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EXISTENCE OF SOLUTIONS FOR CAUCHY PROBLEMS AND PERIODIC
PROBLEMS WITH MULTIVALUED PSEUDO MONOTONE OPERATORS

NAOKI SHIOJI (横浜国大工・ $\text{塩路直樹}$ )

1. INTRODUCTION

Let $V$ be a reflexive Banach space which is densely and continuously imbedded in a Hilbert
space, let $T>0$ and let $\{A(t) : t\in[0, T]\}$ be multivalued operators from $V$ into its dual $V’$ . We
study the existence of solutions for Cauchy problems and periodic problems to a class of a nonlinear
evolution equations of the form

$u’(t)+A(t)u(t)\ni 0$ for $t\in[0, T]$ .
In the case when $A(t)$ is single valued, Hirano [12], Ahmed and Xiang [1], Berkovits and Musto-
nen [3], and the author [15] studied the problems of this kind. Hirano and Ahmed and Xiang studied
the Cauchy problems in the case when $A(t)$ is a monotone operator with nonmonotonic perturba-
tions. Berkovits and Mustonen generalized their results to the case that $A(t)$ is pseudo monotone
and they also studied the periodic problems. The author also studied the periodic problems in the
case when $A(t)$ is pseudo monotone.

In this paper, we study the Cauchy problems and periodic problems in the case when $A(t)$ is
a multivalued pseudo monotone operator. The conditions $(\mathrm{A}1)-(\mathrm{A}4)$ in our theorems are more
general than those in [1, 3, 12, 15] even in the case when $A(t)$ is single valued. To prove our results,
we employ the method employed in [10]. We use a topological property of a solution set for a
differential inclusion in Euclidean space [7], a topological fixed point theorem [9], Filippov’s type
implicit function theorem [16] and a minimax theorem [8].

The next section is devoted to some preliminaries and notations. In section 3, we state our main
results and we prove them in section 4. In the final section, we study some applications.

2. PRELIMINARIES

Throughout this paper, all vector spaces are real, and we denote by $\mathbb{N},$
$\mathbb{R}$ and $\mathbb{R}_{+}$ , the set of

positive integers, the set of real numbers and the set of nonnegative real numbers, respectively.
Let $X$ and $\mathrm{Y}$ be topological spaces. A multivalued mapping $F$ : $Xarrow 2^{Y}$ is said to be upper
semicontinuous if for every $x_{0}\in X$ and open set $V\subset \mathrm{Y}$ with $Fx_{0}\subset V$ , there exists an open
neighborhood $U$ of $x_{0}$ such that $Fx\subset V$ for every $x\in U$ . Let $E$ be a measure space. A
multivalued mapping $G$ : $Earrow 2^{Y}$ is said to be measurable if for every closed set $C\subset \mathrm{Y}$ , the set
$\{t\in E : G(t)\cap C\neq\emptyset\}$ is measurable. A multivalued mapping $H$ : $E\cross Xarrow 2^{Y}$ is said to be
Carath\’eodory if for every $x\in X,$ $H(\cdot, x)$ : $Earrow 2^{Y}$ is measurable and for almost every $t\in E$ ,
$H(t, \cdot)$ : $Xarrow 2^{Y}$ is upper semicontinuous. Let $V$ be a reflexive Banach space. We denote by
$V’$ , the topological dual of $V$ . The value of $y\in V’$ at $x\in V$ will be denoted by $(y, x)$ . Let $V$

be densely and continuously imbedded in a Hilbert space $H$ . Since we identify $H$ with its dual,
we have $V\subset H\subset V’$ . Let $p,$ $q$ and $T$ be positive constants such that $1/p+1/q=1$ . For
every $u\in L^{p}(0, \tau_{;}V)$ and $v\in L^{q}(0, \tau_{;}V’),$ $\langle v, u\rangle$ is defined by $\int_{0}^{T}(v(t), u(t))dt$ . We denote by
$W_{p}^{1}(0, T;V, H)$ , the Banach space

$W_{p}^{1}(0, \tau_{;}V, H)=\{u\in L^{p}(0, T;V) : u’\in L^{q}(\mathrm{o}, \tau;V/)\}$
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with the norm $||u||+||u’||_{*}$ , where $u’$ is the generalized derivative $[2, 17]$ of $u$ and $||\cdot||$ and $||\cdot||_{*}$ are
the norms of $IP(\mathrm{o}, T;V)$ and $L^{q}(0, T;V’)$ , respectively. We know from [17] that $W_{p}^{1}(0, T;V, H)$ is
a reflexive Banach space and that $W_{p}^{1}(\mathrm{o}, \tau_{;V}, H)$ is continuously imbedded in $C(\mathrm{O}, \tau;H)$ .

Let $V$ be a reflexive Banach space and let $A:Varrow 2^{V’}.$ $A$ is said to be monotone if $(w-z, x-y)\geq$
$0$ for every $x,$ $y\in V,$ $w\in Ax$ and $z\in Ay.$ $A$ is said to be pseudo monotone if for every sequence
$\{x_{n}\}$ in $V$ and $\{w_{n}\}$ in $V’$ such that $\{x_{n}\}$ converges weakly to $x\in V,$ $w_{n}\in Ax_{n}$ for every $n\in \mathbb{N}$

and $\varlimsup(w_{n}, xn-x)\leq 0$ , for every $y\in V$ , there exists $w_{y}\in Ax$ such that

$(w_{y}, x-y)\leq\varliminf_{narrow\infty}(w_{n}, X_{n}-y)$ .

It is well known [4] that if $A$ is monotone, for every $x\in V,$ $Ax$ is a nonempty, closed convex subset
of $V’$ and $A$ is upper semicontinuous from every line segment in $V$ to the weak topology of $V’$ , then
$A$ is pseudo monotone.

To prove our theorems in the next section, we use the following; see [7, Theorem and Lemma 5],
[9, Example 1 in Section III.2 and Corollary V.3.8], [16, p. 864, Theorem 4.1 and Theorem 7.4] and
[8, Theorem 2], respectively:

Proposition 1 (De Blasi and Myjak). Let $T>0$ and let $g:[0, T]\mathrm{x}\mathbb{R}^{n}arrow 2^{\mathbb{R}^{n}}$ be a Carath\’eodory
mapping such that for almost every $t\in[0, T]$ and for every $y\in \mathbb{R}^{n},$ $g(t, y)$ is a nonempty, compact,
convex subset of $\mathbb{R}^{n}$ , and there exists $\mu\in L^{1}(0, T;\mathbb{R}_{+})$ such that $\sup_{y\in \mathbb{R}^{n}}|g(t, y)|\leq\mu(t)$ for almost
every $t\in[0, T]$ . For every $y\in \mathbb{R}^{n}$ , let

$S_{g}(y)=$ { $x\in C(\mathrm{O},$ $T;\mathbb{R}^{n})$ : absolutely continuous, $x(\mathrm{O})=y,$ $x’(t)\in g(t,$ $x(t))$ for $\mathrm{a}.\mathrm{e}$ . $t\in[0,$ $T]$ }.
Then for every $y\in \mathbb{R}^{n},$ $S_{g}(y)$ is the intersection of a decreasing sequence of nonempty, compact,
contractible subsets of $C(\mathrm{O}, T;\mathbb{R}^{n})$ .

Proposition 2 $(\mathrm{G}6\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{e}\mathrm{W}\mathrm{i}\mathrm{c}\mathrm{Z})$ . Let $X$ be a convex subset of a normed linear space and let $H$ : $Xarrow$

$2^{X}$ be an upper semicontinuous mapping such that $\bigcup_{x\in X}Hx$ is contained in a compact subset of $X$

and for every $x\in X,$ $Hx$ is a nonempty, acyclic, compact subset of $X$ , where acyclic is in the sense
of \v{C}ech homology with rational coefficients. Then $H$ has a fixed point, i.e., there is an element $x$

of $X$ such that $x\in Hx$ .

Proposition 3 (Wagner). Let $\mathcal{T}$ be a complete measure space, let $V$ be a complete, separable
metric space and let $Y$ be a separable metric space. Let $F$ : $\mathcal{T}arrow 2^{V}$ be a measurable mapping
such that for almost every $t\in \mathcal{T},$ $F(t)$ is nonempty, closed subset of $V$ , let $g$ : $\mathcal{T}\cross Varrow \mathrm{Y}$

be a Carath\’eodory mapping and let $h$ : $\mathcal{T}arrow \mathrm{Y}$ be a measurable mapping such that for almost
every $t\in \mathcal{T}$, there exists $v_{t}\in F(t)$ with $h(t)=g(t, v_{t})$ . Then there exists a measurable mapping
$f$ : $\mathcal{T}arrow V$ such that $f(t)\in F(t)$ and $h(t)=g(t, f(t))$ for almost every $t\in \mathcal{T}$.

Proposition 4 (Fan). Let $U$ be a compact, convex subset of a Hausdorff topological vector space
and let $V$ be a convex subset of a vector space. Let $f$ : $U\cross Varrow \mathbb{R}$ such that for every $v\in V$ ,
$f(\cdot, v)$ is lower semicontinuous and convex, and for every $u\in U,$ $f(u, \cdot)$ is concave. Then

$\min_{u\in Uv}\sup_{\in V}f(u, v)=\sup_{v\in V}\min_{u\in U}f(u, v)$ .

3. MAIN RESULTS

Now we state our main results.

Theorem 1. Let $T,$ $p$ and $q$ be positive constants such that $1/p+1/q=1$ . Let (V, $||\cdot||$ ) be a
separable, reflexive Banach space which is densely and continuously imbedded in a Hilbert space
$(H, |\cdot|)$ and let $\{A(t) : 0\leq t\leq T\}$ be a family of multivalued mappings such that
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(A1) for almost every $t\in[0, T],$ $A(t)$ : $Varrow 2^{V’}$ is pseudo monotone and $A(t)x$ is a nonempty,
closed, convex subset of $V’$ for every $x\in V$ ;

(A2) for every $u\in L^{p}(0, \tau;V),$ $t\vdasharrow A(t)u(t)$ : $[0, T]arrow 2^{V’}$ is measurable;
(A3) there exist $C_{0},$ $C_{2}\in L^{1}(0, T;\mathbb{R}_{+})$ and $C_{1}>0$ such that for almost every $t\in[0, T]$ , for every

$x\in V$ and for every $y\in A(t)x$ , . .
(3.1) $(y,x)+C_{0}(t)|X|^{2}\geq C_{1}||x||p-C_{2();}t$

(A4) there exist an increasing function $C_{3}$ : $\mathbb{R}_{+}arrow \mathbb{R}_{+}$ and $C_{4}$ : $[0, T]\cross \mathbb{R}_{+}arrow \mathbb{R}_{+}$ such that
$C_{4}(\cdot, a)\in L^{q}(0, T;\mathbb{R}_{+})$ for every $a\in \mathbb{R}_{+},$ $C_{4}(t, \cdot)$ is increasing for almost every $t\in[0, T]$ , and

$\sup\{||y||_{*} : y\in A(t)x\}\leq C_{3}(|X|)||x||^{p-1}+C_{4}(t, |x|)$

for almost every $t\in[0, T]$ and for every $x\in V$ , where $||\cdot||_{*}$ is the norm of $V’$ .
Then for every $u_{0}\in H$ , there exists $u\in W_{p}^{1}(0, \tau;V, H)$ such that

$u(\mathrm{O})=u_{0}$ , $u’(t)+A(t)u(t)\ni 0$ for almost every $t\in[0, T]$ .
Theorem 2. Let $T,$ $p,$ $q,$ $V,$ $H$ and $\{A(t) : 0\leq t\leq\dot{T}\}$ be as in Theorem 1. Assume $p>2$ or
$C_{0}(t)\equiv 0$ . Then there exists $u\in W_{p}^{1}(0, T;V, H)$ such that

$u(\mathrm{O})=u(T)$ , $u’(t)+A(t)u(t)\ni 0$ for almost every $t\in[0, T]$ .

Remark 1. In both theorems, if $V$ is compactly imbedded in $H$ or $C_{0}(t)\equiv 0,$ it.i.s sufficient to
assume the following (A5) and (A6) instead of (A3) and (A4):
(A5) there exist $C_{0},$ $C_{2}\in L^{1}(\mathrm{o}, \tau;\mathbb{R}_{+})$ and $C_{1}>0$ such that for almost every $t\in[0, T]$ and for

every $x\in V$ , there exists $y\in A(t)x$ which satisfies (3.1).
(A6) there exist an increasing function $C_{3}$ : $\mathbb{R}_{+}arrow \mathbb{R}_{+}$ and C4 : $[0, T]\mathrm{x}\mathbb{R}_{+}arrow \mathbb{R}_{+}$ such that

$C_{4}(\cdot, a)\in L^{q}(0, T;\mathbb{R}_{+})$ for every $a\in \mathbb{R}_{+},$ $C_{4}(t, \cdot)$ is increasing for almost every $t\in[0, T]$ , and
$\sup${ $||y||_{*}:$ $y\in.A(t)x$ satisfes $(3.1)$ } $\leq C_{3}(|x|)||x||^{p-1}+C_{4}(t, |x|)$

for almost every $t\in[0, T]$ and for every $x\in V$ .
For details, see Remark 2 in Section 4.

4. $\mathrm{p}_{\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}}\mathrm{s}$ OF THEOREMS

First, we give the proof of Theorem 1. We assume that $T,$ $p,$ $q,$ $V,$ $H,$ $\{A(t)\}$ and $u_{0}$ are as in
Theorem 1.

Lemma 1. Let $t\in[0, T]$ such that $A(t)$ is pseudo monotone and $A(t)x$ is nonempty, closed, convex
subset of $V’$ for every $x\in V$ . Let $x\in V$ and let $\{x_{n}\}$ be a sequence in $V$ which converges weakly
to $x$ . Let $y\in V’$ and let $\{y_{n}\}$ be a sequence in $V’$ such that it converges weakly to $y,$ $y_{n}\in A(t)x_{n}$

for every $n\in \mathbb{N}$ and $\varlimsup_{n}(yn’ xn-x)\leq 0$ . Then $y\in A(t)x$ . Especially, for almost every $t\in[0, T]$ ,
$A(t)$ is upper semicontinuous from the strong topology of $V$ to the weak topology of $V’$ .

Proof. Since $A(t)$ is pseudo monotone, for every $z\in V$ , there exists $y_{z}\in A(t)x$ such that $(y_{z}, x-Z)\leq$

$\varliminf_{n}(y_{n}, x_{n}-x+x-Z)=(y, x-z)$ . So we have $\sup_{z\in Vw\in A(t}\min$ )$x(w-y, X-z)\leq 0$ . By Proposition 4,
there exists $w\in A(t)x$ such that $(w-y, x-Z)\leq 0$ for all $z\in V$ , which implies $w=y$ . Hence we
obtain $y\in A(t)x$ . $\square$

We denote by $\mathcal{V}$ and $\mathcal{V}’$ , the spaces $L^{p}(0, \tau_{;}V)$ and $L^{q}(0, \tau_{;}V’)$ , respectively and the norms of
these spaces are also denoted by $||\cdot||$ and $||\cdot||_{*}$ , respectively. By $\mathcal{W}$ , we mean $W_{p}^{1}(\mathrm{o}, \tau_{;V}, H)$ . For
$u\in \mathcal{V}$ and $t\in[0, T]$ , we write Au $(t)$ instead of $A(t)u(t)$ .

To prove the following, we use the method employed in [11, 12, 15].
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Lemma 2. Let $\{u_{n}\}$ be a sequence in $\mathcal{W}\mathrm{a}\dot{\mathrm{n}}\mathrm{d}$ let $\{w_{n}\}$ be a sequence in $\mathcal{V}’$ such that $\{u_{n}\}$ converges
weakly to $u$ in $\mathcal{W},$ $w_{n}\in Au_{n}$ for every $n\in \mathbb{N}$ and $\varlimsup_{n}\langle w_{n}, u_{n}-u\rangle\leq 0$ . Then for every $v\in \mathcal{V}$ ,
there exists $w_{v}\in Au$ such that $\langle w_{v}, u-v\rangle\leq\varliminf_{n}\langle w_{n}, u_{n}-v\rangle$ . Further, if

$\{‘ w_{n}\}\mathrm{c}\mathrm{o}.\mathrm{n}$Verge..s weakly
to $w$ in $\mathcal{V}’$ , then $w\in Au$ . $.j$. $1$

Proof. Since $\{u_{n}\}$ converges weakly to $u$ in $\mathcal{W}$ , it also converges weakly to $u$ in $C(\mathrm{O}, T;H)$ . So $\{u_{n}\}$

is bounded in $C(\mathrm{O}, T;H)$ . By (A3) and (A4), there exist $K_{1}>0,$ $K_{2}>0$ and $K_{3}\in L^{1}(0, T;\mathbb{R}_{+})$

such that

(4.1) ($wn(t),$ un $(t)-v(t)$ ) $\geq K_{1}||u_{n}(t)||^{p}-K_{2}||v(t)||^{p}-K_{3}(t)$

for almost every $t\in[0, T]$ , for every $n\in \mathbb{N}$ and for every $v\in \mathcal{V}$ . We will show that

(4.2) $\varliminf_{narrow\infty}(w_{n}(t), u_{n}(t)-u(t))\geq 0$ for $\mathrm{a}.\mathrm{e}$ . $t\in[0, T]$ .

Suppose not. Then the set

{ $t.\in[\mathrm{o}, \tau]$ : $\varliminf_{narrow\infty}$ ( $w_{n}(t),$ un $(t)-u(t)$ ) $<0$ ,

$(wn(t), un(t)-u(t))\geq K_{1}||u_{n}(t)||^{p}-K_{2}||u(t)||^{p}-K_{3}(t)$ for all $n\in \mathrm{N}$ }
has a positive measure. Let $t$ be an element of the set. Since $\{u_{n}(t)\}$ is bounded in $V$ from (4.1),
$\{u_{n}(t)\}$ converges weakly to $u(t)$ in $V$ . By (A1), we have $\varliminf_{n}(w_{n}(t), u_{n}(t)-u(t))=0$ , which
contradicts that $t$ is an element of the above set. Hence we have (4.2). By (4.1) and Fatou’s
lemma, we have

$0 \leq\int_{0}^{T}arrow\varliminf_{n\infty}(wn(t), u_{n}(t)-u(t))dt\leq\varliminf_{narrow\infty}\langle wn’ un-u\rangle\leq\varlimsup_{narrow\infty}\langle wn’ un-u\rangle\leq 0$.

Hence we obtain $\lim_{n}\langle w_{n}, u_{n}-u\rangle=0$ . Next we will $\dot{\mathrm{s}}\mathrm{h}\mathrm{o}\mathrm{w}$ that there exists a subsequence $\{n_{i}\}$ of
$\{n\}$ such that

(4.3) $\lim_{iarrow\infty}(w_{n_{i}}(t), u_{n_{i}}(t)-u(t))=0$ for $\mathrm{a}.\mathrm{e}$ . $t\in[0, T]$ .

Put $h_{n}(t)=(w_{n}(t), u_{n}(t)-u(t))$ for $t\in[0, T]$ . We know that $\varliminf_{n}h_{n}(t)\geq 0$ for almost every
$t\in[0, T]$ and $\lim_{n}\int_{0}^{T}hn(t)dt=0$ . Set $h_{n}^{-}(t)=- \min\{h_{n}(t), \mathrm{o}\}$ for $t\in[0, T]$ . Since $h_{n}^{-}(t)\leq$

$K_{2}||u(t)||^{2}+K_{3}(t)$ , by Lebesgue’s dominated convergence theorem, we get $\lim_{n}\int_{0}^{\tau_{h^{-}}}n(t)dt=0$ . So
we obtain $\lim_{n}\int_{0}^{\tau}|h_{n}(t)|dt=0$. Hence we can choose a subsequence $\{h_{n_{i}}\}$ of $\{h_{n}\}$ which satisfies
(4.3).

Let $v\in \mathcal{V}$ . By the preceding, there exists a subsequence $\{n_{j}\}$ of $\{n\}$ such that $\lim_{j}\langle w_{n_{j}’ n_{j}}u-v\rangle=$

$\varliminf_{n}\langle w_{n}, u_{n}-v\rangle$ and $\lim_{j}(w_{n_{j}}(t), u_{n_{j}}(t)-u(t))=0$ for almost every $t\in[0, T]$ . Since $\{u_{n_{j}}(t)\}$ is
bounded in $V$ by (4.1), $\{u_{n_{j}}(t)\}$ converges weakly to $u(t)$ in $V$ for almost every $t\in[0, T]$ . We know
$\varliminf_{j}(w_{n_{j}}(t), u_{n_{j}}(t)-v(t))$ is measurable and from Lemma 1, for almost every $t\in[0, T]$ , there exists
$y_{t}\in A(t)u(t)$ with $\varliminf_{j}(wn_{j}(t), u_{n_{j}}(t)-v(t))=(y_{t}, u(t)-v(t))$ . By Proposition 3, there exists
$w_{v}\in \mathcal{V}’$ such that $w_{v}(t)\in A(t)u(t)$ and $\varliminf_{j}(w_{n_{j}}(t), u_{n_{j}}(t)-v(t))=(w_{v}(t), u(t)-v(t))$ for almost
every $t\in[0, T]$ . Hence by (4.1) and Fatou’s lemma, we have

$\langle w_{v}, u-v\rangle=\int_{0}^{T}jarrow\varliminf_{\infty}(w_{n_{j}}(t), u_{n_{j}}(t)-v(t))dt\leq\varliminf_{jarrow\infty}\langle w_{n}j’ u_{n_{j}}-v\rangle=\varliminf_{narrow\infty}\langle w_{n}, un-v\rangle$ .

Now, assume that $\{w_{n}\}$ converges weakly to $w$ in $\mathcal{V}’$ . Then for every $v\in \mathcal{V}$ , there exists $w_{v}\in Au$

such that $\langle w_{v}, u-v\rangle\leq\lim_{n}\langle w_{n}, u_{n}-u+u-v\rangle=\langle w, u-v\rangle$ , which implies $\mathrm{s}\mathrm{u}\mathrm{p}v\in v\min\in yAu\langle y-$

$w,$ $u-v\rangle\leq 0$ . By Proposition 4, there exists $y\in Au$ such that $\langle y-w, u-v\rangle\leq 0$ for all $v\in \mathcal{V}$ . So
we have $y=w$ , and hence $w\in Au$ . $\square$
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Let $\{e_{1}, e_{2}, \cdots\}$ be a subset of $V$ such that the subspace spanned by $\{e_{1}, e_{2}, \cdots\}$ is dense in $V$

and.
$(e_{i}, e_{j})=\{$

:
‘

1 if $i=j$ ,
$0$ if $i\neq j$ ,

i.e., $\{e_{i}\}$ is a complete orthonormal basis of H.with $\{e_{i}\}\subset$

.
$V$ . For every $n\in \mathbb{N}$ , we denote by $F_{n}$ ,

the subspace of $V$ spanned by $\{e_{1}, \cdots, e_{n}\}$ .

We set $u_{0}^{n}= \sum_{i=1}^{n}(u_{0}, ei)e_{i}$ for every $n\in \mathbb{N}$ and $K=(|u0|^{2}+2 \int_{0}^{\tau_{C_{2()S}}\tau_{C_{0(}}}sd)\exp(2\int_{0}S)dS)$ .
Lemma 3. For every $n\in \mathbb{N}$ , there exist an absolutely continuous function $u_{n}$ : $[0, T]arrow F_{n}$ and
$w_{n}\in \mathcal{V}’$ such that $u_{n}’\in L^{q}(0, T;F_{n}),$ $w_{n}(t)\in A(t)u_{n}(t)$ for almost every $t\in[0, T],$ $|u_{n}(t)|\leq\sqrt{K}$

for every $t\in[0, T]$ and
(4.4) $u_{n}(0)=u_{0}^{n}$ , $(u_{n}’(t)+w_{n}(t), v)=0$ for $\mathrm{a}.\mathrm{e}$ . $t\in[0, T]$ and for every $v\in F_{n}$ .

Proof. Let $n\in \mathbb{N}$ . Let $M>0$ with $M|\cdot|\leq||\cdot||$ . Since $F_{n}$ is finite dimensional, there exists $L_{n}>0$

such that $||v||\underline{<}L_{n}|v|$ for all $v\in F_{n}$ . Define $x_{0}\in \mathbb{R}^{n}$ and $f_{:}.[0, T]\mathrm{x}\mathbb{R}^{n}arrow 2^{\mathbb{R}^{n}}$ by

$x_{0}=$ , $f(t, X)=-$ , $(t, x)\in[0, T]\cross \mathbb{R}^{n}$ .

By (A2) and Lemma 1, $f$ is a Carath\’eodory mapping. By (A4), we have

$|f(t, x)| \leq n\sum_{j=1}^{n}||A(t)(\sum_{i=1}^{n}x_{i}e_{i)}||_{*}||e_{j}||$

(4.5) . $\leq n^{2}L_{n}(C_{3}(|\sum_{i=1}^{n}Xie_{i1)}||\sum_{i=1}^{n}xiei||^{p-1}+o_{4}(t,$ $| \sum_{i=1}^{n}Xiei|))$

$\leq n^{2}L_{n}(C_{3}(|x|)L_{n}^{p}-1|x|p-1+C_{4}(t, |x|))$

for almost every $t\in[0, T]$ and for every $x\in \mathbb{R}^{n}$ . By (A3), we have

$(x, f(t, x))=-(A(t)( \sum_{i=1}^{n}X_{i}e_{i}),\sum_{=j1}^{n}xje_{j)}$

(4.6)
$\leq-C_{1}||i=\sum_{1}^{n}xie_{i}||p)+C_{0(}t|i=\sum_{1}^{n}xiei|^{2}+C2(t)$

$\leq-M^{p}C_{1}|x|^{p}+C_{0}(t)|x|2+C_{2}(t)$

for almost every $t\in[0, T]$ and for every $x\in \mathbb{R}^{n}$ . We show an a priori estimate for an absolutely
continuous function $x$ : $[0, T]arrow \mathbb{R}^{n}$ which satisfies $x(\mathrm{O})=x_{0}$ and $x’(t)\in f(t, x(t))$ for $t\in[0, T]$ .
Since from (4.6), $(|x(t)|2)’/2\leq C_{0}(t)|X(t)|^{2}+C_{2}(t)$ for almost every $t\in[0, T]$ , we have $|x(t)|^{2}\leq$

$|X_{0}|^{2}+2 \int_{0}^{T}c_{2}(S)dS+2\int_{0}^{t}C_{0}(S)|X(S)|^{2}ds$ for every $t\in[0, T]$ . So by Gronwall’s inequality, we get

$|x(t)|^{2} \leq(|x_{0}|^{2}+2\int_{0}^{T}$ C2 $(s)dS) \exp(2\int_{0}^{T}C_{0}(s)dS)$ for every $t\in[0, T]$ .

By the standard fixed point argument, there exists an absolutely continuous function $x:[0, T]arrow \mathbb{R}^{n}$

such that $x’(t)\in f(t, x(t))$ for almost every $t\in[0, T]$ and $x(\mathrm{O})=x_{0}$ . Let $u_{n}$ : $[0, T]arrow F_{n}$ be the
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absolutely continuous function defined by $u_{n}(t)= \sum^{n}i=1i(xt)e_{i}$ for every $t\in[0, T]$ . It is easy to see
that $u_{n}(0)=u_{0}^{n},$ $|u_{n}(t)|\leq\sqrt{K}$ for every $t\in[0, T]$ and $u_{n}’\in L^{q}(0, T;Fn)$ . Since the mapping

$trightarrow:[0, T]arrow \mathbb{R}^{n}$

is measurable, by Proposition 3, there exists a measurable mapping $w_{n}\in \mathcal{V}’$ such that $w_{n}(t)\in$

$A(t)u_{n}(t)$ and $(u_{n}’(t)+w_{n}(t), e_{j})=0$ for almost every $t\in[0, T]$ and for every $j=1,$ $\ldots,$
$n$ . $\square$

Lemma 4. $\{u_{n}\}$ is bounded in $\mathcal{W}$ .

Proof. Let $n\in \mathbb{N}$ . From (4.4) and (A3), we have

$\int_{0}^{T}||u_{n}(t)||^{p}dt\leq\frac{1}{C_{1}}(K\int_{0}^{T}C_{0}(t)dt+\int_{0}^{T}C_{2(}t)dt+\frac{|u_{0}|^{2}}{2})$ .

Since $u_{n}’\in L^{q}(0, T;F_{n})$ , there exists $v_{n}\in L^{p}(0, T;F_{n})$ such that $\langle u_{n}’, v_{n}\rangle=||v_{n}||^{2}=||u_{n}’||_{*}^{2}$ . So, by
(4.4) and (A4), we get

$||u_{n}’||_{*} \leq C_{3}(\sqrt{K})||u||^{e}q+(\int_{0}^{T}|C_{4}(t, \sqrt{K})|dt)^{\frac{1}{q}}$

Hence $\{u_{n}\}$ is bounded in $\mathcal{W}$ . $\square$

Since $\{u_{n}\}$ and $\{w_{n}\}$ are bounded in $\mathcal{W}$ and $\mathcal{V}’$ , respectively, we may assume that $\{u_{n}\}$ converges
weakly to $u$ in $\mathcal{W}$ and $\{w_{n}\}$ converges weakly to $w$ in $\mathcal{V}’$ .

Lemma 5. $u’+w=0$ and $u(\mathrm{O})=u_{0}$ .

Proof. First, we will show $u’+w=0$ . Let $\varphi\in C_{0}^{\infty}(0, T)$ and let $n\in \mathrm{N}$ . By (4.4), we have for every
$m\geq n$ ,

$0=(u_{m}(T), \varphi(\tau)e_{n})-(u_{m}(\mathrm{o}), \varphi(0)en)=\int_{0}^{T}((u_{m}’(t), \varphi(t)e_{n})+(\varphi’(t)e_{n}, um(t)))dt$

$= \int_{0}^{T}((-wm(t), \varphi(t)e_{n})+(\varphi(/t)e_{n}, u_{m}(t)))dt=\langle-w_{m}, \varphi e_{n}\rangle+\langle\varphi’e_{n}, um\rangle$ .

So we get $0=\langle-\varphi w+\varphi’u, e_{n}\rangle$ for all $n\in \mathbb{N}$ and $\varphi\in C_{0}^{\infty}(\mathrm{o}, \tau)$ . Hence we obtain $u’+w=0$.
Since

$\mathrm{r}\mathrm{w}\{u_{n}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{s}$

weakly to $u$
$\mathrm{i}\mathrm{n}\mathrm{e}\mathcal{W}$

and $\mathcal{W}$ is continuously imbedded in $C(\mathrm{O}, T;H),$
$\{u_{n}(0)\}\square$

converges weakly to $u(\mathrm{O})$ in $H$ . So we obtain $u(\mathrm{O})=u_{0}$ .

Proof of Theorem 1. By Lemma 3 and Lemma 5, we have $\langle w_{n}, u_{n}\rangle=1/2|u_{0}^{n}|^{2}-1/2|u_{n}(\tau)|^{2}$ and
$\langle w, u\rangle=1/2|u0|^{2}-1/2|u(T)|2$ . So we get

$\varlimsup\langle w_{n}, u_{n}-u\rangle=\frac{1}{2}(\lim_{narrow\infty}|u_{0}^{n}|^{2}-|u_{0}|^{2}+|u(T)|^{2}-\varliminf|u_{n}(T)|^{2})\leq 0$ .
$iarrow\infty$ $iarrow\infty$

By Lemma 2, we have $w\in Au.$ Hence we obtain $u\in \mathcal{W}$ and $w\in Au$ such that $u(\mathrm{O})=u_{0}$ and
$u’+w=0$ . $\square$

Next, we give the proof of Theorem 2. Till the end of this section, we assume $p>2$ or $C_{0}(t)\equiv 0$ .
We fix $r>0$ which satisfies

$-C_{1}M^{p}r^{p}T+ \int_{0}^{T}C_{2(S})ds+((r^{2}+a)b+a)b\int_{0}^{\tau_{C}}\mathrm{o}(S)ds<0$,

where $a=2 \int_{0}^{T}C_{2}(s)ds$ and $b= \exp(2\int_{0}^{\tau_{C}}\mathrm{o}(s)dS)$ . We set $\rho=\sqrt{(r^{2}+a)b}$ and $R=\sqrt{(\rho^{2}+a)b}$ .
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Lemma 6. For every $n\in \mathrm{N}$ , there exist an absolutely continuous function $u_{n}$ : $[0, T]arrow F_{n}$ and
$w_{n}\in \mathcal{V}’$ such that $u_{n}’\in L^{q}(0,\tau;F),$ $w_{n}(t)\in A(t)u_{n}(t)$ for almost every $t\in[0,T],$ $|u_{n}(t)|\leq R$ for
every $t\in[0, T]$ and

$u_{n}(0)=u_{n}(T)$ , $(u_{n}’(t)+w_{n}(t), v)=0$ for $\mathrm{a}.\mathrm{e}$ . $t\in[0, T]$ and for every $v\in F_{n}$ .

Proof. Let $n\in$ N. Let $M,$ $L_{n}$ and $f$ be as in the proof of Lemma 3. Let $x$ : $[0, T]arrow \mathbb{R}^{n}$ be
an absolutely continuous function which satisfies $x’(t)\in f(t, x(t))$ for almost every $t\in[0, T]$ and
$|x(0)|\leq\rho$ . We will show $|x(\tau)|\leq\rho$ . By (4.6), it is easy to see that if there exists $t_{0}\in[0, T]$ with
$|x(t_{0})|\leq r$ then $|x(T)|\leq\rho$ . So we may assume that $|X(t)|>r$ for every $t\in[0, T]$ . Since $|X(t)|\leq R$

for every $t\in[0, T]$ from (4.6), we get

$\frac{1}{2}|x(\tau)|^{22}-\frac{1}{2}|x(0)|\leq-C_{1}M^{p}r^{p}T+\int_{0}^{T}\mathit{0}2(S)ds+R^{2}\int_{0}^{T}C0(S)ds<0$

from (4.6). So we obtain $|x(T)|\leq\rho$ .
Let $g:[0, T]\cross \mathbb{R}^{n}arrow 2^{\mathbb{R}^{n}}$ be a Carath\’eodory mapping defined by

$g(t, y)=\{$
$f(t, y)$ if $|y|\leq R$ ,

$f(t, Ry/|y|)$ if $|y|>R$
for $(t, y)\in[0, T]\cross \mathbb{R}^{n}$ .

We remark that $S_{f}(y)=S_{g}(y)$ for $y\in \mathbb{R}^{n}$ with $|y|\leq\rho$ , where $s_{f}$ and $S_{g}$ are as in Proposition 1.
From Proposition 1 and the continuity property of \v{C}ech homology, $S_{g}(y)$ is acyclic in the sense
of \v{C}ech homology with rational coefficients for every $y\in \mathbb{R}^{n}$ . We set $X=\{x\in C(\mathrm{O}, T;\mathbb{R}n)$ :
$|x(\tau)|\leq\rho\}$ . For every $x\in X$ , put $Hx=S_{g}(X(T))=S_{f}(X(T))$ . Then $H$ : $Xarrow 2^{X}$ is an upper
semicontinuous mapping such that $\bigcup_{x\in X}H(x)$ is contained in a compact subset of $X$ and $Hx$ is
acyclic and compact for every $x\in X$ . Hence, by Proposition 2, there exists a fixed point of $H$ ,
i.e., there exists an absolutely continuous function $x$ : $[0, T]arrow \mathbb{R}^{n}$ such that $x’(t)\in f(t, x(t))$ for
almost every $t\in[0, T],$ $x(\mathrm{O})=x(T)$ and $|X(t)|\leq R$ for every $t\in[0, T]$ . Let $u_{n}$ : $[0, T]arrow F_{n}$ be the
absolutely continuous function defined by $u_{n}(t)= \sum_{i=1}^{n}x_{i}(t)e_{i}$ for every $t\in.[0, T]$ . By the similar
argument as in the proof of Lemma 3, we finish the proof. .. $\square$

Lemma 7. $\{u_{n}\}$ is bounded in W.

Proof. Let $n\in \mathbb{N}$ . From Lemma 6 and (A3), we have

$0= \int_{0}^{T}(w_{n}(t), un(t))dt+\frac{1}{2}|u_{n}(T)|2-\frac{1}{2}|u_{n}(0)|^{2}$

$\geq C_{1}\int_{0}^{T}||u_{n}(t)||^{p}dt$ -R2 $\int_{0}^{T}C0(t)dt-\int_{0}^{T}C_{2(}t)dt$ .

Hence by the same argument as in the proof of Lemma 4, $\{u_{n}\}$ is bounded in $\mathcal{W}$ . $\square$

Since $\{u_{n}\}$ and $\{w_{n}\}$ are bounded in $\mathcal{W}$ and $\mathcal{V}’$ , respectively, we may assume that $\{u_{n}\}$ converges
weakly to $u$ in $\mathcal{W}$ and $\{w_{n}\}$ converges weakly to $w$ in $\mathcal{V}’$ .

By the same lines as those in the proof of Lemma 5, we obtain the following:
Lemma 8. $u’+w=0$ and $u(\mathrm{O})=u(T)$ .

Proof of Theorem 2. By Lemma 6 and Lemma 8, we have $\langle w_{n}, u_{n}\rangle=0$ for every $n\in \mathbb{N}$ and
$\langle w, u\rangle=0$ . So we get $\lim_{n}\langle w_{n}, u_{n}-u\rangle=0$ . By Lemma 2, we have $w\in Au.$ Hence we obtain
$u\in \mathcal{W}$ and $w\in Au$ such that $u(\mathrm{O})=u(T)$ and $u’+w=0$. $\square$

Remark 2. We give the proof of Remark 1. We set
$\tilde{A}(t)x=$ {$y\in A(t)x:y$ satisfies (3.1)} for $(t, x)\in[0, T]\cross V$ .

Since it is easy to see that $\{\tilde{A}(t)\}$ satisfies (A2), (A3) and (A4), it is sufficient to show the following:
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Lemma 9. $\tilde{A}(t)$ is pseudo monotone for almost every $t\in[0, T]$ .

Proof. Let $t\in[0, T]$ such that $A(t)$ is pseudo monotone and $A(t)x$ is nonempty, closed, convex
subset of $V’$ for every $x\in V$ . Let $x\in V$ and let $\{x_{n}\}$ be a sequence in $V$ which converges weakly to
$x$ in $V$ . Let $\{y_{n}\}$ be a sequence in $V’$ such that $y_{n}\in\tilde{A}(t)x_{n}$ for every $n\in \mathbb{N}$ and $\varlimsup_{n}(y_{nn}, x-X)\leq 0$ .
Fix $z\in V$ . Then there exists a subsequence $\{n_{i}\}$ of $\{n\}$ such that $\{y_{n_{i}}\}$ converges weakly to $y$

in $V’$ and $\varliminf_{n}(yn’ xn-Z)=\lim_{i}(y_{n}i’ xn_{i}-z)$ . Since $(y, x-z)=\varliminf_{n}(y_{n’ n}x-z)$ , it is sufficient
to show that $y\in\tilde{A}(t)x$ . From Lemma 1, we have $y\in A(t)x$ . Since $\{y_{n_{i}}\}$ converges weakly to $y$ ,
$y_{n_{i}}\in\tilde{A}(t)x_{ni}$ and $V$ is compactly imbedded in $H$ or $C_{0}(t)\equiv 0$ , we obtain $y\in\tilde{A}(t)x$ from (3.1).
This completes the proof. $\square$

5. APPLICATION
Throughout this section, $T>0,$ $p\geq 2$ with $1/p+1/q=1,$ $\Omega$ is an bounded domain in $\mathbb{R}^{N}$ with

smooth boundary and $Q=(\mathrm{O}, T)\cross\Omega,$ $m$ is a positive natural number. For real valued function $u$

on $\Omega$ , we mean $\eta(u)$ and $\zeta(u)$ as follows:
$\eta(u)=\{D\alpha u : |\alpha|\leq m-1\}\in \mathbb{R}N_{1}$ , $\zeta(u)=\{D\alpha u : |\alpha|=m\}\in \mathbb{R}^{N_{2}}$ .

Let $\{A_{\alpha} : |\alpha|=m\}$ be functions from $Q\cross \mathbb{R}^{N_{1}}\cross \mathbb{R}^{N_{2}}$ into $\mathbb{R}$ , let $\{A_{\alpha} : |\alpha|\leq m-1\}$ be multivalued
functions $Q\cross \mathbb{R}^{N_{1}}\cross \mathbb{R}^{N_{2}}$ into $2^{\mathbb{R}}$ , and let $h$ be a function from $Q$ into $\mathbb{R}$ .

We consider the following nonlinear differential inclusion

(5.1) $\{$

$\frac{\partial u}{\partial t}(t, x)+|\sum_{\alpha|=m}(-1)|\alpha|D\alpha A_{\alpha}(t, x, \eta(u), \zeta(u))$

$+ \sum_{|\alpha|\leq m-1}(-1)|\alpha|D\alpha w\alpha(t, X)=h(t, x)$
on $Q$ ,

$w_{\alpha}(t, x)\in A_{\alpha}(t, x, \eta(u), \zeta(u))$ on $Q$ for $|\alpha|\leq m-1$

with Dirichlet boundary condition

(5.2) $D^{\alpha}u=0$ on $[0, T]\cross\partial\Omega$ for $|\alpha|\leq m-1$ .

Theorem 3. Assume the following:
(i) for every $\alpha$ with $|\alpha|=m,$ $A_{\alpha}(\cdot, \cdot, \eta, \zeta)$ is measurable for every $(\eta, \zeta)\in \mathbb{R}^{N_{1}}\cross \mathbb{R}^{N_{2}}$ and

$A_{\alpha}(t, x, \cdot, \cdot)$ is continuous for almost every $(t, x)\in Q$ ;
(ii) for every $\alpha$ with $|\alpha|\leq m-1,$ $A_{\alpha}(t, x, \eta, \zeta)$ is nonempty, closed, convex subset of $\mathbb{R}$ for every

$(t, x, \eta, \zeta)\in Q\cross \mathbb{R}^{N_{1}}\cross \mathbb{R}^{N_{2}},$ $A_{\alpha}(\cdot, \cdot, \eta, \zeta)$ is measurable for every $(\eta, \zeta)\in \mathbb{R}^{N_{1}}\cross \mathbb{R}^{N_{2}}$ and
$A_{\alpha}(t, x, \cdot, \cdot)$ is upper semicontinuous for almost every $(t, x)\in Q$ ;

(iii) there exist $c_{3}>0$ and $c_{4}(t, X)\in L^{q}(Q;\mathbb{R}_{+})$ such that
$\sup|A_{\alpha}(t, x, \eta, \zeta)|\leq c_{3}(|\zeta|^{p-1}+|\eta|p-1)+c_{4}(t, X)$

for every $|\alpha|\leq m$ and $(t, x, \eta, \zeta)\in Q\cross \mathbb{R}^{N_{1}}\mathrm{x}\mathbb{R}^{N_{2}}$ ;
(iv) for every $(t, x, \eta)\in Q\mathrm{x}\mathbb{R}^{N_{1}}$ and $\zeta,$ $\zeta’\in \mathbb{R}^{N_{2}}$ with $\zeta\neq\zeta’$ ,

$\sum_{|\alpha|=m}(A(\alpha t, x, \eta, \zeta)-A\alpha(t, x, \eta, \zeta’))(\zeta\alpha-\zeta_{\alpha}’)>0$
;

(v) there exist $c_{1}>0,$ $c_{0}\in L^{1}(0, T;\mathbb{R}_{+})$ and $c_{2}\in L^{1}(Q;R+)$ such that

$\sum_{|\alpha|=m}A_{\alpha}(t, X, \eta, \zeta)\zeta_{\alpha}+c0(t)|\eta 0|2\geq C_{1}|\zeta|p-c_{2}(t, X)$

for every $(t, x, \eta, \zeta)\in Q\cross \mathbb{R}^{N_{1}}\mathrm{x}\mathbb{R}^{N_{2}}$ , where $\eta_{0}=\{\eta_{\beta} : |\beta|=0\}$ ;
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Then for every $h\in L^{q}(0, T;W^{-}1,q(\Omega))$ and $u_{0}\in L^{2}(\Omega)$ , there exists $u\in W_{p}^{1}(0, T;W(0\Omega 1,p), L^{2}(\Omega))$

which satisfies (5.1) and (5.2) with $u(\mathrm{O})=u_{0}$ , and if $p>2$ or $c_{0}(t)\in L^{\infty}(\mathrm{O}, T;\mathbb{R}_{+})$, then for every
$h\in L^{q}(0, \tau;W^{-1,q}(\Omega))$ , there exists $u\in W_{p}^{1}(0, T;W_{0}^{1,p}(\Omega),$ $L^{2}(\Omega))$ which satisfies (5.1) and (5.2)
with $u(\mathrm{O})=u(T)$ .

Proof. For every $t\in[0, T]$ , we define an operator $A(t)$ : $W_{0}^{m,p}(\Omega)arrow 2^{W^{-m,q}(\Omega)}$ by $w\in \mathrm{A}(t)u$

if for almost every $x\in\Omega$ and $|\alpha|\leq m,$ $w_{\alpha}(x)\in A_{\alpha}(t, x, \eta(u), \zeta(u))$ and for every $v\in W_{0}^{m,p}(\Omega)$ ,
$(w, v)= \int_{\Omega}\sum_{|\alpha|\leq m}w_{\alpha}(x)D^{\alpha}vd_{X}$ . First, we will show that $A(t)$ is pseudo monotone for almost every
$t\in[0, T]$ . We use the method employed in $[5, 14]$ . Fix $t\in[0, T]$ . Let $\{(u^{n}, w^{n})\}$ be a sequence in
$W_{0}^{m,p}(\Omega)\cross W^{-m,q}(\Omega)$ such that $\{u^{n}\}$ converges weakly to $u,$ $w^{n}\in Au^{n}$ and $\varlimsup_{n}(w, u-nnu)\leq 0$ .
Fix $v\in W_{0}^{m,p}(\Omega)$ . Taking a subsequence, if necessary, we may assume that $\varliminf_{n}(w^{n}, u^{n}-v)=$

$\lim_{n}(w^{n}, u^{n}-v),$ $\{D^{\alpha}u^{n}\}$ converges strongly and almost everywhere to $D^{\alpha}u$ for $|\alpha|\leq m-1$ and
$\{w_{\alpha}^{n}\}$ converges weakly to $w_{\alpha}$ in $L^{q}(\Omega)$ for $|\alpha|\leq m$ . We show $w_{\alpha}(x)\in A_{\alpha}(t, x, \eta(u), \zeta(u))$ for almost
every $x\in\Omega$ and for every $|\alpha|\leq m-1$ . Fix $\alpha$ with $|\alpha|\leq m-1$ . We may assume that there exists
$\omega_{\alpha}^{n}\in \mathrm{C}\mathrm{o}\{w_{\alpha}^{n}, w\alpha n+1, \cdots\}$ and $\omega_{\alpha}^{n}(x)$ converges to $w_{\alpha}(x)$ almost everywhere. Fix $x\in\Omega$ . Let $(\beta, \gamma)$ be
an open interval with $A_{\alpha}(t, x, \eta(u), \zeta(u))\subset(\beta, \gamma)$ . From the upper semicontinuity of $A_{\alpha}(t, x, \cdot, \cdot)$ , we
have $w_{\alpha}(x)\in(\beta, \gamma)$ . Since $(\beta, \gamma)$ is an arbitrary open interval which contains $A_{\alpha}(t, x, \eta(u), \zeta(u))$ and
$A_{\alpha}(t, x, \eta(u), \zeta(u))$ is closed and convex, we have $w_{\alpha}(x)\in A_{\alpha}(t, x, \eta(u), \zeta(u))$ almost everywhere.
Set

$p_{n}(x)= \sum_{|\alpha|=m}A\alpha(t, x, \eta(u^{n}), \zeta(u^{n}))(D^{\alpha}u^{n}-D\alpha u)+\sum_{||\leq}\alpha m-1\alpha w(nX)(D^{\alpha}u^{n}-D^{\alpha}u)$ ;

$q_{n}(x)= \sum_{|\alpha|=m}(A_{\alpha}(t, x, \eta(u^{n}), \zeta(u^{n}))-A_{\alpha}(t, x, \eta(un), \zeta(u)))(D^{\alpha n}u-D\alpha u)$ ;

$r_{n}(x)= \sum_{|\alpha|=m}A\alpha(t, x, \eta(u^{n}), \zeta(u))(D^{\alpha}u^{n}-D^{\alpha}u)$ ;

$s_{n}(_{X)}= \sum_{|\alpha|\leq m}-1w_{\alpha}(nX)(D^{\alpha}u^{n}-D^{\alpha}u)$ .

It is easy to see $q_{n}=p_{n}-r_{n}-Sn$ and $\varlimsup_{n}\int q_{n}\leq 0$ . From $q_{n}\geq 0,$ $q_{n}(x)arrow 0$ almost everywhere.
By [13, Lemma 6], $D^{\alpha}u^{n}(x)arrow D^{\alpha}u(x)$ almost everywhere for $|\alpha|=m$ , and hence $p_{n}(x)arrow 0$

almost everywhere. From the uniform integlability of $\{p_{n}^{-}\}$ , we have $\lim_{n}\int p_{n}^{-}=0$ . So we obtain
$\lim_{n}\int p_{n}^{+}=0$ and

$\lim_{narrow\infty}(w, u-nnv)=\lim_{narrow\infty}(\int_{\Omega}p_{n}(x)dx+(w^{n}, u-v))=(w, u-v)$ .

Hence $A(t)$ is pseudo monotone, which implies (A1). By Sobolev’s imbedding theorem, we have
(A3). Hence by our theorems, we obtain the conclusion. $\square$

As a direct consequence, we have the following, which improves [6, Theorem 4.1] and [15, Theo-
rem 2].

Corollary. Let $b_{i},$ $a:\mathbb{R}arrow \mathbb{R}$ be bounded and continuous functions and let $g:Q\cross \mathbb{R}\cross \mathbb{R}^{n}arrow 2^{\mathbb{R}}$ be
Carath\’eodory mapping such that there exist $\alpha,$ $\beta>0$ which satisfy $\sup|g(t, x, \eta, \zeta)|\leq\alpha(|\eta|^{p-1}+$

$|\zeta|^{p-1})+\beta$ for every $(t, x, \eta, \zeta)\in Q\cross \mathbb{R}\cross \mathbb{R}^{n}$ . Then

$\frac{\partial u}{\partial t}-\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}(|\frac{\partial u}{\partial x_{i}}|^{p-2}\frac{\partial u}{\partial x_{i}})+\sum_{i=1}^{n}b_{i}(X)\frac{\partial u}{\partial x_{i}}+a(_{X})|u(X)|^{p-}2u(_{X)g}+(t, x, u(X), Du(_{X}))\ni 0$

with Dirichlet boundary condition has a $T$-periodic, weak solution $u\in W_{p}^{1}(0, T;W_{0}^{1,p}(\Omega),$ $L2(\Omega))$ ,
where $Du(x)=( \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}})$ .
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