

Title	EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES
Author(s)	Shioji, Naoki
Citation	数理解析研究所講究録 (1998), 1061: 84-94
Issue Date	1998-08
URL	http://hdl.handle.net/2433/62387
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES

NAOKI SHIOJI (塩路直樹・玉川大学工学部)

1. Introduction

Let X be a Banach space, let A be an m-accretive subset of $X \times X$, let $f : \mathbb{R} \times \overline{D(A)} \to X$ be a Carathéodory mapping which is T-periodic in its first variable, and let $h \in L^1(0,T;X)$. In this paper, we study the existence of T-periodic solutions to a class of a nonlinear evolution equations of the form

(1.1)
$$u'(t) + Au(t) \ni f(t, u(t)) + h(t) \quad \text{for } t \in \mathbb{R}.$$

This problem has been studied by many authors; cf. [1, 3, 5, 12, 14, 15, 19, 20]. In the case when A is the subdifferential of a proper, lower semicontinuous convex function on a Hilbert space, \hat{O} tani [14] obtained a nice result. Vrabie [20] considered the case that A is a fully nonlinear operator. He considered the case that X is a Banach space, A is an m-accretive operator and $f: \mathbb{R} \times \overline{D(A)} \to X$ is a Carathéodory mapping such that $\overline{D(A)}$ is convex, -A generates a compact semigroup, f is T-periodic in its first variable and there exists a > 0 such that A - aI is m-accretive, and

$$\lim_{r\to\infty}\frac{1}{r}\sup\{\|f(t,v)\|:t\in\mathbb{R},v\in\overline{D(A)},\|v\|\leq r\}< a,$$

and he showed that (1.1) has a T-periodic, integral solution in the case of h=0. Caşcaval and Vrabie [5] partially extended his result to the case that X is a Hilbert space, -A generates a compact semigroup and $f: \mathbb{R} \times \overline{D(A)} \to X$ is a continuous mapping such that f is T-periodic in its first variable and bounded on every bounded subset in $\mathbb{R} \times \overline{D(A)}$, and there exists r>0 such that $B_r \cap D(A)$ is nonempty and

$$\langle y - f(t, x), x \rangle \ge 0$$
 for every $(x, y) \in A$ with $||x|| = r$ and $t \in [0, T]$,

and they showed that (1.1) has a T-periodic, strong solution in the case of h=0.

The objects of this paper are to obtain a generalization of Caşcaval and Vrabie's result by relaxing the conditions that X is a Hilbert space and f is a continuous mapping, and an existence result on the T-periodic problem (1.1) for every $h \in L^1(0,T;X)$ in the case when X is a Banach space and f is a Carathéodory mapping. The idea is inspired by [10] in which Górniewicz and Plaskacz studied the existence of periodic solution of an ordinary differential equation. Our results are the following:

Theorem 1. Let X be a separable Banach space and let A be an m-accretive subset of $X \times X$ such that $\overline{D(A)}$ is convex and -A generates a compact semigroup. Let T > 0 and let f be a Carathéodory mapping from $[0,T] \times \overline{D(A)}$ into X. Assume that there exist r > 0 and $\varepsilon > 0$ such that $B_r \cap \overline{D(A)}$ is nonempty,

$$\int_{0}^{T} \sup_{x \in \overline{D(A)} \cap B_{r+\varepsilon}} ||f(t,x)|| dt < \infty,$$

and for every $(x,y) \in A$ with $r-\varepsilon \leq ||x|| \leq r+\varepsilon$, there exists $z \in Jx$ such that

$$\langle y - f(t, x), z \rangle \ge 0$$
 for almost every $t \in (0, T)$,

where $B_r = \{u \in X : ||u|| \le r\}$ and J is the duality mapping from X into its topological dual. Then there exists at least one T-periodic, integral solution of

$$u'(t) + Au(t) \ni f(t, u(t))$$
 for $0 \le t \le T$.

Theorem 2. Let X, A, T and f be as in Theorem 1. Assume that for every $\rho > 0$ there exists $a_{\rho} \in L^{1}(0,T)$ such that $||f(t,x)|| \leq a_{\rho}(t)$ for almost every $t \in [0,T]$ and for every $x \in \overline{D(A)}$ with $||x|| \leq \rho$. Assume also that there exist r > 0, c > 0 and $b \in L^{1}(0,T)$ such that for every $(x,y) \in A$ with $||x|| \geq r$, there exists $z \in Jx$ such that

$$\langle y - f(t, x), z \rangle \ge c ||x||^2 - b(t) ||x||$$
 for almost every $t \in (0, T)$.

Then for every $h \in L^1(0,T;X)$, there exists at least one T-periodic, integral solution u of

$$u'(t) + Au(t) \ni f(t, u(t)) + h(t)$$
 for $0 \le t \le T$.

2. Preliminaries

Throughout this paper, all vector spaces are real, we denote by \mathbb{N} and \mathbb{R} , the set of all positive integers and the set of all real numbers, respectively, and by homology, we understand the Čech homology with rational coefficients; see [8, 9].

Let Y and Z be topological spaces. Let T be a subset of $Y \times Z$. We identify the set T with a multivalued mapping T from Y into Z by $Ty = \{z \in Z : (y,z) \in T\}$ for every $y \in Y$. We denote by D(T) and R(T), the sets $\{y \in Y : Ty \neq \emptyset\}$ and $\bigcup \{Ty : y \in D(T)\}$, respectively. We say that T is upper semicontinuous if for every $y_0 \in Y$ and open set V in Z with $Ty_0 \subset V$, there exists a open neighborhood U of y_0 such that $Ty \subset V$ for every $y \in U$.

The following fixed point theorem was obtained in [9, 17]. Since [17] is written in Japanese, we give the proof in Appendix.

Proposition 1 (Górniewicz, Shioji). Let Y be a convex subset of a locally convex, Hausdorff topological vector space E and let K be a compact subset of Y. Let T be an upper semicontinuous mapping from Y into K such that for every $y \in Y$, Ty is a nonempty, acyclic, compact subset of K. Then there is an element y of Y such that $y \in Ty$.

Let X be a Banach space, let D be a subset of X and let r > 0. We denote by \overline{D} , the closure of D and we denote by B_r , the closed ball in X with center 0 and radius r. Let X^* be the topological dual of X. The value of $x^* \in X^*$ at $x \in X$ will be denoted by $\langle x, x^* \rangle$. Let J be the multivalued mapping from X into X^* defined by $Jx = \{x^* \in X^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}$ for every $x \in X$. We call J the duality mapping from X into X^* . For every $(x, y) \in X \times X$, we define

 $[x,y]_+ = \lim_{t \downarrow 0} \frac{||x + ty|| - ||x||}{t}.$

We know that $(x,y) \mapsto [x,y]_+$ is an upper semicontinuous function from $X \times X$ into \mathbb{R} . We say a subset $A \subset X \times X$ is accretive if $[x_1 - x_2, y_1 - y_2]_+ \geq 0$ for every $(x_1, y_1), (x_2, y_2) \in A$. We know that A is accretive if and only if for every $(x_1, y_1), (x_2, y_2) \in A$, there exists $w^* \in J(x_1 - x_2)$ such that $\langle y_1 - y_2, w^* \rangle \geq 0$. We say an accretive set A is m-accretive if $R(I + \lambda A) = X$ for every $\lambda > 0$. Let $a, b \in \mathbb{R}$ with a < b. We denote by C(a, b; X), the space of all continuous functions from [a, b] into X. For $1 \leq p < \infty$, we also denote by $L^p(a, b; X)$, the space of all strongly measurable, p-integrable, X-valued functions defined almost everywhere on [a, b].

Let $A \subset X \times X$ be an *m*-accretive set, let $f \in L^1(a, b; X)$ and let $x \in \overline{D(A)}$. We say a function $u : [a, b] \to X$ is a strong solution of the initial value problem:

(2.1)
$$u(a) = x, \quad u'(t) + Au(t) \ni f(t) \quad \text{for } a \le t \le b,$$

if u is differentiable almost everywhere on [a,b], u is absolutely continuous, u(a)=x and $u'(t)+Au(t)\ni f(t)$ almost everywhere on [a,b]. We say a function $u:[a,b]\to X$ is an integral solution of the initial value problem (2.1), if u is continuous on [a,b], u(a)=x, $u(t)\in \overline{D(A)}$ for every $a\le t\le b$ and

$$||u(t) - y|| \le ||u(s) - y|| + \int_{s}^{t} [u(\tau) - y, f(\tau) - z]_{+} d\tau$$

for every $(y,z) \in A$ and s,t with $a \leq s \leq t \leq b$. If u is a strong solution of (2.1), then u is an integral solution of (2.1). We know from [2, 4] that the initial value problem (2.1) has a unique integral solution. If u and v are the integral solutions of (2.1) corresponding to $(x,f), (y,g) \in \overline{D(A)} \times L^1(a,b;X)$ respectively, then

$$||u(t) - v(t)|| \le ||u(s) - v(s)|| + \int_{s}^{t} [u(\tau) - v(\tau), f(\tau) - g(\tau)]_{+} d\tau$$

for $a \leq s \leq t \leq b$.

If $A \subset X \times X$ is m-accretive, then

$$S(t)x = \lim_{n \to \infty} \left(I + \frac{t}{n}A\right)^{-n}x$$

exists for every $x \in \overline{D(A)}$ and uniformly for t on every bounded interval in the set of nonnegative real numbers; see [2, 6]. We say the family $\{S(t): \overline{D(A)} \to \overline{D(A)}, t \geq 0\}$ is the nonlinear semigroup generated by -A. We remark that for every $x \in \overline{D(A)}, t \mapsto S(t)x$ is the unique integral solution of u(0) = x and $u'(t) + Au(t) \ni 0$ for $t \geq 0$. We say $\{S(t): \overline{D(A)} \to \overline{D(A)}, t \geq 0\}$ is compact if S(t) is compact for every t > 0.

To prove our theorems, we need the following propositions; see [20, Theorem 2] and [7, Lemma 2]:

Proposition 2 (Vrabie). Let X be a Banach space and let A be an m-accretive subset of $X \times X$ such that -A generates a compact semigroup. Let B be a bounded subset of $\overline{D(A)}$, let $a, b \in \mathbb{R}$ with a < b and let G be a uniformly integrable subset of $L^1(a,b;X)$. Then the set of all integral solutions of (2.1) corresponding to $(x, f) \in B \times G$ is relatively compact in C(d,b;X) for every $d \in (a,b)$, and if, in addition, B is relatively compact in X, the set is relatively compact in C(a,b;X).

Proposition 3 (De Blasi and Myjak). Let B be a subset of a separable Banach space X and let f be a Carathéodory mapping from $[0,1] \times B$ into X such that $\int_0^1 \sup_{x \in B} \|f(t,x)\| dt < \infty$. Then for every $\varepsilon > 0$, there exists a locally Lipschitz mapping g from $[0,1] \times B$ into X such that

$$\int_0^1 \sup_{x \in B} ||f(t,x) - g(t,x)|| dt < \varepsilon.$$

3. Proof of Theorem 1

In this section, we give the proof of Theorem 1. Let α be a continuous function from $[0, \infty)$ into [0, 1] such that $\alpha(t) = 1$ for $t \in [0, r + \varepsilon/2]$ and $\alpha(t) = 0$ for $t \in [r + 3\varepsilon/4, \infty)$. Define a Carathéodory mapping \tilde{f} from $[0, T] \times \overline{D(A)}$ into X by $\tilde{f}(t, x) = \alpha(||x||) f(t, x)$ for $(t, x) \in [0, T] \times \overline{D(A)}$. Since $\int_0^T \sup_{x \in \overline{D(A)}} ||\tilde{f}(t, x)|| dt < \infty$, Proposition 3 yields a sequence of locally Lipschitz functions $\{\tilde{f}_n\}$ from $[0, T] \times \overline{D(A)}$ into X such that $\tilde{f}_n(t, x) = 0$ for $(t, x) \in [0, T] \times (\overline{D(A)} \setminus B_{r+\varepsilon})$ and

(3.1)
$$\int_0^T \sup_{x \in \overline{D(A)}} \|\tilde{f}(t,x) - \tilde{f}_n(t,x)\| dt < \frac{1}{n}.$$

For every $x \in \overline{D(A)} \cap B_r$, we set

 $Sx = \{u : [0,T] \to \overline{D(A)}, u \text{ is an integral solution of } \}$

(3.2)
$$u(0) = x, \quad u'(t) + Au(t) \ni \tilde{f}(t, u(t)) \quad \text{for } 0 \le t \le T$$
.

For every $n \in \mathbb{N}$ and $\sigma \in [0, T]$, we denote by $F_{n,\sigma}$, the function from $[0, T] \times \overline{D(A)}$ into X defined by

$$F_{n,\sigma}(t,x) = \begin{cases} \tilde{f}(t,x) & \text{if } (t,x) \in [0,\sigma] \times \overline{D(A)}, \\ \tilde{f}_n(t,x) & \text{if } (t,x) \in (\sigma,T] \times \overline{D(A)}. \end{cases}$$

For every $n \in \mathbb{N}$ and $x \in \overline{D(A)} \cap B_r$, we also set

$$S_n x = \bigcup_{\sigma \in [0,T]} \{u : [0,T] \to \overline{D(A)}, \ u \text{ is an integral solution of } \}$$

(3.3)
$$u(0) = x, \quad u'(t) + Au(t) \ni F_{n,\sigma}(t, u(t)) \quad \text{for } 0 \le t \le T\}.$$

Since $\int_0^T \sup_{x \in \overline{D(A)}} \|\tilde{f}(t,x)\| dt < \infty$, $\int_0^T \sup_{x \in \overline{D(A)}} \|\tilde{f}_n(t,x)\| dt < \infty$ and -A generates a compact semigroup, we know from [18, Theorem 2] or [21, Theorem 3.8.1] that there exist integral solutions for (3.2) and (3.3) on a small interval $[0, \delta]$, and we also know from [21, Theorem 3.2.2] that such integral solutions are continuable on [0, T]. So $\mathcal{S}x$ and \mathcal{S}_nx are nonempty for every $x \in \overline{D(A)} \cap B_r$ and $n \in \mathbb{N}$.

Lemma 1. For every $x \in \overline{D(A)} \cap B_r$ and $u \in Sx$, $||u(t)|| \le r$ for every $t \in [0, T]$.

Proof. Let $x \in \overline{D(A)} \cap B_r$ and let $u \in \mathcal{S}x$. Let $[T_0, T_1]$ be an interval contained in [0, T) such that $u(T_0) = r$ and $r - \varepsilon/4 \le ||u(t)|| \le r + \varepsilon/4$ for every $t \in [T_0, T_1]$. Since u is an integral solution of $u'(t) + Au(t) \ni \tilde{f}(t, u(t))$ on the interval $[T_0, T_1]$, for every $\delta \in (0, \varepsilon/4)$, there exist $t_0, \dots, t_N \in [0, T], x_0, \dots, x_N \in \overline{D(A)}, f_0, \dots, f_N \in X$ such that

$$T_0 = t_0 < t_1 < \dots < t_{N-1} < T_1 \le t_N, \quad \max(t_i - t_{i-1}) \le \delta,$$

$$\sum_{i=1}^{N} \int_{t_{i-1}}^{t_i} \|f_i - \tilde{f}(t, u(t))\| dt \le \delta,$$

(3.4)
$$\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \ni f_i \quad \text{for } i = 1, 2, \dots, N$$

and

(3.5)
$$||v(t) - u(t)|| \le \delta$$
 for every $t \in [T_0, T_1]$,

where

$$v(t) = \begin{cases} x_0 & \text{if } t = t_0, \\ x_i & \text{if } t \in (t_{i-1}, t_i], \quad i = 1, 2, \dots, N; \end{cases}$$

see [13]. From the hypothesis of our theorem, (3.4), (3.5) and $0 < \delta < \varepsilon/4$, for every $i = 1, 2, \ldots, N$, there exists $z_i^* \in Jx_i$ such that

$$\left\langle f_i - \frac{x_i - x_{i-1}}{t_i - t_{i-1}} - \tilde{f}(t, x_i), z_i^* \right\rangle \ge 0$$
 for almost every $t \in [0, T]$.

So we have

$$||x_j|| \le ||x_0|| + \sum_{i=1}^j \int_{t_{i-1}}^{t_i} ||f_i - \tilde{f}(t, x_i)|| dt \le r + 2\delta + \sum_{i=1}^j \int_{t_{i-1}}^{t_i} ||\tilde{f}(t, u(t)) - \tilde{f}(t, x_i)|| dt$$

for every j = 1, 2, ..., N, which implies

$$||u(t)|| \le r + 3\delta + \sum_{i=1}^{N} \int_{t_{i-1}}^{t_i} ||\tilde{f}(t, u(t)) - \tilde{f}(t, x_i)|| dt$$

for every $t \in [T_0, T_1]$. Since $\delta \in (0, \varepsilon/4)$ is arbitrary, we obtain $||u(t)|| \le r$ for every $t \in [T_0, T_1]$. This completes the proof.

Lemma 2. For every $n \in \mathbb{N}$ and $x \in \overline{D(A)} \cap B_r$, $S_n x$ is compact, where $S_n x$ is endowed with the C(0,T;X) topology.

Proof. Since $S_n x$ is relatively compact from Proposition 2, we only need to show that $S_n x$ is closed. Let $n \in \mathbb{N}$ and let $x \in \overline{D(A)} \cap B_r$. Let $\{u_m\}$ be a sequence in $S_n x$ which converges to u. We shall show $u \in S_n x$. For every $m \in \mathbb{N}$, there exists $\sigma_m \in [0, T]$ such that u_m is an integral solution of

(3.6)
$$u_m(0) = x, \quad u'_m(t) + Au_m(t) \ni F_{n,\sigma_m}(t, u_m(t)) \quad \text{for } 0 \le t \le T.$$

We may assume that $\{\sigma_m\}$ converges to $\sigma \in [0,T]$. Then $\{F_{n,\sigma_m}(t,u_m(t))\}$ converges to $F_{n,\sigma}(t,u(t))$ in $L^1(0,T;X)$. Since u_m is an integral solution of (3.6), we have

$$||u_m(t) - y|| \le ||u_m(s) - y|| + \int_s^t [u_m(\tau) - y, F_{n,\sigma_m}(\tau, u_m(\tau)) - z]_+ d\tau$$

for every $(y, z) \in A$, s, t with $0 \le s \le t \le T$ and $m \in \mathbb{N}$. Tending m to infinity, we have $u \in \mathcal{S}_n x$. Hence, $\mathcal{S}_n x$ is closed.

The following is crucial to prove our theorem. In the proof, we use the method employed in [11, Proposition 3] and [22].

Lemma 3. For every $n \in \mathbb{N}$ and $x \in \overline{D(A)} \cap B_r$, $S_n x$ is contractible.

Proof. Let $n \in \mathbb{N}$ and let $x \in \overline{D(A)} \cap B_r$. For every $s \in [0, 1]$ and $v \in \mathcal{S}_n x$, we denote by $w_{s,v}$, the integral solution $w_{s,v} : [sT, T] \to \overline{D(A)}$ of

$$w_{s,v}(sT) = v(sT), \quad w'_{s,v}(\tau) + Aw_{s,v}(\tau) \ni \tilde{f}_n(\tau, w_{s,v}(\tau)) \quad \text{for } sT \le t \le T.$$

Define a function H from $[0,1] \times S_n x$ into $S_n x$ by

$$H(s,v)(t) = \begin{cases} v(t) & \text{if } 0 \le t \le sT, \\ w_{s,v}(t) & \text{if } sT \le t \le T \end{cases} \quad \text{for every } (s,v) \in [0,1] \times \mathcal{S}_n x.$$

We shall show that H is continuous. Let $(s_0, v_0) \in [0, 1] \times \mathcal{S}_n x$. Since \tilde{f}_n is locally Lipschitz, for every $\tau \in [0, T]$, there exist $\delta_{\tau} > 0$ and $K_{\tau} > 0$ such that $y \in \overline{D(A)}$, $t \in [s_0 T, T]$ with $|t - \tau| < \delta_{\tau}$ and $||y - w_{s_0, v_0}(t)|| < \delta_{\tau}$ imply $||\tilde{f}_n(t, y) - \tilde{f}_n(t, w_{s_0, v_0}(t))|| \le K_{\tau} ||y - w_{s_0, v_0}(t)||$. From the compactness of $[s_0 T, T]$, there exists $\{\tau_1, \dots, \tau_m\} \subset [s_0 T, T]$ such that $[s_0 T, T] \subset \bigcup_{i=1}^m (\tau_i - \delta_{\tau_i}, \tau_i + \delta_{\tau_i})$. Set $\delta = \min\{\delta_{\tau_1}, \dots, \delta_{\tau_m}\}$ and $K = \max\{K_{\tau_1}, \dots, K_{\tau_m}\}$. Then we have

(3.7)
$$\|\tilde{f}_n(t,y) - \tilde{f}_n(t,w_{s_0,v_0}(t))\| \le K\|y - w_{s_0,v_0}(t)\|$$

for every $(t, y) \in [s_0T, T] \times \overline{D(A)}$ with $||y - w_{s_0, v_0}(t)|| < \delta$. Fix $\eta \in (0, \delta]$. Choose $\rho > 0$ satisfying $\rho < \delta$ and $\rho < \eta/(4e^{KT})$. We can also choose $\zeta \in (0, \rho]$ such that

$$\int_{t}^{t+\zeta T}\sup_{y\in\overline{D(A)}}\left\|\tilde{f}(\tau,y)\right\|d\tau<\rho\ \ \text{and}\ \ \int_{t}^{t+\zeta T}\sup_{y\in\overline{D(A)}}\left\|\tilde{f}_{n}(\tau,y)\right\|d\tau<\rho\quad \text{for every }t\in[0,(1-\zeta)T].$$

From $v_0 \in \mathcal{S}_n x$, there exists $\sigma \in [0, T]$ such that v_0 is an integral solution of

$$v_0(0) = x$$
, $v'_0(\tau) + Av_0(\tau) \ni F_{n,\sigma}(\tau, v_0(\tau))$ for $0 \le \tau \le T$.

We remark that

$$\int_{t}^{t+\zeta T} \|F_{n,\sigma}(\tau, v_0(\tau))\| d\tau < 2\rho \quad \text{for every } t \in [0, (1-\zeta)T].$$

Let $(s, v) \in [0, T] \times S_n x$ such that $|s - s_0| < \zeta$ and $||v - v_0|| < \zeta$. For every $t \in [s_0 T, s_0 T]$ in the case of $s \ge s_0$ or for every $t \in [s_0 T, s_0 T]$ in the case of $s_0 \ge s$, we have

$$||H(s,v)(t) - H(s_0,v_0)(t)||$$

$$\leq \begin{cases} ||v(t) - v_0(t)|| + \int_{s_0T}^t ||F_{n,\sigma}(\tau,v_0(\tau)) - \tilde{f}_n(\tau,w_{s_0,v_0}(\tau))|| d\tau & \text{if } s \geq s_0, \\ ||v(sT) - v_0(sT)|| + \int_{sT}^t ||\tilde{f}_n(\tau,w_{s,v}(\tau)) - F_{n,\sigma}(\tau,v_0(\tau))|| d\tau & \text{if } s_0 \geq s, \end{cases}$$

$$\leq 4\rho.$$

Then we have

$$(3.8) ||H(s,v)(t) - H(s_0,v_0)(t)|| \le 4\rho + \int_{\tau'}^{t} ||\tilde{f}_n(\tau,w_{s,v}(\tau)) - \tilde{f}_n(\tau,w_{s_0,v_0}(\tau))|| d\tau$$

for every $t \in [T', T]$, where $T' = \max\{sT, s_0T\}$. We shall show that $||H(s, v)(t) - H(s_0, v_0)(t)|| < \eta$ for every $t \in [0, T]$. Suppose not. Then there exists $t_0 \in (T', T]$ such that $||H(s, v)(t_0) - H(s_0, v_0)(t_0)|| = \eta$ and $||H(s, v)(t) - H(s_0, v_0)(t)|| < \eta$ for every $t \in [T', t_0)$. By (3.7), (3.8) and Gronwall's inequality, we have $||H(s, v)(t_0) - H(s_0, v_0)(t_0)|| \le 4\rho e^{KT} < \eta$, which is a contradiction. So, we have $||H(s, v)(t) - H(s_0, v_0)(t)|| < \eta$ for every $t \in [0, T]$. Hence H is continuous.

On the other hand, for every $v \in \mathcal{S}_n x$, H(1, v) = v and H(0, v) = w, where w is the integral solution of

$$w(0) = x$$
, $w'(t) + Aw(t) \ni \tilde{f}_n(t, w(t))$ for $0 \le t \le T$.

Therefore $S_n x$ is contractible.

Lemma 4. For every $x \in \overline{D(A)} \cap B_r$, $\mathcal{S}x$ is compact and acyclic.

Proof. Let $x \in \overline{D(A)} \cap B_r$. Since $F_{n,T} = \tilde{f}$ for every $n \in \mathbb{N}$, we have $\mathcal{S}x \subset \bigcap_{n=1}^{\infty} \mathcal{S}_n x$. We shall show the opposite inclusion. Let $u \in \bigcap_{n=1}^{\infty} \mathcal{S}_n x$. Then for every $n \in \mathbb{N}$, there exists $\sigma_n \in [0,T]$ such that u is an integral solution of

$$u(0) = x$$
, $u'(t) + Au(t) \ni F_{n,\sigma_n}(t, u(t))$ for $0 \le t \le T$.

Then, from (3.1), we have

$$||u(t) - y|| \le ||u(s) - y|| + \int_{s}^{t} [u(\tau) - y, \tilde{f}(\tau, u(\tau)) - z]_{+} d\tau + \frac{1}{n}$$

for every $(y, z) \in A$, s, t with $0 \le s \le t \le T$ and $n \in \mathbb{N}$. Tending n to infinity, we obtain $u \in \mathcal{S}x$. So we have $\mathcal{S}x = \bigcap_{n=1}^{\infty} \mathcal{S}_n x$. From Lemma 2, Lemma 3 and the continuity property of the Čech homology, we have that $\mathcal{S}x$ is compact and acyclic.

Now, we can give the proof of our theorem.

Proof of Theorem 1. Let $Z_0 = \bigcup \{v(T) : y \in \overline{D(A)} \cap B_r, v \in \mathcal{S}y\}$. From Lemma 1, Z_0 is a nonempty subset of $\overline{D(A)} \cap B_r$. Let Z be the closed, convex hull of Z_0 . From Proposition 2, Z_0 is relatively compact and hence Z is compact. Let Y be the set $\{u \in C(0,T;X) : u(t) \in \overline{D(A)} \cap B_r$ for every $t \in [0,T]$ and $u(T) \in Z\}$ and let T be a multivalued mapping from Y into C(0,T;X) defined by

$$\mathcal{T}u = \mathcal{S}u(T)$$
 for every $u \in Y$,

i.e., \mathcal{T} is the composition of $u \mapsto u(T)$ and \mathcal{S} . From the compactness of Z, Proposition 2, Lemma 1 and Lemma 4, $\mathcal{T}(Y)$ is contained in a compact subset of Y and $\mathcal{T}u$ is a nonempty, acyclic, compact subset of Y for every $u \in Y$. We shall show that \mathcal{T} is upper semicontinuous. Suppose not. Then there exist $u \in Y$, a open neighborhood V of $\mathcal{T}u$, $\{u_n\} \subset Y$ and $\{v_n\} \subset Y$ such that $\{u_n\}$ converges to u and $v_n \in \mathcal{T}u_n \setminus V$ for every $n \in \mathbb{N}$. From Proposition 2, we may assume $\{v_n\}$ converges to v, and hence $v \notin V$. Since $v_n \in \mathcal{T}u_n$, we have $v_n(0) = u_n(T)$ and

$$||v_n(t) - y|| \le ||v_n(s) - y|| + \int_s^t [v_n(\tau) - y, \tilde{f}(\tau, v_n(\tau)) - z]_+ d\tau$$

for every $(y, z) \in A$, s, t with $0 \le s \le t \le T$ and $n \in \mathbb{N}$. Tending n to infinity, we obtain $v \in \mathcal{T}u$, which contradicts $\mathcal{T}u \subset V$ and $v \notin V$. So, \mathcal{T} is upper semicontinuous. Hence, by Proposition 1, there exists a point $u \in Y$ such that $u \in \mathcal{T}u$. By the definition of \mathcal{T} , u(0) = u(T) and u is an integral solution of $u'(t) + Au(t) \ni \tilde{f}(t, u(t))$ for $0 \le t \le T$. From Lemma 1, u is also an integral solution of $u'(t) + Au(t) \ni f(t, u(t))$ for $0 \le t \le T$. This completes the proof.

4. Proof of Theorem 2

In this section, we give the proof of Theorem 2. Let $h \in L^1(0,T;X)$. Let M, R and ρ be real numbers such that $M = \int_0^T |b(s)| \, ds + \int_0^T |h(s)| \, ds$, $R = \max\{r + M + 2, (1 + 1/(cT))(M+1)\}$ and $\rho = R + M + 4$. From the hypothesis of Theorem 2, there exists $a_{\rho} \in L^1(0,T)$ such that $||f(t,x)|| \leq a_{\rho}(t)$ for almost every $t \in [0,T]$ and for every $x \in \overline{D(A)}$ with $||x|| \leq \rho$. Let α be a continuous function from $[0,\infty)$ into [0,1] which satisfies

$$\alpha(\tau) = \begin{cases} 1 & \text{if } \tau \le \rho - 1, \\ 0 & \text{if } \tau \ge \rho \end{cases} \quad \text{for } \tau \ge 0.$$

Define a function $\tilde{f}: [0,T] \times \overline{D(A)} \to X$ by $\tilde{f}(t,x) = \alpha(\|x\|) f(t,x)$ for every $(t,x) \in [0,T] \times \overline{D(A)}$. Since $\int_0^T \sup_{x \in \overline{D(A)}} \|\tilde{f}(t,x)\| d\tau \leq \int_0^T a_{\rho}(\tau) d\tau < \infty$, Proposition 3 yields a sequence of locally Lipschitz functions $\{\tilde{f}_n\}$ from $[0,T] \times \overline{D(A)}$ into X such that

(4.1)
$$\int_0^T \sup_{x \in \overline{D(A)}} \|\tilde{f}(t,x) - \tilde{f}_n(t,x)\| dt < \frac{1}{n} \text{ for every } n \in N.$$

For every $n \in \mathbb{N}$ and $x \in \overline{D(A)} \cap B_R$, we set $F_n x = u(T)$, where u is the unique integral solution of

(4.2)
$$u(0) = x, \quad u'(t) + Au(t) \ni \tilde{f}_n(t, u(t)) + h(t) \quad \text{for } 0 \le t \le T.$$

From [21, Theorem 3.2.2], and [18, Theorem 2] or [21, Theorem 3.8.1], we know that F_n is well defined.

Lemma 5. Let $n \in \mathbb{N}$, let $x \in \overline{D(A)} \cap B_R$ and let u be the integral solution of (4.2). Then $||u(t)|| \leq R + M + 1$ for every $t \in [0, T]$.

Proof. Suppose not. Then there exist $T_0, T_1 \in [0,T]$ such that $T_0 < T_1$, $||u(T_0)|| = R$, $R \le ||u(t)|| \le R + M + 2$ for every $t \in [T_0, T_1]$ and $||u(T_1)|| > R + M + 1$. Since u is the integral solution of $u'(t) + Au(t) \ni \tilde{f}_n(t, u(t)) + h(t)$ on the interval $[T_0, T_1]$, by the same method as in the proof of Lemma 1, we have

$$||u(T_1)|| \le ||u(T_0)|| + \int_{T_0}^{T_1} ||h(s)|| \, ds + 1 - c \int_{T_0}^{T_1} ||u(s)|| \, ds + \int_{T_0}^{T_1} |b(s)| \, ds$$

$$\le R + M + 1.$$

So we obtain a contradiction. This completes the proof.

Lemma 6. For every $n \in \mathbb{N}$, F_n is a mapping from $\overline{D(A)} \cap B_R$ into itself.

Proof. Let $n \in \mathbb{N}$, let $x \in \overline{D(A)} \cap B_R$ and let u be the integral solution of (4.2). First, we consider the case that there exists $T_2 \in [0,T]$ such that $||u(T_2)|| < R - M - 1$. Suppose ||u(T)|| > R. Then there exists $T_3 \in (T_2,T]$ such that $||u(T_3)|| = R - M - 1$ and $||u(t)|| \ge R - M - 1$ for every $t \in [T_3,T]$. By the same method as in the proof of Lemma 1, we have

$$||u(T)|| \le ||u(T_3)|| + \int_{T_3}^T ||h(s)|| \, ds + \frac{1}{n} - c \int_{T_3}^T ||u(s)|| \, ds + \int_{T_3}^T |b(s)| \, ds \le R,$$

which is a contradiction. So we have $||u(T)|| \leq R$. Next, we consider the case that $||u(t)|| \geq R - M - 1$ for every $t \in [0, T]$. Then, we have

$$||u(T)|| \le ||u(0)|| + \int_0^T ||h(t)|| dt + \frac{1}{n} - c \int_0^T ||u(t)|| dt + \int_0^T |b(t)| dt$$

$$\le ||u(0)|| + M + 1 - cT(R - M - 1) \le R.$$

Hence F_n is a mapping from $\overline{D(A)} \cap B_R$ into itself.

Lemma 7. For every $n \in \mathbb{N}$, F_n is continuous.

Proof. Let $n \in \mathbb{N}$. Let $x \in \overline{D(A)} \cap B_R$ and let u be the integral solution of (4.2). Since \tilde{f}_n is locally Lipschitz, by the same method to prove (3.7), there exist K > 0 and $\eta > 0$ such that

$$||\tilde{f}_n(t,y) - \tilde{f}_n(t,u(t))|| \le K||y - u(t)||$$

for every $(t,y) \in [0,T] \times \overline{D(A)}$ with $||y-u(t)|| < \eta$. Let $\varepsilon \in (0,\eta)$ and let $\delta > 0$ satisfying $\delta e^{KT} < \varepsilon$. Let $y \in \overline{D(A)} \cap B_R$ be a point satisfying $||x-y|| < \delta$ and let v be the integral solution of v(0) = y and $v'(t) + Av(t) \ni \tilde{f}_n(t,v(t)) + h(t)$ for $0 \le t \le T$. We shall show $||u(t)-v(t)|| < \varepsilon$ for every $t \in [0,T]$. Suppose not. Then there exists $t_0 \in (0,T]$ such that $||u(t_0)-v(t_0)|| = \varepsilon$ and $||u(t)-v(t)|| < \varepsilon$ for every $t \in [0,t_0)$. By (4.3), Gronwall's inequality implies $||u(t_0)-v(t_0)|| \le \delta e^{KT} < \varepsilon$, which is a contradiction. Hence F_n is continuous.

Proof of Theorem 2. From Lemma 6, Lemma 7 and Proposition 2, F_n is a compact mapping from $\overline{D(A)} \cap B_R$ into itself for every $n \in \mathbb{N}$. Hence, for every $n \in \mathbb{N}$, there exists a fixed point of F_n by Schauder's fixed point theorem, i.e., there exists an integral solution u_n of $u'_n(t) + Au_n(t) \ni \tilde{f}_n(t, u_n(t)) + h(t)$ for $0 \le t \le T$ such that $u_n(0) = u_n(T)$ and $||u_n(0)|| \le R$. From Proposition 2, we may assume $\{u_n\}$ converges to u in C(0, T; X). Let $(x, y) \in A$ and let $s, t \in \mathbb{R}$ with $0 \le s \le t \le T$. From (3.7), we have

$$||u_n(t) - x|| \le ||u_n(s) - x|| + \int_s^t [u_n(\tau) - x, \tilde{f}(\tau, u_n(\tau)) + h(\tau) - y]_+ d\tau + \frac{1}{n}$$

for every $n \in \mathbb{N}$. Tending n to infinity, we obtain that u is an integral solution of $u'(t) + Au(t) \ni \tilde{f}(t, u(t)) + h(t)$ for $0 \le t \le T$ such that u(0) = u(T) and $||u(0)|| \le R$. From Lemma 5, u is also an integral solution of $u'(t) + Au(t) \ni f(t, u(t)) + h(t)$ for $0 \le t \le T$. Hence we obtain the desired result.

5. An example

Let Ω be a bounded domain in $\mathbb{R}^n (n \geq 2)$ with smooth boundary Γ . We consider the following nonlinear differential equation:

(5.1)
$$\frac{\partial u}{\partial t} - \Delta \rho(u) = g(t, x, u(t, x)) + h(t, x) \quad \text{on } \mathbb{R} \times \Omega$$

with a boundary condition

(5.2)
$$\rho(u) = 0 \quad \text{on } \mathbb{R} \times \Gamma.$$

Theorem 3. Let $\rho \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$ such that $\rho(0) = 0$ and there exist C > 0 and $a > \frac{n-2}{n}$ with

$$\rho'(r) \ge C|r|^{a-1}$$
 for every $r \in \mathbb{R} \setminus \{0\}$.

Let $g: \mathbb{R} \times \Omega \times \mathbb{R} \to \mathbb{R}$ such that g is T-periodic in its first variable, $g(t, x, \cdot)$ is continuous for almost every $(t, x) \in \mathbb{R} \times \Omega$ and $g(\cdot, \cdot, u)$ is measurable for every $u \in \mathbb{R}$. Assume that there exist $a \in L^1(0,T)$ and $b \in L^1((0,T) \times \Omega)$ such that $|g(t,x,u)| \leq a(t)|u| + b(t,x)$ for $(t,x,u) \in [0,T] \times \Omega \times \mathbb{R}$ and that

$$\overline{\lim_{|u|\to\infty}} \operatorname*{ess\,sup}_{(t,x)\in\mathbb{R}\times\Omega} \frac{g(t,x,u)}{u} < 0.$$

Then for every $h \in L^1((0,T) \times \Omega)$, (5.1) and (5.2) have at least one T-periodic integral solution $u \in C(\mathbb{R}, L^1(\Omega))$.

Proof. Let A be the set defined by $\{(u, -\Delta \rho(u)) \in L^1(\Omega) \times L^1(\Omega) : \rho(u) \in W_0^{1,1}(\Omega)\}$ and let f be the function from $\mathbb{R} \times L^1(\Omega)$ into $L^1(\Omega)$ defined by f(t, u)(x) = g(t, x, u(x)) for every $(t, u, x) \in \mathbb{R} \times L^1(\Omega) \times \Omega$. We know that -A generates a compact semigroup; see [21, Lemma 2.7.2]. From

the assumption, there exist $\delta, M > 0$ such that $g(t, x, u)/u \le -\delta$ for $(t, x, u) \in \mathbb{R} \times \Omega \times \mathbb{R}$ with $|u| \ge M$. Then for every $u \in L^1(\Omega)$ and $z \in Ju$, we have

$$\int_{\Omega} g(t,x,u(x)) z(x) \, dx \leq -\delta \|u\|_{L^{1}(\Omega)}^{2} + \left((\delta + a(t)) M |\Omega| + \int_{\Omega} b(t,x) \, dx \right) \|u\|_{L^{1}(\Omega)}.$$

So, from Theorem 2, for every $h \in L^1((0,T) \times \Omega)$, there exists a T-periodic integral solution for (5.1) and (5.2).

APPENDIX

In this appendix, we give the proof of Proposition 1. The following is obtained in [16].

Proposition 4. Let Y be a subset of a Hausdorff topological vector space and let K be a Hausdorff topological space. Let \mathcal{T} be an upper semicontinuous multivalued mapping from coY into K such that for every $y \in \text{coY}$, $\mathcal{T}y$ is a nonempty, acyclic, compact subset of K, and let \mathcal{G} be a multivalued mapping from Y into K such that for every $y \in \mathcal{Y}$, $\mathcal{G}y$ is a closed subset of K, and

(5.3)
$$\mathcal{T}(\operatorname{co}\{y_1,\cdots,y_n\}) \subset \bigcup_{i=1}^n \mathcal{G}y_i \quad \text{for every finite subset } \{y_1,\cdots,y_n\} \text{ of } Y.$$

Then $\{\mathcal{G}y:y\in Y\}$ has the finite intersection property.

From Proposition 4, we have the following, which is obtained in [17]. In the following, we can get a coincidence point of \mathcal{A} and \mathcal{T} , though there is no relationship between them.

Proposition 5. Let Y be convex subset of a Hausdorff topological vector space and let K be a compact, Hausdorff topological space. Let T and A be multivalued mappings from Y into K such that T is upper semicontinuous, for every $y \in Y$, Ty is a nonempty, acyclic, compact subset of K and Ay is an open subset of K, and for every $z \in K$, $A^{-1}z$ is a nonempty, convex subset of Y. Then there is an element y of Y such that $Ay \cap Ty \neq \emptyset$.

Proof. Assume that the conclusion does not hold. Define a multivalued mapping \mathcal{G} from Y into K by $\mathcal{G}y = K \setminus \mathcal{A}y$ for every $y \in Y$. We shall show (5.3). Suppose not. Then there exist a finite subset $\{y_1, \dots, y_n\}$ of $Y, y \in \operatorname{co}\{y_1, \dots, y_n\}$ and $z \in \mathcal{T}y$ such that $z \notin \bigcup_{i=1}^n \mathcal{G}y_i$. So we have $z \in \mathcal{A}y_i$ i.e., $y_i \in \mathcal{A}^{-1}z$ for every $i = 1, \dots, n$. Since $\mathcal{A}^{-1}z$ is convex, we have $y \in \mathcal{A}^{-1}z$. So we obtain $z \in \mathcal{T}y \cap \mathcal{A}y$, which is a contradiction. Hence by Proposition 4 and the compactness of K, there exists $w \in K$ such that $w \in \bigcap_{y \in Y} \mathcal{G}y$. So we get $w \notin \mathcal{A}y$ for all $y \in Y$, which implies $\mathcal{A}^{-1}w = \emptyset$, and we get a contradiction. This completes the proof.

Proof of Proposition 1. Let U be an arbitrary, symmetric, convex, open neighborhood of 0 in E. Define a multivalued mapping \mathcal{A} from Y into K by $\mathcal{A}y = y + U$ for every $y \in Y$. By Proposition 5, there is a point $y_U \in Y$ such that $(y_U + U) \cap \mathcal{T}y_U \neq \emptyset$. From the standard compactness argument, we obtain the conclusion.

Acknowledgement. The author would like to express his sincere thanks to Professor Mitsuharu Ôtani for many helpful conversations and suggestions.

REFERENCES

- [1] H. Amann, *Periodic solutions of semilinear parabolic equations*, in Nonlinear analysis (A collection of papers in honor of Erich H. Rothe, Ed. L. Cesari, R. Kannan and H. F. Weinberger), 1-29, Academic Press, New York, 1978.
- [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976.

- [3] R. I. Becker, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl. 82 (1981), 33-48.
- [4] P. Benilan, Solutions integrales d'équations d'évolution dan un espace de Banach, C. R. Acad. Sci. Paris 274 (1972), 47-50.
- [5] J. P. Caşcaval and I. I. Vrabie, Existence of periodic solutions for a class of nonlinear evolution equations, Rev. Mate. Univ. Complutense Madrid 7 (1994), 325-338.
- [6] M. G. Crandall and T. M. Liggett, Generations of semigroups of nonlinear transformations in general Banach spaces, Am. J. Math. 93 (1971), 265-298.
- [7] F. S. De Blasi and J. Myjak, Orlicz type category results for differential equations in Banach spaces, Comm. Math. 23 (1983), 193-197.
- [8] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, 1952.
- [9] L. Górniewicz, Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. 129 (1976), 1-66.
- [10] L. Górniewicz and S. Plaskacz, Periodic solutions of differential inclusions in Rⁿ, Boll. U. M. I. (7) 7-A (1993), 409-420.
- [11] C. J. Himmerlberg and F. S. Van Vleck, A note on the sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625.
- [12] N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 185-192.
- [13] V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, Pergamon press, Oxford, 1981.
- [14] M. Ötani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems, J. Diff. Eq. 54 (1984), 248–273.
- [15] J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979), 221-235.
- [16] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111 (1991), 187-195.
- [17] N. Shioji, On KKM theorems (in Japanese), in Lecture Notes of the Research Institute for Mathematical Sciences, Kyoto Univ. 829, 168-174 (1993).
- [18] N. Shioji, Local existence theorems for nonlinear differential equations and compactness of integral solutions in $L^p(0,T;X)$, Nonlinear Anal. **26** (1996), 799-811.
- [19] N. Shioji, Existence of periodic solutions for nonlinear evolution equations with nonmonotonic perturbations, Proc. Amer. Math. Soc. 125 (1997), 2921-2929.
- [20] I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), 653-661.
- [21] I. I. Vrabie, Compactness methods for nonlinear evolutions, second edition, Longman, England, 1995.
- [22] J. Yorke, Spaces of solutions, Lecture Notes in Operations Research and Mathematical Economics vol. 12, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

FACULTY OF ENGINEERING, TAMAGAWA UNIVERSITY, TAMAGAWA-GAKUEN, MACHIDA, TOKYO 194, JAPAN E-mail address: shioji@eng.tamagawa.ac.jp