be a semitopological semigroup with identity, i.e., a semigroup with a Hausdorff
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topology such that for each ¢ € S, the mappings s — s-t and s — ¢ - s from S into
itself are continuous. Then, S is called right reversible if any two closed left ideals of
S have non-void intersection. In this case, (5,<) is a directed system when the binary
relation “<”on S is defined by a < b if and only if Sa D Sb,a,b € S. Right reversible

semitopological semigroups include all commutative semigroups (see [11]).

Throughout this section, we assume that S is a right reversible semitopological semi-
group with identity and D is a subspace of B(S) containing constants which is r, and
l,-invariant for each s € S unless other specified. We introduce the notion of almost non-
expansive curves over a noncommutative semigroup. Let u be a function from S into H.
Then, u is called an almost nonexpansive curve if there exists a nonnegative real-valued

function &(-,-) on S x S such that
lu(hs) = u(At)]|? < flu(s) — w(®)||* +e(s,1)

for every s,t and hin S and. lir? e(s,t) = 0. In the case when ¢(s,t) = 0 for every s,t € S, u

is called a nonexpansive curve (see [1, 12]).

Remark 3.1. Let u be a bounded function from S into H such that
lu(hs) —u(ht)]| < [lu(s) — u(t)|| +e1(s,1)

for every s,t and h in S and lir? e1(s,t) = 0. Then, it is obvious that » is an almost
S’

nonexpansive curve with (s, 1) = 4(sup||u(r)||)e1(s,t) + £1(s,t)? (see also [1, 12]).
) TGS"

A family & = {T(s) : s € S} of mappings of C into itself is called a nonexpansive
semigroup on C if it satisfies the following conditions:

(a) s — T(s)z is continuous for all z € C;
(b) T(st) = T(s)T'(t) for all s,t € S;
(¢) IT(s)z — T(s)yll < |lz — |l for all z,y € C and s € S.
We denote by F(G) the set of common fixed points of T'(t),t € S, that is, F(&) =

ﬂ F (T(t)). A continuous function v from S into C' is called an almost-orbit of {T'(t) :
tes

teStif
lim sup ||u(ts) — T(t)u(s)|| =0

K] 1

(see [26, 27]).
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Example 3.2. Let & = {T(s) : s € S} be a nonexpansive semigroup on C. If u is a
bounded almost-orbit of &, from Remark 3.1, u is an almost nonexpansive curve from S
to C. Hence, we also see that for z € C, {T(¢)z : t € S} is an almost nonexpansive curve
from S to C if {T'(t)z : t € S} is bounded (see also [12]).

Let u be a function from . into H. Then, we denote the subsets Fi(u) and F(u) of
H as follows: ¢ € Fy(u) if and only if |lu(hs) — q|| < ||u(s) — ¢|| for every h,s € S and
q € F(u) if and only if lim ||u(s) — ¢|| exists (see [1, 12]).

Let S be a semigroup and let B(S) be the Banach space of all bounded real-valued
functions on S with supremum norm. Then, for each s € S and f € B(S), we can define
elements r,f € B(S) and I,f € B(S) by (r.f)(t) = f(ts) and (I,f)(t) = f(st) for all
t € S, respectively. We also denote by r¥ and [} the conjugate operators of r, and I,
respectively. Let D be a subspace of B(.S) and let y be an element of D*, where D* is the
dual space of D. Then, we denote by u(f) the value of 1 at f € D. Sometimes, u(f) will
be denoted by p,(f(t)) or [ f(t)du(t). When D contains constants, a linear functional
on D is called a mean on D if ||u|| = u(1) = 1. We also know that p is a mean on D if
and only if

inf f(s) < u(f) < sup f(s)
for each f € D. For s € S, we can define a point evaluation &, by 6,(f) = f(s) for every
f € B(S). A convex combination of point evaluations is called a finite mean on S. A finite
mean p on S is also a mean on any subspace D of B(S) containing constants. Further,

let D be a subspace of B(S) containing constants which is r,-invariant i.e., 7,D C D for

each s € S. Then, a mean p on D is called right invariant if

plrsf) = u(f)

for all s € S and f € D. Similarly, we can define a left invariant mean on an I,-invariant
subspace of B(S) containing constants. A right and left invariant mean is called an
invariant mean. We also denote by C(S) the set of all bounded continuous real-valued
functions on S. |

The following definition which was introduced by Takahashi [22] is crucial in nonlinear
ergodic theory for abstract semigroups. Let u be a bounded function from S into H such

that (u(),y) € D for every y € H. Let p be an element of D*. Then, there exists a unique



51

element u, € H such that (u,,y) = p(u(s),y) for all y € H. If ;1 is a mean on D, then
uy 18 contained in co{u(t) : t € S} (for example, see [13, 14, 22]). Sometimes, u, will be
denoted by [ u(t)du(t).

Lemma 3.3. Suppose that D has an invariant mean u. Let u be an almost nonezpansive
curve from S to H with e(-,-) such that ||u(-) — y||*> and &(s,-) are in D for ally € H and
s € S. Then, (i), (ii) and (iii) hold.

(i) F(u) and Fi(u) are closed convez subsets of H;

(i) Fi(u) C F(u) ;

(ili) u, € F(u).

Let {yo : @ € I} be anet of meanson D. Then, {u, : « € I'} is said to be asymptotically

invariant if

ta(f) = Ma(rsf> — 0 and ,ua(f) — ta(lsf) =0

for every s € S and f € D (see [19]). Let {\, : a € I} be a net of continuous linear
functionals on D. Then, {Aq : @ € I} is said to be left strongly regular if the following

conditions are satisfied:

(2) sup [ Al < co;

(b) lim Au(1) = 1

(c) li?nﬂ)\a — 1" Aa|| = 0 for every s € S.
Right strong regularity is defined similarly. A strongly regular net is a left and right
strongly regular net (see [10]). '

Let u be a bounded function from S into C such that for any z € C, ||Ju(-) — 31:||2 € D.
Then, for a mean y on D, the set u-AC(u,C) defined by

u-AC(u,C) = {z € C: psllu(s) — z||* = inf pslu(s) — yl*}

is called the p-asymptotic center of w in C (see also [9, 12, 15, 18]). Similarly, the set
lim-AC(u, C) defined by im-AC(u,C) = {z € C : p,|ju(s) — ||? = infec pollu(s) — y)|2}
is called the lim-asymptotic center of u in C.

Kada and Takahashi [12] proved nonlinear ergodic theorems for almost nonexpansive
curves over a commutative semigroup which are generalizations of Rouhani’s results [20,
21]:
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Theorem 3.4 ([12]). Let S be a commutative semigroup with a identity and let D be a
subspace of B(S) containing constants which is r,-invariant for each s € S. Let u be an
almost nonezpansive curve from S to H with €(-,-) such that ||u(-) — y||> and &(s,-) are
in D forally € H and s € S. If {iuo : a € I} is an asymptotically invariant net of means
on D, then { [ u(t)du.(t)} converges weakly to yo € F(u)N ﬂ to{u(t) : t > s}. Further,

sES
Yo = u, and im-AC(u,H) = u-AC(u, H) = {u,} for every invariant mean u on D.

If {uq : @ € I} is strongly regular net, the convergence is uniform.

Theorem 3.5 ([12]). Let S be as in Theorem 3.4. Assume that there exists a net {)g :
B € J} of finite means on S such that hrnH)\,g — Ul = hmll)\ﬁ — 13Xl = 0 for every
s € 5. Let u and D be as in Theorem 3. 4 Let {po : @ € I} be a strongly reqular net of
continuous linear functionals on D. Then, { [ u(th)dua(t)} and { [ u(ht)dua(t)} converge
weakly to yo € F(u)N ﬂ cofu(t) : t > s} uniformly in h € A(S). Further, yo = u, and

SES

lim -AC(u, H) = p-AC(u, H) = {u,} for every invariant mean p on D.

By using Theorem 3.5, Theorems 2.4 and 2.8 can be proved (see [12]). We do not know
whether Theorems 3.4 and 3.5 would hold in the case when H is a Banach space.

4., THEOREMS FOR NONCOMMUTATIVE SEMIGROUPS

In this section, we prove nonlinear ergodic theorems for almost nonexpansive curves
over a noncommutative semigroup. Throughout this section, we assume that S is a right
reversible semitopological semigroilp with identity and D is a subspace of B(S) containing
constants which is r, and [,-invariant for each s € S unless other specified. We denote by
A(S) the algebraic center of S, i.e., all s € S such that st =ts for allt € S.

Theorem 4.1 ([1]). Letu be an almost nonezpansive curve from S to H with &(-,-) such
that ||u(-) — y||* and e(s,-) are in D for ally € H and s € S. If {jua : a € I} is an
asymptotically invariant net of means on D, then { [ u(t)dua(t)} converges weakly to y, €

F(u)N ﬂ co{u(t) : t > s}. Further, yo = u, and im-AC(u, H) = p-AC(u, H) = {u,} for
s€S
every tnvariant mean pu on D.
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We consider the case when {u, : a@ € I} is strongly regular. Then, we obtain the

following theorem:

Theorem 4.2 ([1]). Assume that there exists a net {A\g : 8 € J} of finite means on
S such that li[gnH)\ﬁ — X = ligl“)\ﬂ —130]| = 0 for every s € S. Let u be an al-
most nonezpansive curve from S to H with e(-,-) such that ||u(-) — y||* and &(s,-) are
in D for ally € H and s € S. Let {uo : o € I} be a strongly regular net of con-
tinuous linear functionals on D. Then, {[ w(th)du.(t)} and {[ u(ht)dp.(t)} converge
weakly to yo € F(u) N ﬂ@{u(t) :t > s} uniformly in h € A(S). Further, yo = u, and
s€S
lim -AC(u, H) = p-AC(u, H) = {u,} for every invariant mean u on D.
To prdve Theorems 4.1 and 4.2, we need the following lemmas and theorem.

The following lemma is a modification of [25] (see also [12]).

Lemma 4.3 ([1]). Assume that D has an invariant mean p. Let u be an almost nonez-
pansive curve from S to H with €(-,-) such that ||u(-) — y||> and &(s,-) are in D for all
y € H and s € S. Then,

lim-AC(u,H) = ,u—AC‘(u, H) = {u,},

where im -AC(u, H) = {z € H : lim ||lu(s) — z||* = 125@”14(3) —yl|?}. Consequently, if
s y s

L and A are invariant means on D, then u, = p,.

The following theorem plays an important role in the proofs of Theorems 4.1 and 4.2
(see also [12]).

Theorem 4.4 ([1]). Assume that D has an invariant mean u. Let u be an almost non-
expansive curve from S to H with e(-,-) such that ||u(-) — y||*> and (s,-) are in D for all

y€ H and s € S. Then, F(u) N ﬂﬁé{u(t) 1t > st = {uu}.
s€S

The following lemma is essential to prove Theorem 4.2.

Lemma 4.5 ([1]). Letu be a bounded almost nonezpansive curve from S to H with (-, -).
Let {t1o : @ € A} be a net of finite means on S such that

lim| pa — Ut = lim|| gt — 751l =0 for every s € S. (%)
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Then, {[ u(th)du.(t)} converges weakly to yo € F(u) N ﬂ co{u(t) : t > s} uniformly in
. s€S
h € A(S). Further, yo = u, and lim -AC(u, H) = u-AC(u, H) = {u,} for every invariant

mean p on D.

Sketch of the proof of Lemma 4.5. Let {uo : o € A} and {)\s : B € B} be nets of finite
means on S such that |

0 e — L2l = i — pall =0 and TilAs — gl = limllAs = i Agl) = 0

for every s € S. Define (81,m1) < (f2,72) if and only if 81 < (2 and 71 < 7. Let

{ps~:(B,7) € B x B} be anetin 3
We show that {[[u(tps,q)dAs(t)dA,(q)} converges weakly to yo € F(u) N n'c_o{u(t) :

se§
t > s}. From Lemma 4.4, it is sufficient to show that all weak limit points of subnets of

the net {[[u(tpsq)drs(t)dr,(q)} are in ﬂ?:ﬁ{u(t):t > s}NF(u). Put M:stu}g) lu(®)]|.
s€S €

Since {[ [u(tps,q)dAs(t)dA,(q)} is bounded, there is a subnet {ffu(tpsyq)dAg (t)dAy(¢)}
of {ffu(tps~a)dNs(t)\(q)} such that

/ / w(tpeq)d Ag (AN (g) — g0 € H.

Then, we have that for any a € 5,

[ wtrvaira®iri@ —we n 1)

We obtain Yo € F(u). Indeed, let € > 0. Then, there exists ¢y € S such that e(s,t) < e
for all t >ty and s > ty. Let s > tg and h € S. Then, we can show that

llu(hs) — wol|® = ||u(s) = yol* = 2 <u(h5) — u(s), f/ u(tpg 4 qto)dAs (t)dA, (q) — y0>
<=+ 4M2 g~ Ggl - I
So, it follows from (1) that lim ||u(s) — yol| exists. This implies yo € F(u).

From the separation theorem, we obtain y, € ﬂ%{u(t) :t > s} and hence yp €
. seS
ﬂ co{u(t) : t > s} N F(u). This implies that all weak limit points of subnets of the net
s€S
{ [ u(tps~q)dAs(t)dA,(q)} are in ﬂ co{u(t) : t > s} N F(u).

sE€S
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Next, we prove that { [ u(sh)dua(s)} converges weakly to yo uniformly in A € A(S).
Since {pg, : (6,7) € B x B} is arbitrary, we see that {[[ u(thps,q)d\s(t)d\,(q)} con-

verges weakly to yo uniformly in A € S. Then, there exists (ﬁg,fﬁ) € B x B such that
<z (2)

J[ twtthpane). ) dxa(e)rg() - (0, )| < 5

for every 8 > fy,7 > m and h € S. So, since {u,} satisfies (x), we can show that
{ [ u(sh)dua(s)} converges weakly to yo € F(u) N ﬂ'cﬁ{‘u(t) :t > s} uniformly in h €

s€S

A(S). From Theorem 4.4 and Lemma 4.3, yo = u, and im-AC(u, H) = p-AC(u, H) =

{u,} for every invariant mean g on D. O

We can prove the following lemma as in the proof of Lemma 4.5.

Lemma 4.6 ([1]). Let S, D,u and {{io: € A} be as in Lemma 4.5. Then, {fu(ht)du.(t)}

converges weakly to yo € F(u) N ﬂ@{u(t) 1t > s} uniformly in h € A(S). Further,
s€8
Yo = u, and lim -AC(u, H) = p-AC(u, H) = {u,} for every invariant mean u on D.

Now, we can prove the nonlinear ergodic theorems (Theorems 4.1 and 4.2).
Sketch of the proof of Theorem 4.1. Let {u,} be an asymptotically invariant net of means
on D. Since {[ u(t)dua(t)} is bounded, {[ u(t)duo(t)} must contain a subnet which
converges weakly to a point in H. So, let { [ u(t)dpa,(t)} be a subnet of { [ u(t)dua(t)}
such that

/u(t)duaﬂ (t) — zo. (3)

Let B1(D*) be the closed unit ball of D*. Since {i.,} C Bi(D*), there exists a subnet
{10, } Of {Ha,} such that

w*
Hag, = K.

Then, we can show that p is an invariant mean on D. Since Hag, = p, for any z € H,

Jw®). )b, ) = [ ) 2)dise) = (as2).

Then, from (3), we have that [ w(t)dpa,(t) — 2o and 2o = u,. From Lemma 4.3, if A and
p are invariant means on D, then u, = uy. Therefore, since { [ u(t)dua,(t)} is arbitrary,
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{J ult)dua(t)} converges weakly to w,. Furthermore, {u,} = F(u)n(\eo{u(t) : t > s} =
seS

u-AC’(u, H) =1m-AC(u,H). O

Sketch of the proof of Theorem 4.2. Let u be an invariant mean on D and let {pg. :
(8,7) € Jx J} beanetin S. From Lemma 4.5, we have that { [[ u(thpg,q)drs(t)d\,(q)}

converges weakly to u, uniformly in h € S. We also know F(u) N ﬂﬁé{u(t) 1t > s} =
s€S
im-AC(u, H) = u-AC(u, H) = {u,} for every invariant mean y on D. Let 7 € H,e > 0.

Then, there exists (8y,71) € J X J such that

< / / w(thps,)drs(t)dM, (q), >—<umx>‘ < ;ﬁw—”

for every f > Bo,v > 71 and h € S. Put A\g = Ag,, po = pg,, and Ay = A,,. So, since

{11} is strongly regular, from

/ (u(sh), 7) dptals) — {11 7)

< | [ twtom.a) o) = [ attsm, ) ottt
+ 1// (u(tsh), z) d\o(t)dpa(s) — /// (u(tshpoq), T) dAo(t)dA1(g)dpa(s)
l/<// (tshpogq)dXo(t)dAi(q) — uy, © >dua ./ Uy, T) Aia(s) — (uy, T)|,

we can prove that { [ u(sh)dua(s )} converges weakly to u, € F(u) N n co{u(t) : t > s}
SES

uniformly in h € A(S).
As in the above argument, we obtain that { [ u(hs)duq(s )} converges weakly to u, €

ﬂco{u :t > s} uniformly in h € A(S). O
s€S

We do not know whether Theorems in this section would hold in the case when H is a

Banach space.
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