-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Kyoto University Research Information Repository

Kyoto University Research Information Repository > KYOTO UNIVERSITY

_ Generalized supremum in ordered linear space and facial
Title structure of a convex set (Nonlinear Analysis and Convex
Analysis)

Author(s) | Komuro, Naoto

Citation O0O0OoobOooOonog (1998), 1071: 82-87

Issue Date | 1998-11

URL http://hdl.handle.net/2433/62566

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39196051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooobgon
10710 1998 O 82-87 82

Generalized supremum in ordered linear space and
facial structure of a convex set

JEHEE BE KRB hE EA ( Naoto Komuro)

§1 DEFINITIONS AND BASIC RESULTS

Let E be a linear space over R, and P be a convex cone in F satisfying

(P1) E=P-P,

(P2) Pn(-P)={0}.

An order relation in E can be defined by z <y <= y — 2 € P. It can easily be seen
that

(1) z2<yandy<z= 2=y,

(2) z<yandy<z= 2 <z,

(3) z<y=z+z<y+zforallzeckFE,

(4) 0<zand0<AeR=—=0< Az,

(5) TForevery z € E, there exists 21,22 € E such that z = 21 — 25, and 0 < 21, 2.
Conversely, if an order in E satisfies (1) ~ (5), then P = {x € F |0 < z} is a convex
cone satisfying (P1) and (P2). A linear space E equipped with such a positive cone P
is called a partially ordered linear space, and is sometimes denoted by (E, P).

Definition. For a subset A of E, the generalized supremum Sup A is defined to be the
set of all minimal elements of U(A), where U(A) is the set of all upper bound of A.

We say in other words that a € Sup A if and only if @ < b whenever b € U(A) and
a,b are comparable. The generalized infimum Inf A can be defined similarly. In order
to distinguish this notion from the least upper bound and the greatest lower bound,
we denote the latter ones by sup A and inf A respectively. If E is order complete, then
Sup A = {sup A} holds whenever the subset A is upper bounded (i.e.,U(A) # ). When
E = R" and P is closed and not a lattice cone, Sup A becomes a infinite set in most
cases. However, it is possibly empty, even when A is upper bounded.

Proposition 1. For a € E and X > 0, we have
(1) Sup(A+a)=SupA+a,
(2) SupAA=ASupA,
(3) SupA=—Inf(—A).
Proposition 2. For an arbitrary set A C E with U(A) # {
Sup A = Sup(coA)
holds where coA s the convex hull of A.

proof. It suffices to show that U(A) = U(coA). Take x5 € U(A) arbitrarily. For z € coA
there exist some points 1,22, , 2, in A such that z = Y. \z; with 0 < \; <1
and > A\; = 1. Hence zg —z = Soi i Ai(@o — ;) > 0 and we have z € U(coA).
When A is a finite set of the form {a;,---a,}, we denote the set of the upper bound
of Aby U(ay,- -+ ,an) instead of U(A). With this notation, we define aVb (a,b € E) to
be the set of all minimal elements of U(a, b). Also a A b can be defined similarly. When
(E, P) is a lattice, a V b is always a single element which is the minimum of U(a, b).
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Proposition 3. For every a,b,c € E and A € R,
(1) (ea+c)V(b+ec)=(aVb)+c,
(2)  AXaV b= AaVb).

Theorem 1. For a,b € E, aVb+# 0 implies aAb # 0 and the converse is also true.
Moreover,

a+b—(aVbd)=aAbd
holds and in particular we have a € ay + a— where ay =aV 0 and a_ = a A 0.

The proof of Theorem 1 can be seen in [ 6 |]. Also, some examples in which a V b can be
empty are shown.

A partially ordered linear space (E, P) is said to be monotone order complete (m.o.c.
for short) if every upper bounded totally ordered subset of F has the least upper bound
in E. The followings are known.

Proposition 4.  In the case E = R%, (E, P) is m.o.c. if and only if P is closed.

Proposition 5.  Suppose that E is a Banach space and P is closed. Let E* be the
topological dual of E and let P* = {«* € E* | 2*(z) > 0, = € P}. If P* — P* = E*,
then (E*, P*) is m.o.c.

The proof can be done by using Banach Steinhaus theorem, and in [ 2 ], one can see
some conditions under which P* — P* = E* holds.

A linear topology of (E, P) is called an order continuous topology if every decreasing
net {ay} C F with infay = 0 converges to 0 by the topology. We consider some further
conditions for P;

(P3) P is closed with respect to an order continuous topology,

(P4)  For every decreasing net {a)} in P, inf ay = a implies a € P.

Note that (P3) imlpies (P4).

Theorem 2.  Suppose that a partially ordered linear space (E, P) is monotone order
complete and P satisfies (P3) or (P4). Then for every subset A of E,

U(A)=(SupA)+ P

holds. In particular, aV b # 0,a Ab# 0 for every a,b € E,and U(a,b) = (a V b) + P.

proof. It suffices to show that U(A) C (Sup A) + P. For an arbitrary = € U(A), the
section U(A), ={y € U(A) | y <z } is a nonempty convex set in E. f T C U(A), is
" a totally ordered subset, then by monotone order completeness, there exists a greatest
lower bound zy of T. Since T C U(A) = Nyeca(y+P), (P4)yields zo € U(A),. Hence by
Zorn’s lemma, U(A), has at least a minimal element y, . It is easy to see that yq is also
a minimal element of U(A), and it means that = € (Sup A) + P. The second statement
of the theorem is obvious. Indeed, U(a,b) is always nonempty because P — P = E.
Hence it is sufficient to use the first statement. Q.E.D.

Corollary 1. Suppose that (E, P) satisfies the hypotheses in Theorem 2 and let A be
a subset of E. If Sup A consists of a single element a, then a 1s the least upper bound
of A.
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Corollary 2. For every subset A of E, U(L(U(A))) = U(A) holds where L(U(A)) de-
notes the lower bound of U(A). Moreover, if (E, P) satisfies the hypotheses in Theorem
2, then we have SupInf Sup A = Sup A .

Next we give another sufficient condition for the same results by considering the faces
of P. Moreover, we will give an example which shows that each of the two conditions
does not imply the other.

§2 FACES OF THE POSITIVE CONE

Let (E, P) be a partially ordered linear space, and suppose that P is algebraically closed,
that is, every straight line of E meets P by a closed interval. A point @ of a convex
subset A C E is called an algebraic interior point of A if for every z € E, there exists
A > 0 such that 2 + Az € A. Algebraic exterior points are defined similarly, and we
denote the algebraic interior (exterior) of A by intA (extA) respectively. Moreover,
0A = (intAUextA)® is called the algebraic boundary of A. A convex subset C of P is
called an exposed face of P if there exists a supporting hyperplane H of P such that
C = PNH. By §(P), we denote the set of all exposed faces of P. For C' € §(P), dim C
is defined as the dimension of affC’ where affC' denotes the affine hull of C. The following
theorem is a fundamental result, and is also useful when we intend to determine the set
a V b explicitly.

Theorem 3.  Suppose that P is algebraically closed and int P # . If dim C < 1 for
every C € §(P), then
aVb=0U(a)NOU(b)

holds for every incomparable pair a,b € E.

In the case when a linear topology is given in E, the assertion of Theorem 3 can be
translated into the terms of topology and is still valid.

Lemma 1. If0<az <y andy € 0P, then z € OP.

proof.  Suppose that z € int P and put z = 2y —=z, then z = y+(y—z) € P+ P = P.
Since P is convex and z € intP, y = (a2 + z) € int P. This contradicts the
assumption.

proof of Theorem §.  Let zg be an element of a V b, and suppose that z € int U(a).

Then there exists A > 0 such that ¢ =, (1= XNao + Ab € U(a). It is easy to see that

c € U(a)NU(b) = U(a,b) and ¢ S x. This contradicts the fact that 2 is a minimal
element of U(a,b), and hence a Vb C 9U(a) N AU (b).

Conversely, take zg € 0U(a) N OU(b) arbitrarily and suppose that yo < 20, yo €
U(a,b). Since a < yy < x, it follows by Lemma 1 that

Yo € [a,z0] C IU(a),

where [a,z¢] = {2 € E| a < z < 2y} is an order interval. Obviously every order interval
is a convex set. Similarly we have

yo € [b,z0] C AU(B),

and hence

[a,z0] Nint U(a) =0, [b,xe] Nint U(b) = 0,
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while int U(a) and int U(b) are both assumed to be nonempty . Applying the separation
theorem, we can find hyperplanes Hy, Hy of E such that

(1)  H, separates [a, ] and U(a) and,

(2) H, separates [b, z¢] and U(b).
Since [a,z¢] C U(a) and [b,z9] C U(b), we can see that [a,z0] C U(a) N H; and
[b,z9] C U(b) N Hz. By the condition of §F(P), these two faces are actually half lines.
On the other hand, a,b, and zy cannot be in any single straight line because a and b
are not comparable. Hence [a,z¢] and [b, 2| are respectively included in two different
lines, and in particular, both zy and y, belong to the intersection of those two lines.
This means 2o = y¢ and so zg € a V b. Q.E.D.

Lemma 2.  Suppose that the positive cone P is algebraically closed and int P # ().
Then OU(a)NOU(b) # 0 for every incomparable pair a,b € E.

proof.  We can take an element z € U(a) N U(b). Indeed, b — a can be written in
the form p — ¢ with p,¢g € P, andsoa+p =b+q € U(a)NU(b). Since a ¢ U(b),
and U(b) is algebraically closed, there exists Ag € [0,1) such that A\¢ = max{}\ >
0]z + ANa—2) € U(b)}. Obviously, z =t Xo(a—z) € U(a)NJU(b). Next we take
A1 = max{\ | zo + Mb — zp) € U(a)} similarly. Then z; =zt (b= z) € OU(a).
Moreover, since b < z; < zo € U(b), it follows by Lemma 1 that z; € 9U(b).

Applying Theorem 3 and Lemma 2, we can obtain the following.

Corollary 3. Under the hypotheses in Theorem 3, aVb # () holds for every a,b € E.
Moreover when a and b are not comparable, we have

U(a,b)’: (aVb)+ P

proof.  The first statement of the theorem follows immediately from Theorem 3 and
Lemma 2. To see the latter, it is sufficient to show U(a,b) C (a V b) + P. For an
arbitrary element z € U(a,b), we can choose z; as in the proof of Lemma 2. Then
z1 <z and z; € OU(a)NOU(b). Hence by Theorem 3, z; € a Vb, and this means that
z€(aVb)+P.

Theorem 4. Under the hypotheses in Theorem 3,
U(A)=(SupA)+ P

holds for every subset A C E. In particular, the conclusions in Corollary 1 and Corollary
2 are valid.

Remark. The hypotheses of this theorem can be somewhat weakened. Moreover, using
this theorem, we can simplify the proof of Lemma 2 and can obtain the second statement
of Corollary 3 directly.

Lemma 3. If z € OU(A) for a subset A of E, then U(A), C OU(A) where U(A), =
{yeU(4)|y <=z}

proof. Let y be an arbitrary point in U(A),. Since z € OU(A) there exists a point z € E
such that {z +tz [t > 0} NU(A) = 0. By the definition of U(A), U(A) + P = U(A),
and this yields {y +tz |t > 0} NU(A) = 0. This means that y € OU(A).
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proof of Theorem 4. Let xy be an arbitrary point in U(A). Since P is algebraically
closed, P can not include any straight line. Indeed if { 4+ ty | t € R} C P for some
y # 0, then {ty |t € R} C PUJP = P and this contradicts ( P2 ). Hence for a positive
element x # 0, there exists t; = max{t > 0|z —tz € U(A)}. If we put z; = z¢ — ty 2,
then z; € OU(A) and it follows from Lemma 3 that U(A),, C dU(A). Since U(A4),, is
a convex set and int U(A) # ), we can apply the separation theorem and there exists a
hyper plane H which separates U(A);, and U(A). U(4),, C (z; — P)N H and this is
a straight half line by the assumption. Moreover, since U(A) can not include the whole
straight line, U(A),, is the form {Az; + (1 — A)z |0 < X < 1} where z < z;7. Clearly, =z
is a minimal element of U(A) and z < ¢, and this completes the proof. Q.E.D.

§3 EXAMPLES

Let E be the space of all symmetric matirces of M;(R), and let P be the set of all
positive semi definite matrices in E. Then (E, P) is m.o.c., but it is not a lattice. E

and P can be identified with R3 and
P={(z,y,2) eR* [ 2* <y, 0< 2, 0 <y}

respectively. It is easy to see that every exposed face of the positive cone P is 1-
dimensional except the trivial face {0}, and P satisfies the condition in Theorem 3.
Hence, by some simple culculations, we can determine the set a V b for incomparable
pair a,b € E.

Next we investigate the relation between the condition of Theorem 2 and that of
Theorem 3. For a partially ordered linear space (E, P), we say that the positive cone P
satisfies condition (§) when dim C' <1 for every C' € §F(P). In finite dimensional cases,
P does not satisfy the condition (§) when P is a closed convex cone generated by a finite
set. On the other hand, such a positive cone satisfies monotone order completeness. This
means that monotone order completeness does not imply the condition (F). Now we
show an example in order to see the converse implication is also not true.

Let E be the linear space consisting of all sequences z = (21, 22,---) (z; € R) such
that z; = 0 except for finite number of i = 1,2,---. We define
oo 3
P={z=(21,29,-+) 212> (fo) }.
i=2

Then it is easy to see that P is algebraically closed and int P # (). Indeed (1,0,0,---) €
int P. Let C € §(P) and let ¢ = (z1,22--- ),y = (y1, Y2, - ) be two points in C'\ {0}.
Since z,y € OP, 2} = Y2, 2%, and y} =3 0, y?. By the convexity of C, we also
have 2(z +y) € 9P, and hence (z; +y1)? = 3 o0, (2; + yi)?. By simple calculation, we
obtain z = Ay for some A > 0. This means that dim C = 1, and that P satisfies the
condition (§). Thus Theorem 3 and Theorem 4 are applicable in this case.

We will show that (E, P) is not m.o.c. We define a sequence {a,} C E by

1 111 1
n= (==, =, =, =, —,0,0, - =1,2,---).
Then we have a; > as > a3 > ---.  Moreover, since (%)2+(i)2+(%)2+... — %, we

can see that (—4/%,0,0,--+) is a lower bound of {a,}. Let b = (by,by,--- ,b;,0,0,---)
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be an arbitrary lower bound of {a,}. Then an element of the form ¢ = (by + X, by, b3, - - -
ybiy 11,0,0,- -+ ) always satisfies b # ¢ when A > 0. It is easy to see that we can choose
A and p such that c is also a lower bound of {a,}. This means that the greatest lower
bound of {a,} does not exist, and (E, P) is not m.o.c..
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