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EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION
EQUATIONS IN BANACH SPACES

NAOKI SHIOJI (3REEEH - £INKFILFR)

1. INTRODUCTION

Let X be a Banach space, let A be an m-accretive subset of X x X, let f: R x D(A) —» X
be a Carathéodory mapping which is T-periodic in its first variable, and let h € L*(0,T; X).
In this paper, we study the existence of T-periodic solutions to a class of a nonlinear evolution
equations of the form

(1.1) u'(t) + Au(t) 3 f(t,u(t)) + h(t) forteR.

This problem has been studied by many authors; cf. [1, 3, 5, 12, 14, 15, 19, 20]. In the case when
A is the subdifferential of a proper, lower semicontinuous convex function on a Hilbert space,
Otani [14] obtained a nice result. Vrabie [20] considered the case that A is a fully nonlinear
operator. He considered the case that X is a Banach space, A is an m-accretive operator and
f: R x D(A) — X is a Carathéodory mapping such that D(A) is convex, —A generates a
compact semigroup, f is T-periodic in its first variable and there exists ¢ > 0 such that A — al

is m-accretive, and

1
lim - sup{||f(¢,v)|| : t € R,v € D(A), |v|]| < 7} < q,

and he showed that (1.1) has a T-periodic, integral solution in the case of h = 0. Cagcaval and
Vrabie [5] partially extended his result to the case that X is a Hilbert space, —A generates a
compact semigroup and f : R X (—A) — X is a continuous mapping such that f is T-periodic
in its first variable and bounded on every bounded subset in R x D(A), and there exists 7 > 0

such that B, N D(A) is nonempty and
(y— f(t,z),z) >0 forevery (z,y) € A with ||z||=r and t € [0,T],

and they showed that (1.1) has a T-periodic, strong solution in the case of h = 0.

The objects of this paper are to obtain a generalization of Cagcaval and Vrabie’s result by
relaxing the conditions that X is a Hilbert space and f is a continuous mapping, and an existence
result on the T-periodic problem (1.1) for every h € L*(0,T; X) in the case when X is a Banach
space and f is a Carathéodory mapping. The idea is inspired by [10] in which Gérniewicz and
Plaskacz studied the existence of periodic solution of an ordinary differential equation. Our
results are the following:

Theorem 1. Let X be a separable Banach space and let A be an m-accretive subset of X x X
such that D(A) is conver and —A generates a compact semigroup. Let T > 0 and let f be a
Carathéodory mapping from [0,T] x D(A) into X. Assume that there ezist r > 0 and € > 0 such

that B, N D(A) is nonempty,

T
/ sup ||t dt < oo,
=

«€D(A)NBy 4e
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and for every (z,y) € A withr —e < ||z|| <7 +e¢, there exists z € Jx such that
(y — f(t,x),2) >0 for almost every t € (0,T),

where B, = {u € X : ||u|| < r} and J is the duality mapping from X into its topological dual.
Then there exists at least one T-periodic, integral solution of

u'(t) + Au(t) 3 f(t,u(t)) for0<t<T.

Theorem 2. Let X, A, T and f be as in Theorem 1. Assume that for every p > 0 there exists
a, € L*(0,T) such that | f(t,z)|| < a,(t) for almost every t € [0, T] and for every = € D(A)
with ||z|| < p. Assume also that there ezist v > 0, ¢ > 0 and b € L'(0,T) such that for every
(z,y) € A with ||z|| > r, there exists z € Jx such that

(y — f(t,z),2) > c|lz||*> = b(t)||z|| for almost every t € (0,T).
Then for every h € L*(0,T; X), there exists at least one T-periodic, integral solution u of
u'(t) + Au(t) 3 f(t,u(t)) + h(t) for0<t<T.

2. PRELIMINARIES

Throughout this paper, all vector spaces are real, we denote by N and R, the set of all positive
integers and the set of all real numbers, respectively, and by homology, we understand the Cech
homology with rational coefficients; see [8, 9].

Let Y and Z be topological spaces. Let T be a subset of Y x Z. We identify the set 7 with
a multivalued mapping 7 from Y into Z by Ty = {z € Z : (y,z) € T} for every y € Y. We
denote by D(T) and R(7T), the sets {y € Y : Ty # 0} and U{T v : y € D(T)}, respectively.
We say that 7 is upper semicontinuous if for every yo € Y and open set V in Z with Ty, C V,
there exists a open neighborhood U of yo such that 7y C V for every y € U.

The following fixed point theorem was obtained in [9, 17]. Since [17] is written in Japanese,
we give the proof in Appendix.

Proposition 1 (Gérniewicz, Shioji). Let Y be a convexr subset of a locally convez, Hausdorff
topological vector space E and let K be a compact subset of Y. Let T be an upper semicontinuous
mapping from Y into K such that for every y € Y, Ty is a nonempty, acyclic, compact subset
of K. Then there is an element y of Y such that y € Ty. :

Let X be a Banach space, let D be a subset of X and let 7 > 0. We denote by D, the closure
of D and we denote by B,, the closed ball in X with center 0 and radius 7. Let X* be the
topological dual of X. The value of z* € X* at x € X will be denoted by (z,z*). Let J be the
multivalued mapping from X into X* defined by Jz = {z* € X* : (z,z*) = ||z||* = ||=*||*} for
every z € X. We call J the duality mapping from X into X*. For every (r, y) € X x X, we
fene e+ ty] - ]

ol +tyl| = ||lx
[z, 9]+ = ltlll(r)l " :
We know that (z,y) — [z,y]+ is an upper semicontinuous function from X x X into R. We say
a subset A C X x X is accretive if [z] — x2,y1 — y2]4+ > O for every (x1,91), (z2,72) € A. We
know that A is accretive if and only if for every (z1, 1), (T2, y2) € A, there exists w* € J(z, —x2)
such that (y; — vz, w*) > 0. We say an accretive set A is m-accretive if R(I + AA) = X for
every A > 0. Let a,b € R with a < b. We denote by C(a,b; X), the space of all continuous
functions from [a,b] into X. For 1 < p < oo, we also denote by LP(a,b; X), the space of all
strongly measurable, p-integrable, X-valued functions defined almost everywhere on [a, b].
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Let A C X x X be an m-accretive set, let f € L'(a,b; X) and let x € D(A). We say a function
u : [a,b] — X is a strong solution of the initial value problem:

(2.1) u(a) =z, o'(t)+ Au(t) 3 f(t) fora<t<b,

if u is differentiable almost everywhere on [a,b], u is absolutely continuous, u(a) = z and
u'(t) + Au(t) > f(t) almost everywhere on [a,b]. We say a function u : [a,b] — X is an integral
solution of the initial value problem (2.1), if u is continuous on [a,b], u(a) = z, u(t) € D(A) for
every a <t <band

)= ol < )~ + [ [utr) 3, £7) ~ =, e

for every (y,2) € A and s,t with a < s < ¢t < b. If u is a strong solution of (2.1), then
u is an integral solution of (2.1). We know from [2, 4] that the initial value problem (2.1)
has a unique integral solution. If 4 and v are the integral solutions of (2.1) corresponding to

(z, f); (y,9) € D(A) x L'(a,b; X) respectively, then

[u(®) = v@) < llu(s) — v(s)]l +/ [u(7) = o(7), f(7) — g(7)]+ dr

fora <s<t<b.
If AcC X x X is m-accretive, then

S(t)r = 7}1_)1210 ([ + %A) e

exists for every € D(A) and uniformly for ¢ on every bounded interval in the set of nonnegative
real numbers; see [2, 6]. We say the family {S(t) : D(4) — D(A),t > 0} is the nonlinear
semigroup generated by —A. We remark that for every z € D—(Z—), t — S(t)z is the unique
integral solution of u(0) = x and «'(t)+Au(t) 3 0 for t > 0. Wesay {S(t) : D(A) — D(A),t > 0}
is compact if S(t) is compact for every ¢ > 0.

To prove our theorems, we need the following propositions; see [20, Theorem 2] and [7,
Lemma 2|:

Proposition 2 (Vrabie). Let X be a Banach space and let A be an. m-accretive subset of X x X
such that —A generates a compact semigroup. Let B be a bounded subset of D(A), let a,b € R
with a < b and let G be a uniformly integrable subset of L'(a,b; X). Then the set of all integral
solutions of (2.1) corresponding to (z, f) € B x G 1is relatively compact in C(d,b; X) for every
d € (a,b), and if, in addition, B 1is relatively compact in X, the set is relatively compact in
C(a,b; X).

Proposition 3 (De Blasi and Myjak). Let B be a subset of a separable Banach space X and

let f be a Carathéodory mapping from [0,1] x B into X such that fol sup,ep ||f (¢, z)|| dt < oo.
Then for every e > 0, there exists a locally Lipschitz mapping g from [0,1] X B into X such that

/(;1 sup || f(t,z) — g(t,2)|| dt < e.

z€B
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3. PROOF OF THEOREM 1

In this section, we give the proof of Theorem 1. Let a be a continuous function from [0, co)
into [0, 1] such that a(t) = 1 for t € [0,r +¢/2] and a(t) = 0 for t € [r + 3¢/4,00). Define a
Carathéodory mappmg f from [0, T]x D(A) into X by f(t z) = o||z||) f(t, z) for (t,z) € [0,T] x

D(A). Since fo SUP,, Ay |7 (t, z)|| dt < oo, Proposition 3 yields a sequence of locally Lipschitz

functions {f,} from [0, 7] x D(A) into X such that f,(t,z) = 0 for (¢,z) € [0, T] x (D(A)\ Br+.)
and

(3.1) / sup |7t 2) ~ fult, )l dt < =

z€D(A)

For every z € D(A) N B,, we set
Sz = {u:[0,T] — D(A), u is an integral solution of

(3.2) w(0) =z, W(t)+ Au(t) > f(t,u(t)) for 0 <t< T}
For every n € N and ¢ € [0,T], we denote by F,,, the function from [0,T] x D(A) into X
defined by 3

Fog(t,z) = f(t,z) ?f (t,x) € [0,0] x D(A),

’ falt,z) if (t,2) € (0,T] x D(A).
For every n € N and z € D(A) N B,, we also set
S, = U {u:[0,T] — D(A), u is an integral solution of
o€[0,T1]

(3.3) u(0) =z, u'(t)+ Au(t) 3 Fo.(t,u(t)) for 0<t < T}
Since fOT SUP,BA) 1 £ (t, z)|| dt < 00, fOT SUP, 574) | 7n(t, )| dt < co and —A generates a com-
pact semigroup, we know from [18, Theorem 2] or [21, Theorem 3.8.1] that there exist integral

solutions for (3.2) and (3.3) on a small interval [0, 6], and we also know from [21, Theorem 3.2.2]
that such integral solutions are continuable on [0,T]. So Sz and S,z are nonempty for every

z € D(A)N B, and n € N.
Lemma 1. For every x € D(A)N B, and v € Sz, ||u(t)|| <7 for every t € [0,T].

Proof. Let € D(A) N B, and let u € Sz. Let [Ty, Ty] be an interval contained in [0,T') such
that u(Ty) = r and r — /4 < ||u(t)|| < r + /4 for every t € [Ty, T;]. Since u is an integral
solution of u/(t) + Au(t) > f(t,u(t)) on the interval [Ty, T1], for every 6 € (0,¢/4), there exist
to,* -+ ,In € [O,T], To,*** , TN Em, fo, -+, fnv € X such that

To=to<t; < <ty-1 <Th <tn, max(t; —t,_;)<§,
N
3 / 1 — F(tu(o)] de < 8,
i=1 Yti-1
N

(3.4) Li 7%l | pp s f fori=1,2,...,N
t "tz 1

(3.5) lv(t) —u(t)|| < & for every t € [Ty, T1],
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where

_ Iy ift= t(),
Mﬂ—{minemA@Liszan
see [13]. From the hypothesis of our theorem, (3.4), (3.5) and 0 < & < £/4, for every ¢ =
1,2,..., N, there exists z} € Jz; such that

<f1, t__t__ — f(t ;) z> > 0 for almost every t € [0, 7.
— b1

So we have

||xju<nxo||+z - mz>||dt<r+za+2 / 1F(t,u(®) — F(t, o)l dt

ti-1

forevery 3 =1,2,... N which implies

||u<t>n<r+36+2/ 1F(tu(t)) — F(t o) dt

for every t € [Ty, Ty]. Since § € (0,¢/4) is arbitrary, we obtain [[u(t)|| < 7 for every t € [To, T1).
This completes the proof. O

Lemma 2. For every n € N and z € D(A) N B,, S,z is compact, where S,z is endowed with
the C(0,T; X) topology.

Proof. Since S,z is relatively compact from Proposition 2, we only need to show that S,z is
closed. Let n € N and let x € D(A) N B,. Let {u,,} be a sequence in S,z which converges to .
We shall show u € S,z. For every m € N, there exists o,, € [0,T] such that u,, is an integral
solution of

(3.6) Um(0) =z,  Up,(t) + Aun(t) 3 Fop,, (8, um(t)) for0 <t <T.
We may assume that {o,,} converges to o € [0,T]. Then {F,,,(t,un(t))} converges to
F,.(t,u(t)) in L'(0,T; X). Since u, is an integral solution of (3.6), we have

Jm(®) = 91l < () = 911+ [ n() = 9, P (7 () = 2 dr

for every (y,2) € A, s,t with 0 < s <t < T and m € N. Tending m to infinity, we have u € S,z.
Hence, S,z is closed. O

The following is crucial to prove our theorem. In the proof, we use the method employed
in [11, Proposition 3] and [22].

Lemma 3. For everyn € N and x € D(A) N B,, S,z is contractible.

Proof. Let n € N and let z € D(A) N B,. For every s € [0,1] and v € S,z, we denote by w;,,
the integral solution w;, : [sT,T] — D(A) of

W (sT) = v(sT), w,,(T) + Aws,(T) 3 fa(Tywsy(1)) for sT <t <T.
Define a function H from [0, 1] X S,z into S,z by

v(t if 0 <t <sT,
H(s,v)(t) = { ’w(s,Z(t) T <i<T for every (s,v) € [0,1] x S,x.
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We shall show that H is continuous. Let (so,vp) € [0,1] X S,z. Since fn is locally Lipschitz,
for every 7 € [0,T], there exist 6, > 0 and K, > 0 such that y € D(A), t € [soT,T] with
[t — 7| < 6 and ||y — Weq,0(t)]| < 6 imply 1 Fn(t, ¥) = fa(ts Wsome )] < Krlly — w00 (B)]-

From the compactness of [soT,T], there exists {71, - ,7m} C [s0T,T] such that [sT,T] C
U~ (7 — 64,7 + 6,). Set § = min{é,,,---,6,,} and K = max{K,,, -+, K., }. Then we have
(3.7) ”fn(tay) - fn(t’wSo,vo(t))” < K|y — W00 (1)

for every (t,y) € [soT, T] x D(A) with ||y — wgq . (t)|| < 6. Fix 1 € (0,6]. Choose p > 0 satisfying
p < 6and p <n/(4eXT). We can also choose ¢ € (0, p] such that

t+¢T

t+(T - -
[ s il <pand [ sup tru)ldr<p forevery t€ 0,01~ OT)
t  yeD(4) t  yeD(4)

From vy € S,z, there exists o € [0, T] such that v is an integral solution of
v(0) =z, vy(1)+ Avg(T) 3 Fo (T, v0(7)) for0<7<T.
We remark that

/tt+CT | Fro (T, v0(7)) || d7 < 2p  for every t € [0, (1 — {)T].

Let (s,v) € [0,T] x S,z such that |s — so| < ¢ and |[v — v|| < {. For every t € [soT,sT] in the
case of s > s¢ or for every t € [sT, soT] in the case of sp > s, we have

[[1H (s,v)(t) — H (50, v0) (1)]]

|v(t) = vo(B)|| + / TIIFM(T, W0 (7)) = fu(T, Weoo(T)) | T if 5> 50,
< %0

lo(sT) — wo(sT)]| + / Il wnalr) = Frglra()ldr i 502 5,
< 4p.

Then we have
(3.8) | H (s,v)(t) — H(s0,v0)(®)]| < 4p+ /T [ £ (s was (7)) = Fu(T, Wso.00 (7)) |

for every t € [T",T], where T' = max{sT, soT'}. We shall show that ||H(s,v)(t) — H(so, v0)(t)|| <
n for every t € [0,T]. Suppose not. Then there exists to € (I",T] such that ||H(s,v)(to) —
H(s0,v0)(to)|| = n and ||H(s,v)(t) — H(s0,v0)(t)|| <7 for every t € [T",10). By (3.7), (3.8) and
Gronwall’s inequality, we have ||H(s,v)(to) — H(s0,v0)(to)|| < 4pe®T < n, which is a contradic-
tion. So, we have ||H(s,v)(t) — H(s0,v0)(t)|| < for every t € [0,T]. Hence H is continuous.

On the other hand, for every v € S,z, H(1,v) = v and H(0,v) = w, where w is the integral
solution of

w0) =z, w'(t)+Aw(t)d fu(t,w(t)) for0<t<T.

Therefore S,z is contractible. » O

Lemma 4. For every z € D(A) N B,, Sz is compact and acyclic.



90

Proof. Let z € D(A) N B,. Since F, 7 = f for every n € N, we have Sz C (2>, S,z. We shall
show the opposite inclusion. Let u € (o, Spz. Then for every n € N, there exists o, € [0, T]
such that u is an integral solution of

u(0) = z, u'(t) + Au(t) > F,,, (t,u(t)) for0<t<T.
Then, from (3.1), we have

o) =l < 1)~ ol + [ Tur) = v FCr ) =l 3

for every (y,2) € A, s,t with0 < s <t < T and n € N. Tending n to infinity, we obtain u € Sz.
So we have Sz = (-, S,z. From Lemma 2, Lemma 3 and the continuity property of the Cech
homology, we have that Sz is compact and acyclic. O

Now, we can give the proof of our theorem.

- Proof of Theorem 1. Let Zy = |J{v(T) : y € D(A) N B,,v € Sy}. From Lemma 1, Z; is a
nonempty subset of D(A) N B,. Let Z be the closed, convex hull of Z;. From Proposition 2,
Zy is relatively compact and hence Z is compact. Let Y be the set {u € C(0,T;X) : u(t) €
D(A) N B, for every t € [0,T] and u(T) € Z} and let 7 be a multivalued mapping from Y into
C(0,T; X) defined by

Tu=S8u(T) foreveryué€eV,

i.e., 7 is the composition of u — u(T) and S. From the compactness of Z, Proposition 2,
Lemma 1 and Lemma 4, 7(Y") is contained in a compact subset of ¥ and 7u is a nonempty,
acyclic, compact subset of Y for every u € Y. We shall show that 7 is upper semicontinuous.
Suppose not. Then there exist v € Y, a open neighborhood V of Tu, {u,} C Y and {v,} C Y
such that {u,} converges to u and v, € Tu, \ V for every n € N. From Proposition 2, we may
assume {v,} converges to v, and hence v ¢ V. Since v, € Tu,, we have v,(0) = u,(T) and

[0 (t) = yll < flun(s) =yl +/ [0a(7) =y, F(7,0(7)) = 2]+ dr

for every (y,2) € A, s,t with 0 < s <t < T and n € N. Tending n to infinity, we obtain v € Tu,
which contradicts 7u C V and v ¢ V. So, 7 is upper semicontinuous. Hence, by Proposition 1,
there exists a point u € Y such that v € Tu. By the definition of 7, u(0) = »(T) and u is an

integral solution of u/(t) + Au(t) 3 f(t,u(t)) for 0 < t < T. From Lemma 1, u is also an integral
solution of u'(t) + Au(¢t) > f(t,u(t)) for 0 < ¢ < T. This completes the proof. O

4. PROOF OF THEOREM 2

In this section, we give the proof of Theorem 2. Let h € L!(0,T; X). Let M, R and p be real

numbers such that M = [ |b(s)|ds + [ ||h(s)|| ds, R = max{r + M +2,(1+1/(cT))(M + 1)}
and p = R+ M + 4. From the hypothesis of Theorem 2, there exists a, € L'(0,T) such that

IIf(t,2)|| < a,(t) for almost every ¢t € [0,T] and for every x € D(A) with ||z|| < p. Let a be a
continuous function from [0, 0o) into [0, 1] which satisfies

1 ifr<p-1,
a(T)—{O ifr>p for 7 > 0.
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Define a function f : [0, T]xD(A) — X by f(t,z) = a(||z||)f(t, z) for évery (t,z) € [0, T)xD(A).
Since fOT sup,cpra |1/ (¢ 2)[ dr < fOT' a,(7)dr < oo, Proposition 3 yields a sequence of locally
Lipschitz functions {f,} from [0,7] x D(A) into X such that

. .

: ~ ~ 1 .

(4.1) / sup ||f(t,z) — fu(t,z)||dt < — for every n € N.
0 zeD(A) : n

For every n € N and = € D(A4) N Bg, we set F,,x = u(T), where u is the unique integral solution
of :
(4.2) w(0) ==z, w'(t)+ Au(t) > fult,u(t)) +h(t) foro<t<T.

From [21, Theorem 3.2.2], and [18, Theorem 2] or [21, Theorem 3.8.1], we know that F}, is well
defined.

Lemma 5. Let n € N, let x € D(A) N Bg and let u be the integral solution of (4.2). Then
lu@®)|| < R+ M +1 for every t € [0,T].

Proof. Suppose not. Then there exist Ty, 71 € [0,7] such that Ty < T1, |[u(To)|| = R, R <
llu®)]| £ R+ M + 2 for every t € [Ty, T1] and ||u(T})|| > R+ M + 1. Since u is the integral

solution of u/(t) + Au(t) 3 f,(t,u(t)) + h(t) on the interval [Ty, T1], by the same method as in
the proof of Lemma 1, we have

T T T
(T < [[(To)]| + / Ih(s)][ ds +1 — ¢ / lu(s)]] ds + / b(s)| ds
<R+M+1.
So we obtain a contradiction. This completes the proof. O

Lemma 6. For every n € N, F,, is a mapping from D(A) N By into itself.

Proof. Let n € N, let £ € D(A)N Bg and let u be the integral solution of (4.2). First, we consider
the case that there exists T, € [0,T] such that ||u(7%)]] < R — M — 1. Suppose ||u(T)|| > R.
Then there exists T3 € (T3, T] such that ||u(T3)|| = R— M —1 and ||u(¢)|| > R— M —1 for every
t € [T3,T]. By the same method as in the proof of Lemma 1, we have

T

T T
[ < @l + [ I ds+ = [ luGe)ids+ [ bs)lds < R,

Ts
which is a contradiction. So we have ||u(T)|| < R. Next, we consider the case that ||u(t)| >
R — M — 1 for every t € [0,T]. Then, we have

W) < o+ [ IOl e+ = [ juae+ [ e
<||lwO@|+M+1—-cT(R-M-1)<R.

T

Hence F;, is a mapping from D(A) N Bg into itself. O
Lemma 7. For every n € N, F,, is continuous.

Proof. Let n € N. Let # € D(A) N By and let u be the integral solution of (4.2). Since f, is
locally Lipschitz, by the same method to prove (3.7), there exist K > 0 and n > 0 such that

(4.3) | 1Falt9) = Fult, w(@®)]] < K|y — u(?)|
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for every (t,9) € [0,T] x D(A) with |ly — u(t)]| < n. Let ¢ € (0,1) and let § > 0 satisfying
6eXT < e. Let y € D(A) N Bg be a point satisfying ||z — y|| < 6 and let v be the integral
solution of v(0) = y and v/(t) + Av(t) 3 fa(t,v(t)) + h(t) for 0 < t < T. We shall show
|lu(t) — v(t)|| < € for every ¢t € [0,T]. Suppose not. Then there exists t, € (0,7] such that
lu(te) — v(to)|| = € and |ju(t) — v(t)|| < € for every t € [0,%). By (4.3), Gronwall’s inequality
implies ||u(to) — v(to)|| < 86eXT < e, which is a contradiction. Hence F;, is continuous. O

Proof of Theorem 2. From Lemma 6, Lemma 7 and Proposition 2, F;, is a compact mapping
from D(A) N By, into itself for every n € N. Hence, for every n € N, there exists a fixed point of
F,, by Schauder’s fixed point theorem, i.e., there exists an integral solution u, of u;, () + Aun(t) 3
fn(t,un(t)) +h(t) for 0 < t < T such that u,(0) = up(T) and ||u,(0)|| < R. From Proposition 2,
 we may assume {u,} converges to u in C(0,T;X). Let (z,y) € A and let s,z € R with
0<s<t<T. From (3.7), we have

fan(®) = 21 < an(s) = all+ [ un(r) = 2, 77 00 () + H() = s+

for every n € N. Tending 7 to infinity, we obtain that u is an integral solution of u'(t) + Au(t) >
f(t,u(t)) + h(t) for 0 < t < T such that u(0) = u(T) and ||u(0)|| < R. From Lemma 5, u is
also an integral solution of u/(t) + Au(t) 3 f(t, u(t)) + h(t) for 0 <t < T. Hence we obtain the
desired result. O

5. AN EXAMPLE

Let Q be a bounded domain in R"*(n > 2) with smooth boundary I'. We consider the following
nonlinear differential equation:

8 .
(5.1) 5%‘ ~ Ap(u) = g(t,z,u(t,z)) + h(t,z) on Rx Q
with a boundary condition
(5.2) p(u)=0 onRxT.

Theorem 3. Let p € C(R)NCY(R\ {0}) such that p(0) = 0 and there exist C > 0 and a > =2
with
p(r) > Clr|* ' for every r € R\ {0}.

Let g : R x © x R — R such that g is T-periodic in its first variable, g(t,z,-) is continuous
for almost every (t,z) € R x Q and g(-,-,u) is measurable for every u € R. Assume that
there exist a € L'(0,T) and b € L'((0,T) x §2) such that |g(t,z,u)| < a(t)|u| + b(t,z) for
(t,z,u) € [0,T] x Q2 x R and that

— t

lim esssup M—) <0

lul =00 (£ z)eRx N u
Then for every h € L}((0,T) x Q), (5.1) and (5.2) have at least one T-periodic integral solution
u € C(R, L' (Q)).

Proof. Let A be the set defined by {(u, —Ap(u)) € L'(Q) x L'(Q) : p(u) € Wy (Q)} and let f be
the function from R x L'(Q) into L!(Q2) defined by f(t,u)(z) = g(t, z, u(z)) for every (t,u,z) €
R x L}(Q2) x Q. We know that —A generates a compact semigroup; see [21, Lemma 2.7.2]. From
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the assumption, there exist 6, M > 0 such that g(¢,z,u)/u < —6 for (t,z,u) € R x 2 x R with
lu| > M. Then for every u € L*(Q2) and z € Ju, we have

/ﬂg(t, z,u(z))z(z) dz < —5||u||2Ll(Q) + ((6 +a(t))M|Q| + /Qb(t, z) dw) llull -

So, from Theorem 2, for every h € L'((0,T) x ), there exists a T-periodic integral solution for
(5.1) and (5.2). O

APPENDIX
In this appendix, we give the proof of Proposition 1. The following is obtained in [16].

Proposition 4. Let Y be a subset of a Hausdorff topological vector space and let K be a Haus-
dorff topological space. Let T be an upper semicontinuous multivalued mapping from coY into
K such that for every y € coY, Ty is a nonempty, acyclic, compact subset of K, and let G be a
multivalued mapping from Y into K such that for every y €Y, Gy is a closed subset of K, and

(5.3) T(co{yr, -+ »¥n}) C Ugyi for every finite subset {y1,- - ,yn} of Y.

1=1

Then {Gy : y € Y} has the finite intersection property.

From Proposition 4, we have the following, which is obtained in [17]. In the following, we can
get a coincidence point of A and 7, though there is no relationship between them.

Proposition 5. Let Y be convex subset of a Hausdorff topological vector space and let K be a
compact, Hausdorff topological space. Let T and A be multivalued mappings from Y into K such
that T is upper semicontinuous, for everyy € Y, Ty is a nonempty, acyclic, compact subset of
K and Ay is an open subset of K, and for every z € K, A~z is a nonempty, convex subset of
Y. Then there is an element y of Y such that Ayn Ty # 0.

Proof. Assume that the conclusion does not hold. Define a multivalued mapping G from Y into
K by Gy = K \ Ay for every y € Y. We shall show (5.3). Suppose not. Then there exist a finite
subset {y1, -+ ,Yn} of Y, y € co{ys, - ,¥yn} and z € Ty such that z ¢ U Gyi. So we have
z€ Ay ie., yi € A1z for every i = 1,...,n. Since A7z is convex, we have y € A™'z. So we
obtain z € Ty N Ay, which is a contradiction. Hence by Proposition 4 and the compactness of
K, there exists w € K such that w € ner Gy. So we get w ¢ Ay for all y € Y, which implies
A~y = 0, and we get a contradiction. This completes the proof. O

Proof of Proposition 1. Let U be an arbitrary, symmetric, convex, open neighborhood of 0 in
E. Define a multivalued mapping A from Y into K by Ay = y + U for every y € Y. By
Proposition 5, there is a point yy € Y such that (yy +U) N Tyy # (. From the standard
compactness argument, we obtain the conclusion. O
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